Notre Dame Journal of Formal Logic
Volume XVI, Number 3, July 1975
NDJFAM

SUMS OF α-SPACES

NORTHRUP FOWLER, III

1 Introduction* In [1] and [2], Dekker introduced and studied an \aleph_{0} dimensional recursive vector space \bar{U}_{F} over a countable field F. Briefly, it consists of an infinite recursive set ϵ_{F} of numbers (i.e., non-negative integers), an operation + from $\epsilon_{F} \times \epsilon_{F}$ into ϵ_{F} and an operation \cdot from $F \times \epsilon_{F}$ into ϵ_{F}. If the field F is identified with a recursive set, both + and . are partial recursive functions. Let β be a subset of ϵ_{F}. We call β a repère if it is linearly independent; β is a r.e. repère if β is a r.e. set; and β is an α-repère if it is included in some r.e. repère. A subspace V of \bar{U}_{F} is an α-space if it has at least one α-basis, i.e., at least one basis which is also an α-repère. A subspace V is isolic if it includes no r.e. repère; it is r.e. if it is r.e. as a set. The word "space" is used in the sense of "subspace of \bar{U}_{F} ", and we denote " W is a subspace of V '" by " $W \leqslant V$ '. We usually write (0) for $\{0\}$, and \bar{U} for \bar{U}_{F}. Let $\alpha \subset \epsilon_{F}$. If $\alpha=\varnothing, L(\alpha)=(0)$. If $\alpha \neq \varnothing, L(\alpha)$ denotes the span of α, i.e., the set of all linear combinations (with coefficients in F) of finitely many elements of α. If $\alpha=\left\{a_{0}, \ldots\right\}$, we usually write $L\left(a_{0}, \ldots\right)$ instead of $L\left(\left\{a_{0}, \ldots\right\}\right)$. We use \mathfrak{c} to denote the cardinality of the continuum.

The reperes β and γ are independent if they are disjoint and their union is a repère. The spaces V and W are independent if $V \cap W=(0)$. The sets β and γ are separable (written: $\beta \mid \gamma$) if they can be separated by r.e. sets. The α-repères β and γ are α-independent (written: $\beta \| \gamma$), if they can be separated by independent r.e. repères. The spaces V and W are α independent (written: $V \| W$), if there are independent r.e. spaces \bar{V} and \bar{W} such that $V \leqslant \bar{V}$ and $W \leqslant \bar{W}$. For spaces V, W, W is an α-subspace of V (written: $W \leqslant_{\alpha} V$) if there is an α-space S such that $W \| S$ and $W \oplus S=V$.

In [3] we proved that the intersection of two α-spaces need not be an α-space. The same question naturally arises concerning the sum of two

[^0]α-spaces. Dekker has shown ([1], Proposition P23) that the sum of two α-independent α-spaces is an α-space. We shall prove that the sum of two independent α-spaces need not be an α-space. For this purpose we shall define a family of spaces, \mathfrak{c} of which are α-spaces and \mathbf{c} of which are not. As a side result we shall obtain a new proof of the existence of non- α spaces. We shall need the following three propositions:
Proposition P1. (Dekker, [1], P30). The \leqslant_{α}-relation between α-spaces is reflexive, antisymmetric, and transitive.
Proposition P2. ([3], L5). Let $\Gamma=\left\{V_{i} \mid i \in \mathrm{I}\right\}$ be a non-empty family of distinct α-spaces, where $\mathrm{I}=\langle 0, \ldots, n-1\rangle$ if card $\Gamma=n>0$ and $\mathrm{I}=\epsilon$ otherwise. Let $S=\bigcap \Gamma$. Then for all finite dimensional spaces B,
$$
S \| B \Leftrightarrow S \cap B=(0) .
$$

Proposition P3. (Dekker, [2], Theorem 5; see also [4]). Let S, C, V be spaces. If $S \| C$ and $S \oplus C=V$, and if V is an α-space and C is an isolic α-space, then S is an α-space.

2 Sums Notations. In the following, a_{n} denotes a 1-1 function ranging over an infinite r.e. repère $\alpha, \alpha_{1}=\alpha \backslash\left\{a_{0}, a_{1}\right\}$ and $A=L(\alpha)$. Moreover,

$$
\sigma_{0}=\left\{a_{0}+x \mid x \in \alpha_{1}\right\}, \tau_{0}=\left\{a_{1}+x \mid x \in \alpha_{1}\right\} .
$$

Let $\delta, \beta, \gamma \subset \alpha_{1}$. Then

$$
\begin{aligned}
\sigma_{\beta} & =\left\{a_{0}+x \mid x \in \beta\right\}, \tau_{\gamma}=\left\{a_{1}+x \mid x \in \gamma\right\}, \\
\mathrm{E}_{0}(\beta) & =\mathrm{L}\left(\sigma_{\beta}\right), \mathrm{E}_{1}(\gamma)=\mathrm{L}\left(\tau_{\gamma}\right), \\
\mathrm{T}\langle\beta, \gamma\rangle & =\mathrm{L}\left(\sigma_{\beta} \cup \tau_{\delta}\right)=\mathrm{E}_{0}(\beta)+\mathrm{E}_{1}(\gamma), \\
\mathrm{Z}_{\delta} & =\mathrm{T}\langle\delta, \delta\rangle .
\end{aligned}
$$

Proposition P4. (a) σ_{0} and τ_{0} are disjoint repères such that neither of the two spaces $\mathrm{L}\left(\sigma_{0}\right), \mathrm{L}\left(\tau_{0}\right)$ is a subspace of the other one,
(b) $\mathrm{L}\left(\sigma_{0}\right) \oplus \mathrm{L}\left(a_{0}, a_{1}\right)=A=\mathrm{L}\left(\tau_{0}\right) \oplus \mathrm{L}\left(a_{0}, a_{1}\right)$,
(c) $a_{0}-a_{1} \notin \mathrm{~L}\left(\sigma_{0}\right) \cup \mathrm{L}\left(\tau_{0}\right)$, but $a_{0}-a_{1} \in \mathrm{~L}\left(\sigma_{0} \cup \tau_{0}\right)$,
(d) $\mathrm{L}\left(\sigma_{0} \cup \tau_{0}\right) \oplus \mathrm{L}\left(a_{0}\right)=A=\mathrm{L}\left(\sigma_{0} \cup \tau_{0}\right) \oplus \mathrm{L}\left(a_{1}\right)$,
(e) $\quad \mathrm{L}\left(\sigma_{0}\right) \oplus \mathrm{L}\left(a_{0}-a_{1}\right)=\mathrm{L}\left(\sigma_{0} \cup \tau_{0}\right)=\mathrm{L}\left(\tau_{0}\right) \oplus \mathrm{L}\left(a_{0}-a_{1}\right)$.

