Notre Dame Journal of Formal Logic Volume XVI, Number 3, July 1975 NDJFAM

SUMS OF α -SPACES

NORTHRUP FOWLER, III

1 Introduction* In [1] and [2], Dekker introduced and studied an \aleph_0 dimensional recursive vector space \overline{U}_F over a countable field F. Briefly, it consists of an infinite recursive set ϵ_F of numbers (i.e., non-negative integers), an operation + from $\epsilon_F \times \epsilon_F$ into ϵ_F and an operation \cdot from $F \times \epsilon_F$ into ϵ_F . If the field F is identified with a recursive set, both + and \cdot are partial recursive functions. Let β be a subset of ϵ_F . We call β a *repère* if it is linearly independent; β is a *r.e. repère* if β is a r.e. set; and β is an α -repère if it is included in some r.e. repère. A subspace V of \overline{U}_F is an α -space if it has at least one α -basis, i.e., at least one basis which is also an α -repère. A subspace V is *isolic* if it includes no r.e. repère; it is r.e. if it is r.e. as a set. The word "space" is used in the sense of "subspace of \overline{U}_F ", and we denote "W is a subspace of V" by " $W \leq V$ ". We usually write (0) for $\{0\}$, and \overline{U} for \overline{U}_F . Let $\alpha \subseteq \epsilon_F$. If $\alpha = \emptyset$, $L(\alpha) = (0)$. If $\alpha \neq \emptyset$, $L(\alpha)$ denotes the span of α , i.e., the set of all linear combinations (with coefficients in F) of finitely many elements of α . If $\alpha = \{a_0, \ldots\}$, we usually write $L(a_0, \ldots)$ instead of $L(\{a_0, \ldots\})$. We use \mathfrak{c} to denote the cardinality of the continuum.

The reperes β and γ are *independent* if they are disjoint and their union is a repère. The spaces V and W are *independent* if $V \cap W = (0)$. The sets β and γ are *separable* (written: $\beta|\gamma$) if they can be separated by r.e. sets. The α -repères β and γ are α -*independent* (written: $\beta||\gamma$), if they can be separated by independent r.e. repères. The spaces V and W are α *independent* (written: V||W), if there are independent r.e. spaces \overline{V} and \overline{W} such that $V \leq \overline{V}$ and $W \leq \overline{W}$. For spaces V, W, W is an α -subspace of V (written: $W \leq_{\alpha} V$) if there is an α -space S such that W||S and $W \oplus S = V$.

In [3] we proved that the intersection of two α -spaces need not be an α -space. The same question naturally arises concerning the sum of two

^{*}The results presented in this paper were taken from the author's doctoral dissertation written at Rutgers University under the direction of Professor J. C. E. Dekker.

 α -spaces. Dekker has shown ([1], Proposition P23) that the sum of two α -independent α -spaces is an α -space. We shall prove that the sum of two independent α -spaces need not be an α -space. For this purpose we shall define a family of spaces, \mathfrak{c} of which are α -spaces and \mathfrak{c} of which are not. As a side result we shall obtain a new proof of the existence of non- α -spaces. We shall need the following three propositions:

Proposition P1. (Dekker, [1], P30). The \leq_{α} -relation between α -spaces is reflexive, antisymmetric, and transitive.

Proposition P2. ([3], L5). Let $\Gamma = \{V_i | i \in I\}$ be a non-empty family of distinct α -spaces, where $I = \langle 0, \ldots, n-1 \rangle$ if cord $\Gamma = n > 0$ and $I = \epsilon$ otherwise. Let

 $S = \prod \Gamma$. Then for all finite dimensional spaces B,

$$S || B \Leftrightarrow S \cap B = (0).$$

Proposition P3. (Dekker, [2], Theorem 5; see also [4]). Let S, C, V be spaces. If S || C and $S \oplus C = V$, and if V is an α -space and C is an isolic α -space, then S is an α -space.

2 Sums Notations. In the following, a_n denotes a 1-1 function ranging over an infinite r.e. repère α , $\alpha_1 = \alpha \setminus \{a_0, a_1\}$ and $A = L(\alpha)$. Moreover,

$$\sigma_{0} = \{a_{0} + x \mid x \in \alpha_{1}\}, \tau_{0} = \{a_{1} + x \mid x \in \alpha_{1}\}.$$

Let δ , β , $\gamma \subset \alpha_1$. Then

$$\sigma_{\beta} = \{a_{0} + x | x \in \beta\}, \ \tau_{\gamma} = \{a_{1} + x | x \in \gamma\},\ E_{0}(\beta) = L(\sigma_{\beta}), \ E_{1}(\gamma) = L(\tau_{\gamma}),\ T\langle\beta, \gamma\rangle = L(\sigma_{\beta} \cup \tau_{\delta}) = E_{0}(\beta) + E_{1}(\gamma),\ Z_{\delta} = T\langle\delta, \delta\rangle.$$

Proposition P4. (a) σ_0 and τ_0 are disjoint repères such that neither of the two spaces $L(\sigma_0)$, $L(\tau_0)$ is a subspace of the other one,

(b) $L(\sigma_0) \oplus L(a_0, a_1) = A = L(\tau_0) \oplus L(a_0, a_1),$

(c) $a_0 - a_1 \notin L(\sigma_0) \cup L(\tau_0)$, but $a_0 - a_1 \in L(\sigma_0 \cup \tau_0)$,

(d) $L(\sigma_0 \cup \tau_0) \oplus L(a_0) = A = L(\sigma_0 \cup \tau_0) \oplus L(a_1),$

(e) $L(\sigma_0) \oplus L(a_0 - a_1) = L(\sigma_0 \cup \tau_0) = L(\tau_0) \oplus L(a_0 - a_1).$

Proof: Left to the reader.

