
501
Notre Dame Journal of Formal Logic
Volume XVI, Number 4, October 1975
NDJFAM

A NOTE ON REFLEXIVENESS

DAVID MARANS

The job of working through the algebra of relations is not made any
easier by the fact that authors frequently use key terms differently. This
is to be regretted; however, the important thing is that you be able to keep
these usages straight in your own mind. What follows then is an attempt to
get straight on one particular aspect of the algebra of relations—the notion
of reflexiveness.

The most studied properties of relations are relexivity, symmetry, and
transitivity. Variances appear from the very start; for whereas all authors
define "symmetric" and "asymmetric" as:

Sym R =df {x)(y)(xRy -* yRx)
Asym R =df (x)(y)(χRy — ~yRx),

some authors (Carnap, e.g.) define "nonsymmetry" simply as "~Sym R",
and others (Copi, e.g.) define it "~SymR & ~ Asym A". And there is an
analogous variance in the transitivity triad. For whereas all authors define
"transitive" and "intransitive" as:

Trα R =df (x){y)(z) [{xRy & yRz) -* xRz]
Intrα R =df (x)(y)(z) [(xRy & yRz) -* ~xRz],

some authors (again Carnap) define "nontransitive" simply as "~TrαjR",
and others (again Copi) define it " ~ Trα R & ~ Intrα R". The reasons for
adopting one version of nonsymmetry (or nontransitivity) instead of the
other are most likely pragmatic, but we shall let this pass.

The variance already noted, of course, has an analogy in the reflexivity
group. Some authors define "nonreflexive" simply as "~Refl R", while
others define it "~Refl R & ~ Irrefl R". Yet the map is smudged even more
by variant definitions of "Refl-R". Here are the most frequently used
definitions of reflexiveness: (giving just the definiens)

(A) (x)xRx
(B) (χ)(y) [xRy — (xRx & yRy)]
(C) (x) [(3y)(xRy v yRx) - xRx] •
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(D) (χ)(y)(χRy -> xRx)
(E) (χ)(y)(xRy -> yRy)

To my mind, it is pointless to ask 'Which definition is correct?' It is
to the point, however, to enquire into the logical relationships among the
definitions. Thus, first of all, it can be shown that definitions B (Quine) and
C (Copi) are logically equivalent, viz.,

(Tl) (x)(y) [xRy -> (xRx & yRy)] H h(x) [(3y)(xRy v yRx) -> xRx]

Hence C will be eliminated in all that follows, and we are left then with
four kinds (or, better, degrees) of reflexiveness. In order to keep them
separate, they are now given distinct names and complete definitions:

(Dl) Totrefl R =df (x)xRx (totally reflexive)
(D2) Birefl R =df (x)(y) [xRy -» (xRx & yRy)] (bireflexive)

(D3) R-refl R =df (x)(y) (xRy -> yRy) (right reflexive)
(D4) L-refl R =df (x)(y) (xRy -> xRx) (left reflexive)

By the method of interpretation it can be shown that no two of these
definitions are logically equivalent. Consider the following three interpre-
tations:

(la) U: positive integers xRy: x is a prime factor of y
(Ib) U: positive integers xRy: x is prime factored by y
(Ic) U: sentences xRy: x entails y

According to la, D4 is true and the other D's are all false. According to Ib,
D3 is true and both D2 and Dl are false. And according to Ic, D2 is true
while Dl is false. Thus it is proved that no two of the definitions (D1-D4)
are logically equivalent.

Nevertheless, these degrees of reflexiveness are bound together by
several entailments. The two most basic are:

(T2) Totrefl R h Birefl R
(T3) Birefl R H h R-refΓΛ & L-refl R

Furthermore, should an arbitrary ^relation display one specific property,
then for that relation the four degrees of reflexiveness collapse remark-
ably. And the collapse is complete if both the relation and its converse
(denoted by R°) display this property. For lack of a better word I have
named this property "density". It is defined as follows:

(D5) Den R =df (x)(3y)xRy

If a relation or its converse is dense, then bireflexiveness collapses to
total reflexiveness. That is,

(T4) Den R v Den R° h Totrefl R < ^ Birefl R

If a relation is dense, then it is left reflexive only if it is right reflexive.
That is,

(T5) Den R h L-refl R — R-refl R
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If the converse of a relation is dense, then the relation itself is right
reflexive only if it is left reflexive. That is,

(T6) Den R° h R-refl R — L-refl R

Finally, if a relation and its converse are both dense, the collapse is
complete. That is,

(T7) Den R & Den R° h ( L-refl R < ^ R-refl R) &
(L-refl #«-^Birefl R) &
(L-refl R <^> Torrefl R) &
(R-refl tf^Bίrefl R) &
(R-refl #^>Totrefl R) &
(Birefl R ^>Totrefl R)

In the universe of real numbers most relations (at least the typical
relations with which I am familiar) and their converses are dense;
that is, e.g., '> ' , '< ' , '=', 'precedes', 'is a prime factor of. (An
exception is 'is a factor of which is not dense, though its converse is
dense.) Thus mathematically inclined logicians (such as Tar ski) are free
to choose any one of these four definitions of 'Refl R\ Quite naturally,
Tar ski uses Dl since it is the simplest. Quine, having in mind a broader
universe, opts for D2. Anderson and Johnstone (perhaps wanting both scope
and simplicity) choose D4, but unfortunately they fail to take note of D3.