Proof: Left to the reader.
Proposition P5. (a) The mapping $\delta \rightarrow Z_{\delta}$, for $\delta \subset \alpha_{1}$ has the following properties:
(i) $\delta \neq \varnothing \Leftrightarrow a_{0}-a_{1} \in Z_{\delta}$,
(ii) $Z_{\delta} \cap \sigma_{0}=\sigma_{\delta}, Z_{\delta} \cap \tau_{0}=\tau_{\delta}$,
(iii) it is 1-1.
(b) The mappings $\beta \rightarrow \mathrm{E}_{0}(\beta)$, for $\beta \subset \alpha_{1}$, and $\gamma \rightarrow \mathrm{E}_{1}(\gamma)$, for $\gamma \subset \alpha_{1}$, have the following properties:
(iv) $\mathrm{E}_{0}(\beta) \cap \sigma_{0}=\sigma_{\beta}, \mathrm{E}_{1}(\gamma) \cap \tau_{0}=\tau_{\gamma}$,
(v) they are 1-1.

Proof: Left to the reader.
Remarks. (a) If β and γ are known from the context, we often write $\sigma=\sigma_{\beta}$ and $\tau=\tau_{\gamma}$ and $V=\mathrm{T}_{\langle\beta, \gamma\rangle}=L(\sigma \cup \tau)$. (b) For $\beta, \gamma \subset \alpha_{1}$, we have $\sigma \subset \sigma_{0}$, $\tau \subset \tau_{0}$. Hence σ is a basis for $L(\sigma)$ and τ is a basis for $L(\tau)$. We would like to know when $\sigma \cup \tau$ is a basis for $L(\sigma \cup \tau)$, i.e., when $L(\sigma) \cap L(\tau)=(0)$.

Proposition P6. Let α be an infinite r.e. repère and $a(n) a 1-1$ recursive function ranging over α. Then for $\delta \subset \alpha_{1}$,
(a) Z_{δ} is a r.e. space $\Leftrightarrow \delta$ is a r.e. set,
(b) Z_{δ} is an α-space for every $\delta \subset \alpha_{1}$.

Proof: Assume the hypothesis. Then clearly σ_{0} and τ_{0} are r.e. sets. Part (a) follows directly from

$$
\begin{gathered}
\delta \text { r.e. } \Rightarrow \sigma_{\delta}, \tau_{\delta} \text { r.e. } \Rightarrow Z_{\delta} \text { r.e., } \\
Z_{\delta} \text { r.e. } \Rightarrow Z_{\delta} \cap \sigma_{0}=\sigma_{\delta} \text { r.e. } \Rightarrow \delta \text { r.e. }
\end{gathered}
$$

To prove part (b), note if δ is empty, $\mathrm{Z}_{\delta}=(0)$ and we are done. Now assume that $\delta \neq \varnothing$. Then $a_{0}-a_{1} \notin \mathrm{~L}\left(\sigma_{\delta}\right)$, since $a_{0}-a_{1} \notin \mathrm{~L}\left(\sigma_{0}\right)$ and $\sigma_{\delta} \subset \sigma_{0}$. Using P5 (i), it is readily proved that

$$
\mathrm{L}\left(\sigma_{\delta}\right) \oplus \mathrm{L}\left(a_{0}-a_{1}\right)=\mathrm{L}\left(\sigma_{\delta} \cup \tau_{\delta}\right)=\mathrm{Z}_{\delta}
$$

Hence Z_{δ} has as a basis the set $\sigma_{\delta} \cup\left\{a_{0}-a_{1}\right\}$ which is included in the r.e. repère $\sigma_{0} \cup\left\{a_{0}-a_{1}\right\}$. Hence Z_{δ} is an α-space.
Q.E.D.

Proposition P7. Let $\beta, \gamma \subset \alpha_{1}$. Then

$$
\sigma, \tau \text { independent } \Leftrightarrow \operatorname{card}(\beta \cap \gamma) \leqslant 1 .
$$

Proof: We will show:
(a) $\beta \cap \gamma=\varnothing \Longrightarrow \sigma \cup \tau$ is a repère,
(b) $\beta \cap \gamma=\left\{a_{k}\right\} \Longrightarrow \sigma \cup \tau$ is a repère,
(c) $\quad \operatorname{card}(\beta \cap \gamma) \geqslant 2 \Longrightarrow L(\sigma) \cap L(\tau) \neq(0)$.

Consider the relations
(1) $r_{2}\left(a_{0}+a_{2}\right)+\ldots+r_{n}\left(a_{0}+a_{n}\right)+s_{2}\left(a_{1}+a_{2}\right)+\ldots+s_{n}\left(a_{1}+a_{n}\right)=0$,
(2) $\left(r_{2}+\ldots+r_{n}\right) a_{0}+\left(s_{2}+\ldots+s_{n}\right) a_{1}+\left(r_{2}+s_{2}\right) a_{2}+\ldots+\left(r_{n}+s_{n}\right) a_{n}=0$,
(3) at most one of r_{i}, s_{i} is $\neq 0$, for $2 \leqslant i \leqslant n$,
(4) at most one of r_{i}, s_{i} is $\neq 0$, for $3 \leqslant i \leqslant n$.