Proposition P5. (a) The mapping $\delta \to Z_{\delta}$, for $\delta \subset a_1$ has the following properties:

(i) $\delta \neq \emptyset \iff a_0 - a_1 \epsilon Z_{\delta}$, (ii) $Z_{\delta} \cap \sigma_0 = \sigma_{\delta}, Z_{\delta} \cap \tau_0 = \tau_{\delta}$, (iii) *it is* 1-1.

(b) The mappings $\beta \to E_0(\beta)$, for $\beta \subseteq \alpha_1$, and $\gamma \to E_1(\gamma)$, for $\gamma \subseteq \alpha_1$, have the following properties:

- (iv) $E_0(\beta) \cap \sigma_0 = \sigma_\beta$, $E_1(\gamma) \cap \tau_0 = \tau_\gamma$,
- (v) they are 1-1.

380

Proof: Left to the reader.

Remarks. (a) If β and γ are known from the context, we often write $\sigma = \sigma_{\beta}$ and $\tau = \tau_{\gamma}$ and $V = \mathsf{T}_{\langle \beta, \gamma \rangle} = \mathsf{L}(\sigma \cup \tau)$. (b) For β , $\gamma \subseteq \alpha_1$, we have $\sigma \subseteq \sigma_0$, $\tau \subseteq \tau_0$. Hence σ is a basis for $\mathsf{L}(\sigma)$ and τ is a basis for $\mathsf{L}(\tau)$. We would like to know when $\sigma \cup \tau$ is a basis for $\mathsf{L}(\sigma \cup \tau)$, i.e., when $\mathsf{L}(\sigma) \cap \mathsf{L}(\tau) = (0)$.

Proposition P6. Let α be an infinite r.e. repère and a(n) a 1-1 recursive function ranging over α . Then for $\delta \subseteq \alpha_{1}$,

- (a) Z_{δ} is a r.e. space $\Leftrightarrow \delta$ is a r.e. set,
- (b) Z_{δ} is an α -space for every $\delta \subset \alpha_1$.

Proof: Assume the hypothesis. Then clearly σ_0 and τ_0 are r.e. sets. Part (a) follows directly from

$$\delta \text{ r.e.} \Rightarrow \sigma_{\delta}, \tau_{\delta} \text{ r.e.} \Rightarrow Z_{\delta} \text{ r.e.},$$

$$Z_{\delta} \text{ r.e.} \Rightarrow Z_{\delta} \cap \sigma_{0} = \sigma_{\delta} \text{ r.e.} \Rightarrow \delta \text{ r.e.}$$

To prove part (b), note if δ is empty, $Z_{\delta} = (0)$ and we are done. Now assume that $\delta \neq \emptyset$. Then $a_0 - a_1 \notin L(\sigma_{\delta})$, since $a_0 - a_1 \notin L(\sigma_0)$ and $\sigma_{\delta} \subset \sigma_0$. Using P5 (i), it is readily proved that

$$L(\sigma_{\delta}) \oplus L(a_{0} - a_{1}) = L(\sigma_{\delta} \cup \tau_{\delta}) = Z_{\delta}.$$

Hence Z_{δ} has as a basis the set $\sigma_{\delta} \cup \{a_0 - a_1\}$ which is included in the r.e. repère $\sigma_0 \cup \{a_0 - a_1\}$. Hence Z_{δ} is an α -space. Q.E.D.

Proposition P7. Let β , $\gamma \subset \alpha_1$. Then

 σ , τ independent \iff card $(\beta \cap \gamma) \leq 1$.

Proof: We will show:

- (a) $\beta \cap \gamma = \emptyset \Longrightarrow \sigma \cup \tau$ is a repère,
- (b) $\beta \cap \gamma = \{a_k\} \Longrightarrow \sigma \cup \tau \text{ is a repère,}$
- (c) $\operatorname{card} (\beta \cap \gamma) \ge 2 \Longrightarrow L(\sigma) \cap L(\tau) \neq (0).$

Consider the relations

- (1) $r_2(a_0 + a_2) + \ldots + r_n(a_0 + a_n) + s_2(a_1 + a_2) + \ldots + s_n(a_1 + a_n) = 0$,
- (2) $(r_2 + \ldots + r_n)a_0 + (s_2 + \ldots + s_n)a_1 + (r_2 + s_2)a_2 + \ldots + (r_n + s_n)a_n = 0$
- (3) at most one of r_i , s_i is $\neq 0$, for $2 \leq i \leq n$,
- (4) at most one of r_i , s_i is $\neq 0$, for $3 \leq i \leq n$.