The question "how ought one to define 'reflexiveness'?" is best
answered "According to one's purposes". What I have done here is
discuss the alternatives and map (begin to map) their connections.

Proofs: Natural Deduction Technique

Key:

(a) The extreme left column is assumption dependence, after Lemmon.
(b) Abbreviations: A (assumption), QE (quantifier exchange), ΠE (universal
quantifier elimination), ΣE (existential quantifier elimination), CD (condi-
tionalization), TF (truth functional reasoning), DF (definition exchange),
RAA (reductio ad absurdum).
(c) Note that in the proofs ζxRy' is written ζRxy'.

(T1) UxUyCRxyKRxxRyy -l h UxCΣyARxyRyxRxx

(a) TlxUyCRxyRxxRyy H TixCΣyARxyRyxRxx

1 (1) UxUyCRxyKRxxRyy A
2 (2) NUxCΣyARxyRyxRxx A
2 (3) ΣxNCΣyARxyRyxRxx 2 QE
2 (4) NCΣyARayRyaRaa 3 ΣE
2 (5) ΣyARayRya 4 TF
2 (6) ARabRba 5 ΣE
1 (7) CRabKRaaRbb 1 ΠE (2)
1 (8) CRbaKRbbRaa 1 ΠE (2)
1, 2 (9) KRaaNRaa 4, 6, 7, 8 TF
1 (10) UxCΣyARxyRyxRxx 2-9 RAA
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(b) UxCΣyARxyRyxRxx h IlxΐlyCRxyKRxxRyy

1 (1) UxCΣyARxyRyxRxx A
2 (2) NUxUyCRxyKRxxRyy A
2 (3) ΣxΣyNCRxyKRxxRyy 2 QE (2)
2 (4) NCRabKRaaRbb 3 ΣE (2)
1 (5) CΣyARayRyaRaa 1 ΠE
1 (6) CΣyARbyRybRbb 1 ΠE
I (7) NΣyARayRya A
7 (8) Π yJNΓAita ytf yα 7 QE
7 (9) NARabRba 8 ΠE

(10) C(7)(9) CD
II (11) NΣyARbyRyb A
11 (12) UyNARbyRyb 11 QE
11 (13) NARbaRab 12 ΠE

(14) C(ll)(13) CD
1, 2(15) KRabNRab 4, 5, 6, 10, 14 TF
1 (16) HxUyCRxyKRxxRbb 2-15 RAA

(T2) Totrefl R H Birefl R

1 (1) Totrefl R A

2 (2) ΛΓΠΛΓΠ^CΛΛ ̂ ^ ^ ^ W A

2 (3) ΣxΣyNCRxyKRxxRyy 2 QE (2)
2 (4) NCRabKRaaRbb 3 ΣE (2)
1 (5) UxRxx I D F (Dl)
1 (6) Raa 5 ΠE
1 (7) Λδδ 5ΠE
1, 2 (8) KKRaaRbbNKRaaRbb 4, 6, 7 TF
1 (9) UxUyCRxyKRxxRyy 2-8 RAA
1 (10) Birefl R 9 DF (D2)

(T3) Birefl R HH ϋΓ(R-refl Λ)(L-refl Λ)

(a) iΓ(R-refl #)(L-refl R) h Birefl Λ

1 (1) iΓ(R-refl Λ)(L-refl Λ) A
2 (2) NUxΠyCRxyKRxxRyy A
2 (3) ΣxΣyNCRxyKRxxRyy 2 QE (2)
2 (4) NCRabKRaaRbb 3 Σ E (2)
1 (5) ϋΓΠAΓΠyCΛΛΓyΛyyΠΛΓΠyCΛΛΓyJ^^ 1 D F (D3 & D4)
1 (6) UxUyCRxyRyy 5 TF
1 (7) UxUyCRxyRxx 5 TF
1 (8) CRabRbb 6 ΠE (2)
1 (9) CRabRaa 7 ΠE (2)
1, 2(10) KKRaaRbbNKRaaRbb 4, 8, 9 TF
1 (11) UxUyCRxyKRxxRyy 2-10 RAA
1 (12) Birefl R 11 DF (D2)