Note that (1) $\Rightarrow(2)$. Under the hypothesis of (a), we work with (2) and (3). Thus $r_{i}=s_{i}=0$, for $2 \leqslant i \leqslant n$ and hence $\sigma \cup \tau$ is a repère. To prove (b), we may assume w.l.g. that $k=2$; thus we work with (2) and (4). Then $r_{i}=s_{i}=0$, for $3 \leqslant i \leqslant n$, and (2) implies

$$
r_{2} a_{0}+s_{2} a_{1}+\left(r_{2}+s_{2}\right) a_{2}=0 .
$$

Hence $r_{2}=s_{2}=0$ and $\sigma \cup \tau$ is a repère. We now prove (c). Let $p, q \in \beta \cap \gamma$, where $p \neq q$. Then

$$
\begin{aligned}
& p-q=\left(a_{0}+p\right)-\left(a_{0}+q\right) \epsilon \mathrm{L}(\sigma), \\
& p-q=\left(a_{1}+p\right)-\left(a_{1}+q\right) \epsilon \mathrm{L}(\tau) .
\end{aligned}
$$

However, $p-q \neq 0$, hence $L(\sigma) \cap L(\tau) \neq(0)$.
Q.E.D.

Proposition P8. The restriction of the mapping $\langle\beta, \gamma\rangle \rightarrow \mathrm{T}\langle\beta, \gamma\rangle$ to the family of all ordered pairs of disjoint subsets of α_{1} has the following properties:
(a) $\mathrm{T}\langle\beta, \gamma\rangle \cap \sigma_{0}=\sigma, \mathrm{T}\langle\beta, \gamma\rangle \cap \tau_{0}=\tau$,
(b) $T\langle\beta, \gamma\rangle \cap\left(\sigma_{0} \cup \tau_{0}\right)=\sigma \cup \tau$,
(c) it is 1-1.

Proof: Let $\langle\beta, \gamma\rangle$ be an ordered pair of disjoint subsets of α_{1} : Clearly, $\sigma \subset \mathrm{T}\langle\beta, \gamma\rangle \cap \sigma_{0}$. Now assume $x \in \mathrm{~T}\langle\beta, \gamma\rangle \cap \sigma_{0}$, say

$$
x=r_{2}\left(a_{0}+p_{2}\right)+\ldots+r_{n}\left(a_{0}+p_{n}\right)+s_{2}\left(a_{1}+q_{2}\right)+\ldots+s_{m}\left(a_{1}+q_{m}\right),
$$

i.e.,
$x=\left(r_{2}+\ldots+r_{n}\right) a_{0}+\left(s_{2}+\ldots+s_{m}\right) a_{1}+r_{2} p_{2}+\ldots+r_{n} p_{n}+s_{2} q_{2}+\ldots+s_{m} q_{m}$, where $\left\{p_{2}, \ldots, p_{n}\right\} \subset \beta,\left\{q_{2}, \ldots, q_{m}\right\} \subset \gamma$. Since $x \in \sigma_{0}$, it can also be written in the form $x=a_{0}+u$, where $u \in \alpha_{1}$. Thus, $u \in \beta \cup \gamma$ since α_{1} is a repère. We see that the hypothesis $u \epsilon \gamma$ leads to the contradiction

$$
r_{2}+\ldots+r_{n}=1, r_{2}=\ldots=r_{n}=0
$$

Hence $u \in \beta$ and $x=a_{0}+u \in \sigma_{\beta}=\sigma$, and we have proved that $\mathrm{T}\langle\beta, \gamma\rangle \cap \sigma_{0}=\sigma$. The second part of (a) can be proved similarly. Clearly, (a) implies (b), while according to (a), $\mathrm{T}\langle\beta, \gamma\rangle$ uniquely determines $\langle\sigma, \tau\rangle$. Since $\sigma=\sigma_{\beta}$ and $\tau=\tau_{\gamma}$, we see that $\langle\sigma, \tau\rangle$ uniquely determines $\langle\beta, \gamma\rangle$. Thus the mapping $\langle\beta, \gamma\rangle \rightarrow \mathrm{T}\langle\beta, \gamma\rangle$ is 1-1.
Q.E.D.

Proposition P9. If β and γ are disjoint and non-empty, $a_{0}-a_{1} \notin \mathrm{~L}(\sigma \cup \tau)$ and $\mathrm{L}(\sigma \cup \tau) \oplus \mathrm{L}\left(a_{0}-a_{1}\right)=\mathrm{Z}_{\beta \cup \gamma}$.

Proof: Left to the reader.
Proposition P10. For disjoint subsets β, γ of α_{1},
(a) $\operatorname{dim} \mathrm{L}(\sigma \cup \tau)=\operatorname{card}(\beta)+\operatorname{cord}(\gamma)$,
(b) $\operatorname{codim}_{A} L(\sigma \cup \tau)=2+\operatorname{card}\left[a_{1} \backslash(\beta \cup \gamma)\right]$.

Proof: Under the hypothesis, σ and τ are disjoint and $\sigma \cup \tau$ is a basis of $\mathrm{L}(\sigma \cup \tau)$. Thus
$\operatorname{dim} \mathrm{L}(\sigma \cup \tau)=\operatorname{card} \sigma+\operatorname{card} \tau=\operatorname{card} \sigma_{\beta}+\operatorname{card} \tau_{\gamma}=\operatorname{card} \beta+\operatorname{card} \gamma$.
This proves (a). Now let $\delta=\alpha_{1} \backslash(\beta \cup \gamma)$ and $\rho=\tau_{\delta}$, then

$$
\begin{aligned}
& \mathrm{L}(\sigma \cup \tau \cup \rho) \oplus \mathrm{L}\left(a_{0}-a_{1}\right)=\mathrm{Z}_{\beta \cup \gamma \cup \delta}=\mathrm{Z}_{\alpha_{1}}, \\
& \mathrm{~L}(\sigma \cup \tau) \oplus \mathrm{L}(\rho) \oplus \mathrm{L}\left(a_{0}-a_{1}\right)=\mathrm{L}\left(\sigma_{0} \cup \tau_{0}\right) .
\end{aligned}
$$

According to $\mathrm{P} 4(\mathrm{~d}), \mathrm{L}\left(\sigma_{0} \cup \tau_{0}\right)$ has codimension 1 with respect to A. Hence,

$$
\operatorname{codim}_{A} L(\sigma \cup \tau)=2+\operatorname{card} \rho=2+\operatorname{card} \delta .
$$

> Q.E.D.