Note that $(1) \Longrightarrow (2)$. Under the hypothesis of (a), we work with (2) and (3). Thus $r_i = s_i = 0$, for $2 \le i \le n$ and hence $\sigma \cup \tau$ is a repère. To prove (b), we may assume w.l.g. that k = 2; thus we work with (2) and (4). Then $r_i = s_i = 0$, for $3 \le i \le n$, and (2) implies

$$r_2a_0 + s_2a_1 + (r_2 + s_2)a_2 = 0.$$

Hence $r_2 = s_2 = 0$ and $\sigma \cup \tau$ is a repère. We now prove (c). Let $p, q \in \beta \cap \gamma$, where $p \neq q$. Then

$$p - q = (a_0 + p) - (a_0 + q) \in L(\sigma),$$

$$p - q = (a_1 + p) - (a_1 + q) \in L(\tau).$$

However, $p - q \neq 0$, hence $L(\sigma) \cap L(\tau) \neq (0)$.

Proposition P8. The restriction of the mapping $\langle \beta, \gamma \rangle \to T \langle \beta, \gamma \rangle$ to the family of all ordered pairs of disjoint subsets of α_1 has the following properties:

(a) $T\langle \beta, \gamma \rangle \cap \sigma_0 = \sigma, T\langle \beta, \gamma \rangle \cap \tau_0 = \tau,$

(b)
$$T\langle \beta, \gamma \rangle \cap (\sigma_0 \cup \tau_0) = \sigma \cup \tau$$
,

(c) *it is* 1-1.

Proof: Let $\langle \beta, \gamma \rangle$ be an ordered pair of disjoint subsets of α_1 : Clearly, $\sigma \subset T\langle \beta, \gamma \rangle \cap \sigma_0$. Now assume $x \in T\langle \beta, \gamma \rangle \cap \sigma_0$, say

$$x = r_2(a_0 + p_2) + \ldots + r_n(a_0 + p_n) + s_2(a_1 + q_2) + \ldots + s_m(a_1 + q_m),$$

i.e.,

$$x = (r_2 + \ldots + r_n)a_0 + (s_2 + \ldots + s_m)a_1 + r_2p_2 + \ldots + r_np_n + s_2q_2 + \ldots + s_mq_m,$$

where $\{p_2, \ldots, p_n\} \subset \beta, \{q_2, \ldots, q_m\} \subset \gamma$. Since $x \in \sigma_0$, it can also be written in the form $x = a_0 + u$, where $u \in \alpha_1$. Thus, $u \in \beta \cup \gamma$ since α_1 is a repère. We see that the hypothesis $u \in \gamma$ leads to the contradiction

$$r_2 + \ldots + r_n = 1, r_2 = \ldots = r_n = 0.$$

Hence $u \in \beta$ and $x = a_0 + u \in \sigma_\beta = \sigma$, and we have proved that $T\langle \beta, \gamma \rangle \cap \sigma_0 = \sigma$. The second part of (a) can be proved similarly. Clearly, (a) implies (b), while according to (a), $T\langle \beta, \gamma \rangle$ uniquely determines $\langle \sigma, \tau \rangle$. Since $\sigma = \sigma_\beta$ and $\tau = \tau_\gamma$, we see that $\langle \sigma, \tau \rangle$ uniquely determines $\langle \beta, \gamma \rangle$. Thus the mapping $\langle \beta, \gamma \rangle \to T\langle \beta, \gamma \rangle$ is 1-1. Q.E.D.

Proposition P9. If β and γ are disjoint and non-empty, $a_0 - a_1 \notin \bot(\sigma \cup \tau)$ and $\bot(\sigma \cup \tau) \oplus \bot(a_0 - a_1) = Z_{\beta \cup \gamma}$.

Proof: Left to the reader.

Proposition P10. For disjoint subsets β , γ of α_1 ,

(a) dim $L(\sigma \cup \tau) = card(\beta) + card(\gamma)$,

(b) $\operatorname{codim}_A L(\sigma \cup \tau) = 2 + \operatorname{card}[a_1 \setminus (\beta \cup \gamma)].$

Proof: Under the hypothesis, σ and τ are disjoint and $\sigma \cup \tau$ is a basis of $L(\sigma \cup \tau)$. Thus

dim L($\sigma \cup \tau$) = card σ + card τ = card σ_{β} + card τ_{γ} = card β + card γ .

This proves (a). Now let $\delta = \alpha_1 \setminus (\beta \cup \gamma)$ and $\rho = \tau_{\delta}$, then

According to P4 (d), $L(\sigma_0 \cup \tau_0)$ has codimension 1 with respect to A. Hence,

Q.E.D.

$$\operatorname{codim}_{A} \mathsf{L}(\sigma \cup \tau) = 2 + \operatorname{card} \rho = 2 + \operatorname{card} \delta.$$

Q.E.D.

Corollary C11. If $\langle \beta, \gamma \rangle$ is a decomposition of α_1 , then $\operatorname{codim}_A L(\sigma \cup \tau) = 2$.

