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IMPLICATION CONNECTIVES IN ORTHOMODULAR LATTICES

L. HERMAN, E. L. MARSDEN, and R. PIZIAK

1 Introduction It was pointed out as long ago as 1936 by Birkhoff and von
Neumann [2], that the logic of empirically verifiable propositions about a
quantum mechanical system is not classical. That is, quantal propositions
do not tend to band together to form a Boolean algebra. The distinguishing
feature of quantum mechanics, namely the existence of quantities which are
not simultaneously measurable, led to an attack on the distributive law as
the law of logic which is least tenable in quantum logic. Though Birkhoff
and von Neumann argued in favor of the weaker modular law, subsequent
researchers have rejected modularity in favor of the yet more general
orthomodular law. Thus, the basic assumption of the quantum logic
approach to quantum mechanics today is that the empirically verifiable
propositions relevent to a given physical system form an orthomodular
lattice (see Jauch [17], Varadarajan [36]). Some have objected that to
demand a lattice is already too much. The appropriate structure for
quantum logic then becomes an orthomodular partially ordered set (see
Mackey [26], Pool [32]). However, we shall ignore this controversy here
and maintain a lattice structure throughout.

The assumption of conventional quantum mechanics is that the logic of
a physical system is modeled by the orthomodular lattice of all closed
subspaces of a complex separable infinite dimensional Hubert space, or,
equivalently, by the lattice of all projection operators on the Hubert space
(see von Neumann [37], n.b. Projections as Propositions, p. 247 ff.). One
of the purposes of the quantum logic approach to quantum mechanics has
been to elucidate this somewhat ad hoc assumption. More recently, Foulis
and Randall [9, 10, 33] have shown that orthomodular lattices lie at the
heart of their "operational statistics". This should help to clarify the
logical foundations of any empirical science.

Our paper begins with a brief description of quantum logic and the
problem of introducing an implication in such a logic. Next, several
candidates for such an implication are studied. Our point of view then
becomes axiomatic as we abstract what we consider to be the essential
features of an internal implication connective. With the help of a given
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implication, the modal operators of "necessity" and "possibility" can be
introduced. This is interesting since orthomodular lattices generalize
Boolean algebras. As the latter model classical logic, it is natural to ask
what logical analogue might correspond to the former. We shall present
evidence that the analogue seems to be a system resembling the classical
Lewis modal system S4. The culmination of this evidence is in the section
of the paper where we prove a restricted deduction theorem of the type that
is well known to hold in S4.

The authors would like to express sincerest thanks to J. Jay Zeman
for many interesting and stimulating conversations. Indeed, to understand
our focus and our axioms, the reader would do well to consult Zeman's
paper, "Quantum logic with implication" [38], The authors are grateful to
Veronica K. Piziak for the many hours she spent typing several drafts of
this paper.

2 Implication in Quantum Logic In this section, a brief sketch is given of
the basic axioms for a quantum logic and the problem of introducing an
implication connective in a quantum logic is discussed.

To begin, let ^ be a nonempty set of elements which may be referred
to as "propositions". We postulate two binary connectives (i.e., binary
operations) on JQ which model "conjunction" (the "and" connective
symbolized by Λ) and "disjunction" (the " o r " connective symbolized by v),
subject to the following axioms:

(Al) a vb = b va for all a, b in £.
(A2) a*b = b A a for all α, b in ^ .
(A3) a v (b vc) = (a vb) vc for all a, b, c in <£.
(A4) a A (&Λ c) - (flΛδ)Λ c for all a, b, c in <£.
(A5) αv(flΛ&) = a for all a, b in ^ .
(A6) a Λ (a v b) = a for all a, b in £.

In other words, we have demanded that the structure (-C, Λ, v) be a lattice.
Next, we ask that there exist in ^ two distinguished elements, 0 and 1,

such that

(A7) 0 va = a for all a in JQ.

(A8) 1 Λ a = a for all a in jQ.

We might interpret 0 as the "contradictory" proposition and any proposi-
tion equal to 0 could be called a "contradiction". Similarly, 1 could be
interpreted as the "tautologous" proposition and any proposition equal to 1
could be called a "tautology".

At this stage it is convenient to define a binary relation ^ on J£ as
follows:

(P01) a ^ b if and only if a = a Λ δ.

It is easy to see that (P01) is equivalent to saying a ^ b if and only if
b = αvδ. Also it is easy to deduce that ^ is a partial order relation on j£.
That is, we have:
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(P02) a < a for all a in «£.
(P03) if a ^ b and b ^ a then a = b.
(P04) ifa^b and b ^ c then a ^ c.
(P05) 0 ^ a < I for all a in £.