Corollary C11. If $\langle\beta, \gamma\rangle$ is a decomposition of α_{1}, then $\operatorname{codim}_{A} \mathrm{~L}(\sigma \cup \tau)=2$.
Proposition P12. Let α be an infinite r.e. repère, $a_{n} a 1-1$ recursive function ranging over α, and $\langle\beta, \gamma\rangle$ an ordered pair of disjoint non-empty subsets of α_{1}. Then σ and τ are α-repères which are separated by the r.e. repères σ_{0} and τ_{0}.
Proof: Note that $\sigma \subset \sigma_{0}, \tau \subset \tau_{0}$, where σ_{0}, τ_{0} are disjoint repères by P4. Since a_{n} is a recursive function, σ_{0} and τ_{0} are r.e. repères and σ, τ are α-repères.
Q.E.D.

Agreement. We recall that α is an infinite repère and $a_{n} 1-1$ function ranging over α. In the special case that α is an α-repère, there is a r.e. repère $\bar{\alpha}$ such that $\alpha \subset \bar{\alpha}$. With $\bar{\alpha}$ we associate a $1-1$ recursive function \bar{a}_{n} ranging over $\bar{\alpha}$, and we agree to choose \bar{a}_{n} in such a way that $\bar{a}_{0}=a_{0}, \bar{a}_{1}=a_{1}$, and put $\bar{\alpha}_{1}=\bar{\alpha} \backslash\left\{a_{0}, a_{1}\right\}$, resulting in $\alpha_{1}=\alpha \cap \bar{\alpha}_{1}$. We define

$$
\bar{\sigma}_{0}=\left\{\bar{a}_{0}+x \mid x \in \bar{\alpha}_{1}\right\}, \bar{\tau}_{0}=\left\{\bar{a}_{1}+x \mid x \in \bar{\alpha}_{1}\right\} .
$$

Corollary C13. Let α be an infinite α-repère, and $\langle\beta, \gamma\rangle$ an ordered pair of disjoint non-empty subsets of α_{1}. Then σ and τ are α-repères, and furthermore, there are r.e. disjoint r.e. repères $\bar{\sigma}_{0}, \bar{\tau}_{0}$ such that

$$
\sigma \subset \sigma_{0} \subset \bar{\sigma}_{0} \text { and } \tau \subset \tau_{0} \subset \bar{\tau}_{0}
$$

Proof: Since α is an infinite α-repère, $\alpha \subset \bar{\alpha}$, an infinite r.e. repère. Then apply P12 to $\bar{\alpha}=\rho a_{n}$, where, by the above agreement, we are assuming that $\bar{a}_{1}=a_{1}$ and $\bar{a}_{0}=a_{0}$, hence $\sigma \subset \sigma_{0} \subset \bar{\sigma}_{0}$ and $\tau \subset \tau_{0} \subset \bar{\tau}_{0}$.
Q.E.D.

Remark. Under the hypothesis of $\mathrm{C} 13, \mathrm{~L}(\sigma) \cap \mathrm{L}(\tau)=(0), \mathrm{L}(\sigma) \oplus \mathrm{L}(\tau)=$ $L(\sigma \cup \tau)$. Here $L(\sigma), L(\tau)$ are α-spaces. Since $\beta \simeq \sigma$ and $\gamma \simeq \tau$, we have $\operatorname{dim}_{\alpha} L(\sigma)=\operatorname{Req}(\beta)$ and $\operatorname{dim}_{\alpha} L(\tau)=\operatorname{Req}(\gamma)$. We wish to solve the following two problems:
(I) "When is $\sigma \cup \tau$ an α-repère?"
(II) "When is $\mathrm{L}(\sigma \cup \tau)$ an α-space?"

Proposition P14. For separable, independent α-repères δ and θ,

$$
\delta \cup \theta \text { is an } \alpha \text {-repè̀re } \Leftrightarrow \delta \| \theta
$$

Proof: Let δ, θ be independent α-repères, $\delta \subset \bar{\delta}, \theta \subset \bar{\theta}$, where $\bar{\delta}$ and $\bar{\theta}$ are disjoint r.e. repères.
(a) Assume that $\delta \cup \theta$ is an α-repère, say $\delta \cup \theta \subset \bar{\lambda}$, where $\bar{\lambda}$ is an r.e. repère. Then $\delta \subset \bar{\delta}$ and $\delta \subset \bar{\lambda}$ imply $\delta \subset \bar{\delta} \cap \bar{\lambda}$. Similarly, $\theta \subset \bar{\theta} \cap \bar{\lambda}$. Note that $\bar{\delta} \cap \bar{\lambda}$ and $\bar{\theta} \cap \bar{\lambda}$ are r.e. repères which are disjoint, since $\bar{\theta} \cap \bar{\delta}=\varnothing$. Since $\bar{\delta} \cap \bar{\lambda}$ and $\bar{\theta} \cap \bar{\lambda}$ are both included in the r.e. repère $\bar{\lambda}$, they are also independent. Thus $\delta \| \theta$.
(b) Assume $\delta \| \theta$, say $\delta \subset \delta_{0}, \theta \subset \theta_{0}$, where θ_{0}, δ_{0} are independent r.e.
repères. Then $\delta \cup \theta \subset \delta_{0} \cup \theta_{0}$, where $\delta_{0} \cup \theta_{0}$ is an r.e. repère. Hence $\delta \cup \theta$ is an α-repère.
Q.E.D.