Proposition P12. Let α be an infinite r.e. repère, a_n a 1-1 recursive function ranging over α , and $\langle \beta, \gamma \rangle$ an ordered pair of disjoint non-empty subsets of α_1 . Then σ and τ are α -repères which are separated by the r.e. repères σ_0 and τ_0 .

Proof: Note that $\sigma \subset \sigma_0$, $\tau \subset \tau_0$, where σ_0 , τ_0 are disjoint repères by P4. Since a_n is a recursive function, σ_0 and τ_0 are r.e. repères and σ , τ are α -repères. Q.E.D.

Agreement. We recall that α is an infinite repère and a_n 1-1 function ranging over α . In the special case that α is an α -repère, there is a r.e. repère $\overline{\alpha}$ such that $\alpha \subseteq \overline{\alpha}$. With $\overline{\alpha}$ we associate a 1-1 recursive function \overline{a}_n ranging over $\overline{\alpha}$, and we agree to choose \overline{a}_n in such a way that $\overline{a}_0 = a_0$, $\overline{a}_1 = a_1$, and put $\overline{\alpha}_1 = \overline{\alpha} \setminus \{a_0, a_1\}$, resulting in $\alpha_1 = \alpha \cap \overline{\alpha}_1$. We define

$$\overline{\sigma}_{0} = \{\overline{a}_{0} + x \mid x \in \overline{\alpha}_{1}\}, \ \overline{\tau}_{0} = \{\overline{a}_{1} + x \mid x \in \overline{\alpha}_{1}\}.$$

Corollary C13. Let α be an infinite α -repère, and $\langle \beta, \gamma \rangle$ an ordered pair of disjoint non-empty subsets of α_1 . Then σ and τ are α -repères, and furthermore, there are r.e. disjoint r.e. repères $\overline{\sigma}_0$, $\overline{\tau}_0$ such that

$$\sigma \subset \sigma_0 \subset \overline{\sigma}_0 \text{ and } \tau \subset \tau_0 \subset \overline{\tau}_0.$$

Proof: Since α is an infinite α -repère, $\alpha \subset \overline{\alpha}$, an infinite r.e. repère. Then apply P12 to $\overline{\alpha} = \rho a_n$, where, by the above agreement, we are assuming that $\overline{a}_1 = a_1$ and $\overline{a}_0 = a_0$, hence $\sigma \subset \sigma_0 \subset \overline{\sigma}_0$ and $\tau \subset \tau_0 \subset \overline{\tau}_0$. Q.E.D.

Remark. Under the hypothesis of C13, $L(\sigma) \cap L(\tau) = (0)$, $L(\sigma) \oplus L(\tau) = L(\sigma \cup \tau)$. Here $L(\sigma)$, $L(\tau)$ are α -spaces. Since $\beta \simeq \sigma$ and $\gamma \simeq \tau$, we have $\dim_{\alpha} L(\sigma) = \operatorname{Req}(\beta)$ and $\dim_{\alpha} L(\tau) = \operatorname{Req}(\gamma)$. We wish to solve the following two problems:

- (I) "When is $\sigma \cup \tau$ an α -repère?"
- (II) "When is $L(\sigma \cup \tau)$ an α -space?"

Proposition P14. For separable, independent α -repères δ and θ ,

 $\delta \cup \theta$ is an α -repère $\Leftrightarrow \delta || \theta$.

Proof: Let δ , θ be independent α -repères, $\delta \subseteq \overline{\delta}$, $\theta \subseteq \overline{\theta}$, where $\overline{\delta}$ and $\overline{\theta}$ are disjoint r.e. repères.

(a) Assume that $\delta \cup \theta$ is an α -repère, say $\delta \cup \theta \subset \overline{\lambda}$, where $\overline{\lambda}$ is an r.e. repère. Then $\delta \subseteq \overline{\delta}$ and $\delta \subset \overline{\lambda}$ imply $\delta \subseteq \overline{\delta} \cap \overline{\lambda}$. Similarly, $\theta \subseteq \overline{\theta} \cap \overline{\lambda}$. Note that $\overline{\delta} \cap \overline{\lambda}$ and $\overline{\theta} \cap \overline{\lambda}$ are r.e. repères which are disjoint, since $\overline{\theta} \cap \overline{\delta} = \emptyset$. Since $\overline{\delta} \cap \overline{\lambda}$ and $\overline{\theta} \cap \overline{\lambda}$ are both included in the r.e. repère $\overline{\lambda}$, they are also independent. Thus $\delta || \theta$.

(b) Assume $\delta || \theta$, say $\delta \subseteq \delta_0$, $\theta \subseteq \theta_0$, where θ_0 , δ_0 are independent r.e.

repères. Then $\delta \cup \theta \subseteq \delta_0 \cup \theta_0$, where $\delta_0 \cup \theta_0$ is an r.e. repère. Hence $\delta \cup \theta$ is an α -repère. Q.E.D.

Proposition P15. Let α be an infinite α -repère. Let $\langle \beta, \gamma \rangle$ be an ordered pair of disjoint non-empty subsets of α_1 . Then

(a) $L(\sigma)$ r.e. space $\Leftrightarrow \beta$ r.e. set, $L(\tau)$ r.e. space $\Leftrightarrow \gamma$ r.e. set,

(b) $L(\sigma \cup \tau)$ r.e. space $\Leftrightarrow \beta$ and γ are r.e. sets,

(c) $Z_{\beta \cup \gamma}$ *r.e.* space $\Leftrightarrow \beta \cup \gamma$ *r.e.* set.