(b) Birefl ΛHϋΓ(R-rβfl Λ)(L-refI-R)

1 (1) Birefl R A
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2 (2) NUxUyCRxyRyy A
2 (3) ΣxΣyNCRxyRyy 2 QE (2)
2 (4) NCRabRbb 3 ΣE (2)
1 (5) UxUyCRxyKRxxRyy 1 DF (D2)
1 (6) CRabKRabRbb 5 ΠE (2)
1, 2 (7) KRbbNRbb 4, 6 TF
1 (8) UxUyCRxyRyy 2-7 RAA
1 (9) R-refl R 8 DF (D3)
10 (10) NΐixϊiyCRxyRxx A
10 (11) ΣxΣyNCRxyRxx 10 QE (2)
10 (12) NCRcdRcc 11 ΣE (2)
1 (13) CRcdKRccRdd 5 ΠE (2)
1, 10 (14) KRccNRcc 12, 13 TF
1 (15) ΠtflΓyC/tt y i m 10-14 RAA
1 (16) L-refl R 15 DF (D4)
1 (17) ϋΓ(R-refl Λ)(L-refl R) 9, 16 TF

For T4 (also T6) we need to have the concept of converse relation stated
formally. This is best done axiomatically:

Ax R° UxUyER°xyRyx

(T4) A(Den R)(Den R°) H£(Totrefl Λ)(Birefl R)

1 (1) A{Den R)(Den R°) A
(2) C(Totrefl #)(Birefl R) From T2 directly

3 (3) Birefl R A

4 (4) NllxRxx A
4 (5) ΣxNRxx 4 QE
4 (6) iVBα« 5 ΣE
7 (7) Deni? A
7 (8) UxΣyRxy 7 DF (D5)
7 (9) ΣyRay 8 ΠE
7 (10) Rab 9 ΣE
3 (11) UxUyCRxyKRxxRyy 3 DF (D2)
3 (12) CRabKRaaRbb 11 ΠE (2)
3, 4, 7 (13) KRaaNRaa 6, 10, 12, TF
3, 4 (14) N(DenR) 7-13 RAA
1, 3, 4 (15) DenR° 1, 14 TF
1, 3, 4 (16) UxΣyR°xy 15 DF (D5)
1, 3, 4 (17) ΣyR°xy 16 ΠE
1, 3, 4 (18) R°ac 17 ΣE

(19) ΠtfΠ yEJR^ yitytf Ax R°
(20) ER°acRca 19 ΠE (2)

3 (21) CRcaKRccRaa 11 ΠE (2)
1, 3, 4 (22) KRaaNRaa 7, 18, 20, 21 TF
1, 3 (23) UxRxx 4-22 RAA
1, 3 (24) Toirefl R 23 DF (Dl)
1 (25) C(3)(24) CD
1 (26) £(Totrefl Λ)(Birefl R) 2, 25 TF
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(T5) Den R h C( L-refl R){ R-refI R)

1 (1) Den R A
2 (2) L-refl R A
1 (3) UxΣyRxy 1 DF (D5)

2 (4) UxUyCRxyRxx 2 DF (D4)
5 (5) NϊixϊlyCRxyRyy A
5 (6) ΣxΣyNCRxyRyy 5 QE (2)
5 (7) NCRabRbb 6 ΣE (2)
1 (8) ΣyRby 3 ΠE
1 (9) Rbc 8 ΣE
2 (10) CRbcRbb 4 ΠE (2)
1, 2, 5 (11) KRbbNRbb 7, 9, 10 TF
1, 2 (12) UxIlyCRxyRyy 5-11 RAA
1, 2 (13) R-refl R 12 DF (D3)
1 (14) C(2)(13) CD

(T6) Den R° HC(R-refl Λ)( L-refl R)

1 (1) DenR° A
2 (2) R-refl R A
1 (3) UxΣyR°xy I D F (D5)

(4) UxUyER°xyRyx Ax R°

2 (5) ΠAΓΠyCΛAΓyΛW 2 DF (D3)
6 (6) NUxϊlyCRxyRxx A
6 (7) ΣxΣyNCRxyRxx 6 QE (2)
6 (8) NCRabRaa 7 ΣE (2)
1 (9) ΣyR°ay 3 ΠE
1 (10) R°ac 9 ΣE

(11) ER°acRca 4 ΠE (2)
2 (12) CRcaRaa 5 ΠE (2)
1, 2, 6 (13) KRaaNRaa 8, 10, 11, 12 TF
1, 2 (14) UxUyCRxyRxx 6-13 RAA
1, 2 (15) L-refl R 14 DF (D4)
1 (16) C(2)(15) CD

Curiously enough, T7 is implied by TF alone from the conjunction of T3,
T4, T5, and T6.
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