Proposition P15. Let α be an infinite α-repère. Let $\langle\beta, \gamma\rangle$ be an ordered pair of disjoint non-empty subsets of α_{1}. Then
(a) $L(\sigma)$ r.e. space $\Leftrightarrow \beta$ r.e. set, $L(\tau)$ r.e. space $\Leftrightarrow \gamma r$.e. set,
(b) $\mathrm{L}(\sigma \cup \tau)$ r.e. space $\Leftrightarrow \beta$ and γ are r.e. sets,
(c) $Z_{\beta \cup \gamma}$ r.e. space $\Leftrightarrow \beta \cup \gamma$ r.e. set.

Proof: Let $\alpha \subset \bar{\alpha}$, where $\bar{\alpha}$ is an r.e. repère.
(a) If β is an r.e. set, so is $\sigma_{\beta}=\sigma$, hence $L(\sigma)$ is an r.e. space. Now assume that $L(\sigma)$ is an r.e. space. Since $\beta \subset \bar{\alpha}_{1}$, we see by P5 (b) that $L(\sigma) \cap \bar{\sigma}_{0}=\sigma$. Then σ is r.e. since $\bar{\sigma}_{0}$ is r.e.; then β is also r.e. Similarly, one proves the second part of (a).
(b) If β, γ are r.e. sets, so are σ, τ, hence $L(\sigma \cup \tau)$ is an r.e. space. Now assume that $L(\sigma \cup \tau)$ is an r.e. space. Using P8, we see that $L(\sigma \cup \tau) \cap \bar{\sigma}_{0}=$ σ, $L(\sigma \cup \tau) \cap \bar{\tau}_{0}=\tau$. Hence σ and τ are r.e. and so are β and γ.
(c) By P6 (a).
Q.E.D.

Proposition P16. Let α be an infinite α-repère. Let $\langle\beta, \gamma\rangle$ be an ordered pair of disjoint non-empty subsets of α_{1}. Then the three following conditions are mutually equivalent:

$$
\text { (a) } \beta \mid \gamma, \quad \text { (b) } \sigma \| \tau, \quad \text { (c) } \sigma \cup \tau \text { is an } \alpha \text {-repère. }
$$

Proof: Let $\alpha \subset \bar{\alpha}$, where $\bar{\alpha}$ is an infinite r.e. repère. Suppose that $\langle\beta, \gamma\rangle$ is an ordered pair of disjoint non-empty subsets of α_{1}. Then the sets σ and τ are independent α-repères separated by the r.e. repères $\bar{\sigma}_{0}$ and $\bar{\tau}_{0}$. Thus (b) \Leftrightarrow (c) by P14. Thus all we need to show is (a) \Leftrightarrow (b).
(a) \Rightarrow (b). Suppose that $\beta \mid \gamma$, say $\beta \subset \bar{\beta}^{\prime}, \gamma \subset \bar{\gamma}^{\prime}$ where $\bar{\beta}^{\prime}, \bar{\gamma}^{\prime}$ are disjoint r.e. sets. Then set $\bar{\beta}=\bar{\beta}^{\prime} \cap \bar{\alpha}_{1}, \bar{\gamma}=\bar{\gamma}^{\prime} \cap \bar{\alpha}_{1}$. Then $\beta \subset \bar{\beta}, \gamma \subset \bar{\gamma}$ where $\bar{\beta}, \bar{\gamma}$ are independent disjoint r.e. subsets of $\bar{\alpha}_{1}$. Let $\bar{\sigma}=\bar{\sigma}_{\bar{\beta}}, \bar{\tau}=\bar{\tau}_{\bar{\gamma}}$, then $\bar{\sigma}, \bar{\tau}$ are independent r.e. repères, since $\bar{\beta}, \bar{\gamma}$ are disjoint r.e. sets. Moreover, $\sigma \subset \bar{\sigma}, \tau \subset \bar{\tau}$ and hence $\sigma \| \tau$.
(b) \Rightarrow (a). Assume $\sigma \| \tau$, say $\sigma \subset \sigma^{\prime}, \tau \subset \tau^{\prime}$, where $\sigma^{\prime}, \tau^{\prime}$ are independent r.e. repères. Put $\bar{\sigma}=\sigma^{\prime} \cap \bar{\sigma}_{0}, \bar{\tau}=\tau^{\prime} \cap \bar{\tau}_{0}$. Then $\bar{\sigma}, \bar{\tau}$ are independent r.e. repères. Let

$$
\begin{aligned}
& \bar{\beta}=\left\{y \epsilon \bar{\alpha}_{\mid} \mid a_{0}+y \epsilon \bar{\sigma}\right\}, \\
& \bar{\gamma}=\left\{y \epsilon \bar{\alpha}_{1} \mid a_{1}+y \epsilon \bar{\tau}\right\} .
\end{aligned}
$$

Then $\bar{\beta}, \bar{\gamma}$ are r.e. subsets of $\bar{\alpha}_{1}$ such that $\beta \subset \bar{\beta}, \gamma \subset \bar{\gamma}, \bar{\sigma}_{\beta}=\bar{\sigma}, \bar{\tau}_{\bar{\gamma}}=\bar{\tau}, \sigma \subset \bar{\sigma}$, and $\tau \subset \bar{\tau}$. According to P 7 , the relation $\bar{\sigma} \| \bar{\tau}$ implies $\operatorname{card}(\bar{\beta} \cap \bar{\gamma}) \leqslant 1$. If $\bar{\beta} \cap \bar{\gamma}=\varnothing, \beta$ and γ are separated by the r.e. sets $\bar{\beta}$ and $\bar{\gamma}$, hence $\beta \mid \gamma$. Now suppose $\bar{\beta} \cap \bar{\gamma}=(k)$. Since β and γ are disjoint, we have $k \notin \beta$ or $k \notin \gamma$. We may assume w.l.g. that $k \notin \beta$. Then, β and γ are separated by the r.e. sets $\bar{\beta} \backslash\{k\}$ and $\bar{\gamma}$, hence again $\left.\beta\right|_{\gamma}$.
Q.E.D.