Proof: Let $\alpha \subseteq \overline{\alpha}$, where $\overline{\alpha}$ is an r.e. repère.

(a) If β is an r.e. set, so is $\sigma_{\beta} = \sigma$, hence $L(\sigma)$ is an r.e. space. Now assume that $L(\sigma)$ is an r.e. space. Since $\beta \subset \overline{\alpha}_1$, we see by P5 (b) that $L(\sigma) \cap \overline{\sigma}_0 = \sigma$. Then σ is r.e. since $\overline{\sigma}_0$ is r.e.; then β is also r.e. Similarly, one proves the second part of (a).

(b) If β , γ are r.e. sets, so are σ , τ , hence $L(\sigma \cup \tau)$ is an r.e. space. Now assume that $L(\sigma \cup \tau)$ is an r.e. space. Using P8, we see that $L(\sigma \cup \tau) \cap \overline{\sigma}_0 = \sigma$, $L(\sigma \cup \tau) \cap \overline{\tau}_0 = \tau$. Hence σ and τ are r.e. and so are β and γ . (c) By P6 (a). Q.E.D.

Proposition P16. Let α be an infinite α -repère. Let $\langle \beta, \gamma \rangle$ be an ordered pair of disjoint non-empty subsets of α_1 . Then the three following conditions are mutually equivalent:

(a)
$$\beta|_{\gamma}$$
, (b) $\sigma||_{\tau}$, (c) $\sigma \cup \tau$ is an α -repère.

Proof: Let $\alpha \subset \overline{\alpha}$, where $\overline{\alpha}$ is an infinite r.e. repère. Suppose that $\langle \beta, \gamma \rangle$ is an ordered pair of disjoint non-empty subsets of α_1 . Then the sets σ and τ are independent α -repères separated by the r.e. repères $\overline{\sigma}_0$ and $\overline{\tau}_0$. Thus (b) \Leftrightarrow (c) by P14. Thus all we need to show is (a) \Leftrightarrow (b).

(a) \Longrightarrow (b). Suppose that $\beta | \gamma$, say $\beta \subset \overline{\beta'}$, $\gamma \subset \overline{\gamma'}$ where $\overline{\beta'}$, $\overline{\gamma'}$ are disjoint r.e. sets. Then set $\overline{\beta} = \overline{\beta'} \cap \overline{\alpha_1}$, $\overline{\gamma} = \overline{\gamma'} \cap \overline{\alpha_1}$. Then $\beta \subset \overline{\beta}$, $\gamma \subset \overline{\gamma}$ where $\overline{\beta}$, $\overline{\gamma}$ are independent disjoint r.e. subsets of $\overline{\alpha_1}$. Let $\overline{\sigma} = \overline{\sigma_{\overline{\beta}}}$, $\overline{\tau} = \overline{\tau_{\overline{\gamma}}}$, then $\overline{\sigma}$, $\overline{\tau}$ are independent r.e. repères, since $\overline{\beta}$, $\overline{\gamma}$ are disjoint r.e. sets. Moreover, $\sigma \subset \overline{\sigma}$, $\tau \subset \overline{\tau}$ and hence $\sigma || \tau$.

(b) \Rightarrow (a). Assume $\sigma || \tau$, say $\sigma \subset \sigma'$, $\tau \subset \tau'$, where σ' , τ' are independent r.e. repers. Put $\overline{\sigma} = \sigma' \cap \overline{\sigma}_0$, $\overline{\tau} = \tau' \cap \overline{\tau}_0$. Then $\overline{\sigma}$, $\overline{\tau}$ are independent r.e. repers. Let

$$\beta = \{ y \in \overline{\alpha}_1 | a_0 + y \in \overline{\sigma} \},\ \overline{\gamma} = \{ y \in \overline{\alpha}_1 | a_1 + y \in \overline{\tau} \}.$$

Then $\overline{\beta}$, $\overline{\gamma}$ are r.e. subsets of $\overline{\alpha}_1$ such that $\beta \subset \overline{\beta}$, $\gamma \subset \overline{\gamma}$, $\overline{\sigma}_{\beta} = \overline{\sigma}$, $\overline{\tau}_{\overline{\gamma}} = \overline{\tau}$, $\sigma \subset \overline{\sigma}$, and $\tau \subset \overline{\tau}$. According to P7, the relation $\overline{\sigma} || \overline{\tau}$ implies $\operatorname{cord}(\overline{\beta} \cap \overline{\gamma}) \leq 1$. If $\overline{\beta} \cap \overline{\gamma} = \emptyset$, β and γ are separated by the r.e. sets $\overline{\beta}$ and $\overline{\gamma}$, hence $\beta |_{\gamma}$. Now suppose $\overline{\beta} \cap \overline{\gamma} = (k)$. Since β and γ are disjoint, we have $k \notin \beta$ or $k \notin \gamma$. We may assume w.l.g. that $k \notin \beta$. Then, β and γ are separated by the r.e. sets $\overline{\beta} \setminus \{k\}$ and $\overline{\gamma}$, hence again $\beta |_{\gamma}$. Q.E.D.

Remark. P16 answers question (I) in the remark following the proof of C13.

We have not yet answered the second question. The relevant problem is whether

 $L(\sigma \cup \tau)$ an α -space $\Rightarrow \sigma \cup \tau$ an α -repère.

We shall see that this is indeed the case.

Notation. Let *W* be any space. Then

$$\theta_0(W) = \{x \in \alpha_1 \mid a_0 + x \in W\}, \ \theta_1(W) = \{x \in \alpha_1 \mid a_1 + x \in W\}.$$

Now assume $\alpha \subseteq \overline{\alpha}$, where $\overline{\alpha}$ is an r.e. repère. Then

$$\overline{\theta}_{0}(W) = \{x \in \overline{\alpha}_{1} | a_{0} + x \in W\}, \ \overline{\theta}_{1}(W) = \{x \in \overline{\alpha}_{1} | a_{1} + x \in W\}.$$

Remark. Clearly (a) $\theta_1(W) = \overline{\theta}_1(W) \cap \alpha_1$, $\theta_2(W) = \overline{\theta}_2(W) \cap \alpha_1$; (b) $\theta_0[L(\sigma)] = \beta$, and $\theta_1[L(\tau)] = \gamma$; (c) if W is an r.e. space, then $\overline{\theta}_0(W)$ and $\overline{\theta}_1(W)$ are r.e. sets.

Proposition P17. Let $\langle \beta, \gamma \rangle$ be an ordered pair of disjoint non-empty subsets of α_1 and $L(\sigma \cup \tau) \leq W$. Then exactly one of the following is true:

(a) $\theta_0(W) \cap \theta_1(W) = \emptyset$ and $a_0 - a_1 \notin W$,

(b) $\beta \cup \gamma \subset \theta_0(W) \cap \theta_1(W)$ and $a_0 - a_1 \in W$.

Proof: It is readily seen that $\theta_0(W) \cap \theta_1(W) \neq \emptyset$ if and only if $a_0 - a_1 \in W$. Thus, either (a) holds or $a_0 - a_1 \in W$. We now prove

$$a_0 - a_1 \in W \Longrightarrow \beta \cup \gamma \subseteq \theta_0(W) \cap \theta_1(W).$$

Assume the hypothesis. Trivially, $\beta \subset \theta_0(W)$. Also,

$$p \in \gamma \Longrightarrow a_1 + p, a_0 - a_1 \in W \Longrightarrow a_0 + p \in W \Longrightarrow p \in \theta_0(W).$$

Thus $\beta \cup \gamma \subseteq \theta_0(W)$. Similarly one shows that $\beta \cup \gamma \subseteq \theta_1(W)$. Hence $\beta \cup \gamma \subseteq \theta_0(W) \cap \theta_1(W)$. Q.E.D.

Proposition P18. Let α be an infinite α -repère. Let $\langle \beta, \gamma \rangle$ be an ordered pair of disjoint non-empty subsets of α_1 . Then the following five conditions are mutually equivalent:

(a)
$$\beta|_{\gamma}$$
, (b) $\sigma||_{\tau}$, (c) $\sigma \cup \tau$ an α -repère,
(d) $L(\sigma \cup \tau)$ an α -space, (e) $L(\sigma \cup \tau)||L(a_0 - a_1)$.

Proof: Let $\alpha \subset \overline{\alpha}$. In view of P16, it suffices to show that $(c) \Longrightarrow (d) \Longrightarrow$ (e) \Longrightarrow (a). The first conditional is obvious. According to P9, $a_0 - a_1 \notin L(\sigma \cup \tau)$. If (d) holds, we obtain (e) by P2. Finally, assume (e). Then there is a r.e. space \overline{W} such that $L(\sigma \cup \tau) \leq \overline{W}$ and $a_0 - a_1 \notin \overline{W}$. We conclude by P17 that $\overline{\theta}_0(\overline{W})$ and $\overline{\theta}_1(\overline{W})$ are disjoint r.e. sets. Moreover, $\beta \subset \overline{\theta}_0(\overline{W})$ and $\gamma \subset \overline{\theta}_1(\overline{W})$, hence $\beta | \gamma$ and (a) holds. Q.E.D.

Proposition P19. Let $W \leq \overline{V}$, where \overline{V} is an r.e. space, and $\operatorname{codim}_{\overline{V}}(W)$ finite. Then

W is an
$$\alpha$$
-space \Leftrightarrow W is an r.e. space.

Proof: Only the \Rightarrow conditional needs a proof. Let W be an α -space. Since $W \leq \overline{V}$, there is an α -basis β of W and an r.e. repère $\overline{\beta}$ such that $\beta \subset \overline{\beta} \subset \overline{V}$.

Then the fact that $\operatorname{codim}_{\overline{V}}(W)$ is finite implies that $\overline{\beta} \setminus \beta$ finite. This and the fact that $\overline{\beta}$ is r.e. implies β is r.e. Hence $W = L(\beta)$ is an r.e. space. Q.E.D.