Remark. P16 answers question (I) in the remark following the proof of C13.

We have not yet answered the second question. The relevant problem is whether

$$
\mathrm{L}(\sigma \cup \tau) \text { an } \alpha \text {-space } \Rightarrow \sigma \cup \tau \text { an } \alpha \text {-repère. }
$$

We shall see that this is indeed the case.
Notation. Let W be any space. Then

$$
\theta_{0}(W)=\left\{x \in \alpha_{1} \mid a_{0}+x \in W\right\}, \theta_{1}(W)=\left\{x \in \alpha_{1} \mid a_{1}+x \in W\right\} .
$$

Now assume $\alpha \subset \bar{\alpha}$, where $\bar{\alpha}$ is an r.e. repère. Then

$$
\bar{\theta}_{0}(W)=\left\{x \in \bar{\alpha}_{1} \mid a_{0}+x \in W\right\}, \bar{\theta}_{1}(W)=\left\{x \in \bar{\alpha}_{1} \mid a_{1}+x \in W\right\} .
$$

Remark. Clearly (a) $\theta_{1}(W)=\bar{\theta}_{1}(W) \cap \alpha_{1}, \theta_{2}(W)=\bar{\theta}_{2}(W) \cap \alpha_{1}$; (b) $\theta_{0}[\mathrm{~L}(\sigma)]=\beta$, and $\theta_{1}[L(\tau)]=\gamma$; (c) if W is an r.e. space, then $\bar{\theta}_{0}(W)$ and $\bar{\theta}_{1}(W)$ are r.e. sets.

Proposition P17. Let $\langle\beta, \gamma\rangle$ be an ordered pair of disjoint non-empty subsets of α_{1} and $\mathrm{L}(\sigma \cup \tau) \leqslant W$. Then exactly one of the following is true:
(a) $\theta_{0}(W) \cap \theta_{1}(W)=\varnothing$ and $a_{0}-a_{1} \notin W$,
(b) $\beta \cup \gamma \subset \theta_{0}(W) \cap \theta_{1}(W)$ and $a_{0}-a_{1} \epsilon W$.

Proof: It is readily seen that $\theta_{0}(W) \cap \theta_{1}(W) \neq \varnothing$ if and only if $a_{0}-a_{1} \in W$. Thus, either (a) holds or $a_{0}-a_{1} \epsilon W$. We now prove

$$
a_{0}-a_{1} \in W \Rightarrow \beta \cup \gamma \subset \theta_{0}(W) \cap \theta_{1}(W) .
$$

Assume the hypothesis. Trivially, $\beta \subset \theta_{0}(W)$. Also,

$$
p \in \gamma \Rightarrow a_{1}+p, a_{0}-a_{1} \in W \Rightarrow a_{0}+p \in W \Rightarrow p \in \theta_{0}(W)
$$

Thus $\beta \cup \gamma \subset \theta_{0}(W)$. Similarly one shows that $\beta \cup \gamma \subset \theta_{1}(W)$. Hence $\beta \cup \gamma \subset$ $\theta_{0}(W) \cap \theta_{1}(W)$.
Q.E.D.

Proposition P18. Let α be an infinite α-repère. Let $\langle\beta, \gamma\rangle$ be an ordered pair of disjoint non-empty subsets of α_{1}. Then the following five conditions are mutually equivalent:

> (a) $\beta \mid \gamma, \quad$ (b) $\sigma \| \tau$, (c) $\sigma \cup \tau$ an α-repère,
> (d) $\mathrm{L}(\sigma \cup \tau)$ an α-space, (e) $\mathrm{L}(\sigma \cup \tau) \| \mathrm{L}\left(a_{0}-a_{1}\right)$.

Proof: Let $\alpha \subset \bar{\alpha}$. In view of $P 16$, it suffices to show that $(c) \Longrightarrow(d) \Longrightarrow$ $(\mathrm{e}) \Longrightarrow(\mathrm{a})$. The first conditional is obvious. According to $\mathrm{P} 9, a_{0}-a_{1} \notin \mathrm{~L}(\sigma \cup$ τ). If (d) holds, we obtain (e) by P2. Finally, assume (e). Then there is a r.e. space \bar{W} such that $\mathrm{L}(\sigma \cup \tau) \leqslant \bar{W}$ and $a_{0}-a_{1} \notin \bar{W}$. We conclude by P17 that $\bar{\theta}_{0}(\bar{W})$ and $\bar{\theta}_{1}(\bar{W})$ are disjoint r.e. sets. Moreover, $\beta \subset \bar{\theta}_{0}(\bar{W})$ and $\gamma \subset$ $\bar{\theta}_{1}(\bar{W})$, hence $\beta \mid \gamma$ and (a) holds.
Q.E.D.

Proposition P19. Let $W \leqslant \bar{V}$, where \bar{V} is an r.e. space, and $\operatorname{codim}_{\bar{V}}(W)$ finite. Then
W is an α-space $\Leftrightarrow W$ is an r.e. space.
Proof: Only the \Rightarrow conditional needs a proof. Let W be an α-space. Since $W \leqslant \bar{V}$, there is an α-basis β of W and an r.e. repère $\bar{\beta}$ such that $\beta \subset \bar{\beta} \subset \bar{V}$.

Then the fact that $\operatorname{codim}_{\bar{V}}(W)$ is finite implies that $\bar{\beta} \backslash \beta$ finite. This and the fact that $\bar{\beta}$ is r.e. implies β is r.e. Hence $W=L(\beta)$ is an r.e. space. Q.E.D.