We present a new proof of the existence of non- α -spaces. Let Δ denote the family of all ordered pairs of disjoint non-empty subsets of α_1 . For $\delta \subset \alpha_1$, δ infinite, we define

$$\Delta_{\delta} = \{ \langle \beta, \gamma \rangle \in \Delta \, | \, \beta \cup \gamma = \delta \}.$$

Consider the mapping

$$\langle \beta, \gamma \rangle \to \mathsf{T} \langle \beta, \gamma \rangle = V$$
, for $\langle \beta, \gamma \rangle \epsilon \Delta_{\alpha}$.

This mapping is 1-1 by P8. Since its domain has cardinality \mathfrak{c} , so has its range. By P10 the range consists of spaces of codimension 1 w.r.t. the space $Z_{\alpha(1)}$. We now make the additional assumption that α_1 is r.e. Then $Z_{\alpha(1)}$ is an r.e. space. Thus, for $V \in T(\Delta_{\alpha(1)})$, V is r.e. if and only if V is an α -space by P19. However, there are only \aleph_0 r.e. spaces, and hence $T(\Delta_{\alpha(1)})$ contains exactly \mathfrak{c} non- α -spaces.

While this proof uses a cardinality argument, P18 enables us to characterize those $\langle \beta, \gamma \rangle \epsilon \Delta_{\alpha_1}$ for which $\mathsf{T}\langle \beta, \gamma \rangle$ is an α -space. There are the ordered pairs $\langle \beta, \gamma \rangle$ such that $\beta | \gamma$; since α_1 is r.e., these are the ordered pairs $\langle \beta, \gamma \rangle$ such that β is r.e. and $\gamma = \alpha_1 \backslash \beta$ is r.e. Thus, even in the simple case that β is r.e., but γ is not, $\mathsf{T}\langle \beta, \gamma \rangle$ is a non- α -space. In that case,

$$\mathsf{T}(\beta, \gamma) = \mathsf{L}(\sigma \cup \tau) = \mathsf{L}(\sigma) \oplus \mathsf{L}(\tau)$$

while $L(\sigma)$ is r.e., but $L(\tau)$ is not r.e.

More generally, consider the mapping $\langle \beta, \gamma \rangle \to \mathsf{T} \langle \beta, \gamma \rangle = V$, for $\langle \beta, \gamma \rangle \epsilon \Delta_{\delta}$, where $\delta = \beta \cup \gamma$. For each of the \mathfrak{c} choices of the infinite subset δ of α_1 , we obtain a class of \mathfrak{c} spaces V of the form $\mathsf{T} \langle \beta, \gamma \rangle$, with $\beta \cup \gamma = \delta$. Among these, \aleph_0 are α -spaces, namely those for which $\beta | \gamma$, and \mathfrak{c} are non- α -spaces, namely those for which not $(\beta | \gamma)$. Let V_1 , V_2 correspond to different choices of $\langle \beta, \gamma \rangle$ for a fixed $\delta = \beta \cup \gamma$. Then $V_1 \oplus \mathsf{L}(a_0 - a_1) = \mathsf{Z}_{\delta}$, and $V_2 \oplus \mathsf{L}(a_0 - a_1) = \mathsf{Z}_{\delta}$. Since $V_1 \neq V_2$, we have $V_1 + V_2 = \mathsf{Z}_{\delta}$. Thus, we have a family of \mathfrak{c} distinct non- α -spaces all of which are subspaces of Z_{δ} with codum 1 w.r.t. Z_{δ} . According to P6, Z_{δ} is an r.e. space if and only if δ is an r.e. set.

Proposition P20. (a) There are \mathfrak{c} ordered pairs $\langle \sigma, \tau \rangle$ of independent α -repères which are separable by r.e. repères, but not by independent r.e. repères.

(b) There are \mathfrak{c} ordered pairs $\langle S, T \rangle$ of independent \mathfrak{a} -spaces whose sum is not an \mathfrak{a} -space.

Proof: Let $\langle \beta, \gamma \rangle$ be an ordered pair of non-empty subsets of α_1 , which are disjoint but not separable, $\sigma = \sigma_{\beta}$, $\tau = \tau_{\gamma}$, $S = L(\sigma)$, $T = L(\tau)$. Then $\langle \sigma, \tau \rangle$ and $\langle S, T \rangle$ satisfy the requirements. Moreover, $\langle \beta, \gamma \rangle$ can be chosen in **c** ways and the mappings $\langle \beta, \gamma \rangle \rightarrow \langle \sigma, \tau \rangle$, $\langle \beta, \gamma \rangle \rightarrow \langle S, T \rangle$ are 1-1. Q.E.D.

Proposition P21. Let α be an infinite α -repère, and $A = L(\alpha)$. Then

- (a) $Z_{\alpha(1)} \oplus L(a_0) = Z_{\alpha(1)} \oplus L(a_1) = A$,
- (b) $Z_{\alpha(1)} || L(a_0)$ and $Z_{\alpha(1)} || L(a_1)$,
- (c) $Z_{\alpha(1)} \leq_{\alpha} A$ and $Z_{\alpha(1)}$ is an α -space.

Proof: Let $\alpha \subset \overline{\alpha}$, where $\overline{\alpha}$ is an infinite r.e. repère. Recall that the 1-1 function a_n ranging over α , and the 1-1 recursive function \overline{a}_n ranging over $\overline{\alpha}$ are chosen so that $\overline{a}_0 = a_0$ and $\overline{a}_1 = a_1$. Put $\overline{A} = L(\overline{\alpha})$. Suppose that σ_0 , τ_0 , $Z_{\alpha(1)}$ are defined w.r.t. α_1 and $\overline{\sigma}_0$, $\overline{\tau}_0$, $Z_{\overline{\alpha}(1)}$ are defined w.r.t. $\overline{\alpha}_1$. Then we have by P4 and the definitions of $Z_{\alpha(1)}$, $Z_{\overline{\alpha}(1)}$,

 $L(\sigma_{0} \cup \tau_{0}) = Z_{\alpha(1)}, \ L(\overline{\sigma}_{0} \cup \overline{\tau}_{0}) = Z_{\overline{\alpha}(1)}, \\ L(\overline{\sigma}_{0} \cup \overline{\tau}_{0}) \oplus L(a_{0}) = L(\overline{\sigma}_{0} \cup \overline{\tau}_{0}) \oplus L(a_{1}) = \overline{A}, \\ L(\sigma_{0} \cup \tau_{0}) \oplus L(a_{0}) = L(\sigma_{0} \cup \tau_{0}) \oplus L(a_{1}) = A.$

Moreover, $L(\overline{\sigma}_0 \cup \overline{\tau}_0)$ is an r.e. space, while $Z_{\alpha(1)}$ is an α -space by P6. Note that the first part of (c) follows from (a) and (b). Thus it suffices to prove $L(\sigma_0 \cup \tau_0) \leq L(\overline{\sigma}_0 \cup \overline{\tau}_0)$. Since $\overline{a}_0 = a_0$, $\overline{a}_1 = a_1$, we have $\sigma_0 \subset \overline{\sigma}_0$, $\tau_0 \subset \overline{\tau}_0$, hence $L(\sigma_0 \cup \tau_0) \leq L(\overline{\sigma}_0 \cup \overline{\tau}_0)$. Q.E.D.

Proposition P22. Let α be an infinite α -repère. Consider the 1-1 mapping $\langle \beta, \gamma \rangle \rightarrow T \langle \beta, \gamma \rangle = V$, with as domain the family of all decompositions $\langle \beta, \gamma \rangle$ of α_1 into non-empty sets. Then we have for each such ordered pair $\langle \beta, \gamma \rangle$,

(a) $V \oplus L(a_0 - a_1) = Z_{\alpha(1)}, V \oplus L(a_0, a_1) = A$,

(b) the following five conditions are mutually equivalent:

(i) $V || L(a_0, a_1)$, (ii) $V || L(a_0 - a_1)$, (iii) $V \leq_{\alpha} Z_{\alpha(1)}$, (iv) $V \leq_{\alpha} A$, (v) V is an α -space.

Proof: Part (a) follows from P9 and P4 (d). We prove part (b) by showing that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (i). The first two conditionals are immediate. By P21 (c) we know that $Z_{\alpha(1)} \leq_{\alpha} A$. Thus, assuming (iii),

 $V \leq_{\alpha} Z_{\alpha(1)}$ and $Z_{\alpha(1)} \leq_{\alpha} A \Longrightarrow V \leq_{\alpha} A$

by P1. This proves (iii) \Rightarrow (iv). According to P3,

 $V \leq_{\alpha} A$ and A α -space and $\operatorname{codim}_A(V)$ finite $\Rightarrow V \alpha$ -space.

Thus (iv) \Rightarrow (v) follows from the fact that A is an α -space and $\operatorname{codim}_A(V) = 2$. Finally, assume (v). By part (a) and P2, we have $V || L(a_0, a_1)$. Q.E.D.

Corollary C23. For every \aleph_0 -dimensional α -space A, there are \mathfrak{c} non- α -spaces V such that V is a subspace of A of codimension 2 w.r.t. A.

Remark. If in C23 we choose an isolic \aleph_0 -dimensional α -space for A, we obtain Hamilton's result: there are exactly \mathfrak{c} isolic non- α -spaces ([5], Theorem 5, p. 93).

REFERENCES

 Dekker, J. C. E., "Countable vector spaces with recursive operations. Part I," The Journal of Symbolic Logic, vol. 34 (1969), pp. 363-387.

- [2] Dekker, J. C. E., "Countable vector spaces with recursive operations. Part II," The Journal of Symbolic Logic, vol. 36 (1971), pp. 477-493.
- [3] Fowler, N., "Intersections of α -spaces," (to appear).
- [4] Fowler, N., " α -decompositions of α -spaces," (to appear).
- [5] Hamilton, A. G., "Bases and α -dimensions of countable vector spaces with recursive operations," *The Journal of Symbolic Logic*, vol. 35 (1970), pp. 85-96.

Rutgers University, The State University of New Jersey New Brunswick, New Jersey

and

Hamilton College Clinton, New York