We present a new proof of the existence of non- α-spaces. Let Δ denote the family of all ordered pairs of disjoint non-empty subsets of α_{1}. For $\delta \subset \alpha_{1}$, δ infinite, we define

$$
\Delta_{\delta}=\{\langle\beta, \gamma\rangle \in \Delta \mid \beta \cup \gamma=\delta\} .
$$

Consider the mapping

$$
\langle\beta, \gamma\rangle \rightarrow \mathrm{T}\langle\beta, \gamma\rangle=V, \text { for }\langle\beta, \gamma\rangle \in \Delta_{\alpha_{1}} .
$$

This mapping is $1-1$ by P8. Since its domain has cardinality \mathfrak{c}, so has its range. By P 10 the range consists of spaces of codimension 1 w.r.t. the space $Z_{\alpha(1)}$. We now make the additional assumption that α_{1} is r.e. Then $Z_{\alpha(1)}$ is an r.e. space. Thus, for $V \in T\left(\Delta_{\alpha(1)}\right), V$ is r.e. if and only if V is an α-space by P19. However, there are only \aleph_{0} r.e. spaces, and hence $T\left(\Delta_{\alpha(1)}\right)$ contains exactly \mathbf{c} non- α-spaces.

While this proof uses a cardinality argument, P18 enables us to characterize those $\langle\beta, \gamma\rangle \in \Delta_{\alpha_{1}}$ for which $\mathrm{T}\langle\beta, \gamma\rangle$ is an α-space. There are the ordered pairs $\langle\beta, \gamma\rangle$ such that $\beta \mid \gamma$; since α_{1} is r.e., these are the ordered pairs $\langle\beta, \gamma\rangle$ such that β is r.e. and $\gamma=\alpha_{1} \backslash \beta$ is r.e. Thus, even in the simple case that β is r.e., but γ is not, $\mathbb{T}\langle\beta, \gamma\rangle$ is a non- α-space. In that case,

$$
\mathrm{T}(\beta, \gamma)=\mathrm{L}(\sigma \cup \tau)=\mathrm{L}(\sigma) \oplus \mathrm{L}(\tau)
$$

while $L(\sigma)$ is r.e., but $L(\tau)$ is not r.e.
More generally, consider the mapping $\langle\beta, \gamma\rangle \rightarrow \mathrm{T}\langle\beta, \gamma\rangle=V$, for $\langle\beta, \gamma\rangle \epsilon$ Δ_{δ}, where $\delta=\beta \cup \gamma$. For each of the \mathbf{c} choices of the infinite subset δ of α_{1}, we obtain a class of \mathbf{c} spaces V of the form $\mathrm{T}\langle\beta, \gamma\rangle$, with $\beta \cup \gamma=\delta$. Among these, \aleph_{0} are α-spaces, namely those for which $\beta \mid \gamma$, and \mathfrak{c} are non- α spaces, namely those for which not $(\beta \mid \gamma)$. Let V_{1}, V_{2} correspond to different choices of $\langle\beta, \gamma\rangle$ for a fixed $\delta=\beta \cup \gamma$. Then $V_{1} \oplus \mathrm{~L}\left(a_{0}-a_{1}\right)=\mathrm{Z}_{\delta}$, and $V_{2} \oplus \mathrm{~L}\left(a_{0}-a_{1}\right)=\mathrm{Z}_{\delta}$. Since $V_{1} \neq V_{2}$, we have $V_{1}+V_{2}=\mathrm{Z}_{\delta}$. Thus, we have a family of \mathbf{c} distinct non- α-spaces all of which are subspaces of Z_{δ} with codum 1 w.r.t. Z_{δ}. According to $\mathrm{P} 6, \mathrm{Z}_{\delta}$ is an r.e. space if and only if δ is an r.e. set.

Proposition P20. (a) There are c ordered pairs $\langle\sigma, \tau\rangle$ of independent α repères which are separable by r.e. repères, but not by independent r.e. repères.
(b) There are \mathbf{c} ordered pairs $\langle S, T\rangle$ of independent α-spaces whose sum is not an α-space.

Proof: Let $\langle\beta, \gamma\rangle$ be an ordered pair of non-empty subsets of α_{1}, which are disjoint but not separable, $\sigma=\sigma_{\beta}, \tau=\tau_{\gamma}, S=\mathrm{L}(\sigma), T=\mathrm{L}(\tau)$. Then $\langle\sigma, \tau\rangle$ and $\langle S, T\rangle$ satisfy the requirements. Moreover, $\langle\beta, \gamma\rangle$ can be chosen in \mathbf{c} ways and the mappings $\langle\beta, \gamma\rangle \rightarrow\langle\sigma, \tau\rangle,\langle\beta, \gamma\rangle \rightarrow\langle S, T\rangle$ are 1-1.
Q.E.D.

Proposition P21. Let α be an infinite α-repère, and $A=\mathrm{L}(\alpha)$. Then
(a) $Z_{\alpha(1)} \oplus \mathrm{L}\left(a_{0}\right)=Z_{\alpha(1)} \oplus \mathrm{L}\left(a_{1}\right)=A$,
(b) $Z_{\alpha(1)} \| L\left(a_{0}\right)$ and $Z_{\alpha(1)} \| L\left(a_{1}\right)$,
(c) $Z_{\alpha(1)} \leqslant_{\alpha} A$ and $Z_{\alpha(1)}$ is an α-space.

Proof: Let $\alpha \subset \bar{\alpha}$, where $\bar{\alpha}$ is an infinite r.e. repère. Recall that the 1-1 function a_{n} ranging over α, and the $1-1$ recursive function \bar{a}_{n} ranging over $\bar{\alpha}$ are chosen so that $\bar{a}_{0}=a_{0}$ and $\bar{a}_{1}=a_{1}$. Put $\bar{A}=\mathrm{L}(\bar{\alpha})$. Suppose that σ_{0}, τ_{0}, $Z_{\alpha(1)}$ are defined w.r.t. α_{1} and $\bar{\sigma}_{0}, \bar{\tau}_{0}, Z_{\bar{\alpha}(1)}$ are defined w.r.t. $\bar{\alpha}_{1}$. Then we have by P 4 and the definitions of $Z_{\alpha(1)}, Z_{\bar{\alpha}(1)}$,

$$
\begin{aligned}
& \mathrm{L}\left(\sigma_{0} \cup \tau_{0}\right)=\mathrm{Z}_{\alpha(1)}, \mathrm{L}\left(\bar{\sigma}_{0} \cup \bar{\tau}_{0}\right)=\mathrm{Z}_{\bar{\alpha}(1)}, \\
& \mathrm{L}\left(\bar{\sigma}_{0} \cup \bar{\tau}_{0}\right) \oplus \mathrm{L}\left(a_{0}\right)=\mathrm{L}\left(\bar{\sigma}_{0} \cup \bar{\tau}_{0}\right) \oplus \mathrm{L}\left(a_{1}\right)=\bar{A}, \\
& \mathrm{~L}\left(\sigma_{0} \cup \tau_{0}\right) \oplus \mathrm{L}\left(a_{0}\right)=\mathrm{L}\left(\sigma_{0} \cup \tau_{0}\right) \oplus \mathrm{L}\left(a_{1}\right)=A .
\end{aligned}
$$

Moreover, $L\left(\bar{\sigma}_{0} \cup \bar{\tau}_{0}\right)$ is an r.e. space, while $Z_{\alpha(1)}$ is an α-space by P6. Note that the first part of (c) follows from (a) and (b). Thus it suffices to prove $\mathrm{L}\left(\sigma_{0} \cup \tau_{0}\right) \leqslant \mathrm{L}\left(\bar{\sigma}_{0} \cup \bar{\tau}_{0}\right)$. Since $\bar{a}_{0}=a_{0}, \bar{a}_{1}=a_{1}$, we have $\sigma_{0} \subset \bar{\sigma}_{0}, \tau_{0} \subset \bar{\tau}_{0}$, hence $\mathrm{L}\left(\sigma_{0} \cup \tau_{0}\right) \leqslant \mathrm{L}\left(\bar{\sigma}_{0} \cup \bar{\tau}_{0}\right)$.
Q.E.D.

Proposition P22. Let α be an infinite α-repère. Consider the 1-1 mapping $\langle\beta, \gamma\rangle \rightarrow \mathrm{T}\langle\beta, \gamma\rangle=V$, with as domain the family of all decompositions $\langle\beta, \gamma\rangle$ of α_{1} into non-empty sets. Then we have for each such ordered pair $\langle\beta, \gamma\rangle$,
(a) $V \oplus \mathrm{~L}\left(a_{0}-a_{1}\right)=\mathrm{Z}_{\alpha(1)}, V \oplus \mathrm{~L}\left(a_{0}, a_{1}\right)=A$,
(b) the following five conditions are mutually equivalent:

$$
\begin{aligned}
& \text { (i) } V \| L\left(a_{0}, a_{1}\right) \text {, (ii) } V \| \mathrm{L}\left(a_{0}-a_{1}\right) \text {, } \\
& \text { (iii) } V \leqslant_{\alpha} Z_{\alpha(1)} \text {, (iv) } V \leqslant_{\alpha} A, \text { (v) } V \text { is an } \alpha \text {-space. }
\end{aligned}
$$

Proof: Part (a) follows from P9 and P4 (d). We prove part (b) by showing that $(\mathrm{i}) \Longrightarrow(\mathrm{ii}) \Longrightarrow(\mathrm{iii}) \Longrightarrow(\mathrm{iv}) \Longrightarrow(\mathrm{v}) \Longrightarrow(\mathrm{i})$. The first two conditionals are immediate. By P21 (c) we know that $Z_{\alpha(1)} \leqslant{ }_{\alpha} A$. Thus, assuming (iii),

$$
V \leqslant_{\alpha} \mathrm{z}_{\alpha(1)} \text { and } \mathrm{z}_{\alpha(1)} \leqslant_{\alpha} A \Rightarrow V \leqslant_{\alpha} A
$$

by P1. This proves (iii) \Rightarrow (iv). According to P3,

$$
V \leqslant_{\alpha} A \text { and } A \alpha \text {-space and } \operatorname{codim}_{A}(V) \text { finite } \Rightarrow V \alpha \text {-space. }
$$

Thus (iv) \Rightarrow (v) follows from the fact that A is an α-space and $\operatorname{codim}_{A}(V)=2$. Finally, assume (v). By part (a) and P2, we have $V \| L\left(a_{0}, a_{1}\right)$.
Q.E.D.

Corollary C23. For every \aleph_{0}-dimensional α-space A, there are \mathfrak{c} non- $\alpha-$ spaces V such that V is a subspace of A of codimension 2 w.r.t. A.

Remark. If in C23 we choose an isolic \aleph_{0}-dimensional α-space for A, we obtain Hamilton's result: there are exactly \mathbf{c} isolic non- α-spaces ([5], Theorem 5, p. 93).

REFERENCES

[1] Dekker, J. C. E., "Countable vector spaces with recursive operations. Part I," The Journal of Symbolic Logic, vol. 34 (1969), pp. 363-387.
[2] Dekker, J. C. E., "Countable vector spaces with recursive operations. Part II," The Journal of Symbolic Logic, vol. 36 (1971), pp. 477-493.
[3] Fowler, N., 'Intersections of α-spaces," (to appear).
[4] Fowler, N., ' α-decompositions of α-spaces," (to appear).
[5] Hamilton, A. G., "Bases and α-dimensions of countable vector spaces with recursive operations," The Journal of Symbolic Logic, vol. 35 (1970), pp. 85-96.

Rutgers University, The State University of New Jersey
New Brunswick, New Jersey
and
Hamilton College
Clinton, New York

[^0]: *The results presented in this paper were taken from the author's doctoral dissertation written at Rutgers University under the direction of Professor J. C. E. Dekker.