Negation is introduced as a unary operation a \-> a' on ̂  subject to the
following very classical axioms:

(A9) a = (a')r for alia in £.
(A10) ifa^b, then b1 ^a* for alia, b in ^ .
(All) flΛβf = 0 for all a in ^ .
(A12) ava' = 1 for all a in *£.

In brief, a structure (j£, Λ, V, ', 0, 1) satisfying (Al) through (A 12) is
called an orthocomplemented lattice. It is called a Boolean algebra when in
addition to (Al) through (A12) we have the distributive law:

(A13) a λ(bvc) = (a Λ b) v (a A C) for all a, b, c in £.

This law may be weakened in several ways. The modular law is:

(A14) if a ^ c, then (a v b) Λ C = a v (b Λ C).

If we replace (A13) by (A14), maintaining (A1)-(A12), we say our

structure forms an ortho complemented modular lattice. This is the
structure originally advocated by Birkhoff and von Neumann. The weaken-
ing of (A13) that interests us most is the orthomodular law:

(A15) if a ^ b, then b = av(b/\af).

The structure (j£, Λ, V, ', 0, 1) is called an orthomodular lattice when
it satisfies (A1)-(A12) together with (A15). For the remainder of this
section, we shall deal only with orthomodular lattices. It is clear that
every Boolean lattice is an orthocomplemented modular lattice and every
such is an orthomodular lattice.

In view of (P02)-(P05), it is tempting, indeed it is often done, to let the
partial order play the role of implication in the logic. However, Zeman
[38], among others, has objected to this, since implication is treated
classically as a binary connective (see the truth table definition in any
elementary book on logic). This implication should be on the same
linguistic level as conjunction and disjunction. However, < is a relation on
^ rather than a binary operation on ̂ . To insist on using < to play the
role of implication amounts to a violation of the sacrosanct distinction
between object language and metalanguage. The relation ^ should be
viewed as a statement about f'deducibility". One might read "a ^ b" as
"b is deducible from a". That this is more than a matter of language
should be clear in the sequel. With all this in mind, we now attack the
problem of finding a binary connective in quantum logic that plays the role
of the "if—then" connective of classical logic.

Logicians have, of course, studied the notion of implication exten-
sively. Let D: ^ x ^ —> £ be a mapping. The question is "What properties
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should D satisfy to justify calling it an implication connective?". In both
classical and intuitionistic logic, the meaning of implication is expressed
by the following condition (see Curry [4], p. 140 ff):

(Cl) x ^ a D b if and only if x A a ^ δ.

We shall refer to the image of 3 as the set of implications, an element
of this set being referred to, naturally, as an implication. It is tempting to
simply require the existence of such a "hook" on our orthomodular lattice.
Then, by axiom, (Cl) would be satisfied and we would be done with the
problem of implication. That this cannot be done for quantum logic follows
from a classic result of Skolem (see Birkhoff [l]).

2.1 Theorem (Skolem) Any lattice with a binary connective satisfying (Cl)
is necessarily distributive. Moreover, a D b is the maximal solution for x
in the inequality XΛa < δ.

This theorem, according to Curry [4], is the main reason why logicians
have studied, for the most part, only distributive lattices (when they have
bothered to study lattices at all). Before we abandon (Cl), let us try to gain
some insight into the problem by considering the classical situation.

2.2 Theorem Let £ be a Boolean lattice with a binary connective —>
satisfying (Cl). Then —> is uniquely determined. In fact, a -» b = aτ v b for
all a, b in <£. Also, a—> b is the maximal solution for x in the inequality
x A a < b. Moreover,

(1) a < b if and only if a —> δ = 1
(2) a A (a -> b) ^ b
(3) a —* a = 1 for all a
(4) 0 -* a = 1 for all a
(5) a —> 0 = a1 for all a
(6) 1 —> a = a for all a
(7) «-> 1 = 1 for all a
(8) ar —> 0 = a for all a
(9) a -* a' = a1 for alia

(10) af -* a = a for all a
(11) if a Λ 6 = 0, then a —» b = a'
(12) (av a) -* a = 1 for all a
(13) δ — (avb) = 1
(14) (avb) — (bva) = 1
(15) (b -> c) — ((α v δ) — (β v c)) = 1
(16) a-> b= br -* a'
(17) (avb) -> b= b' -> a'

Proof: The proofs here are standard. We shall only argue uniqueness.
Put x=arvb in (Cl). Then x Aa = (ar v b) Aa = (ar AO) v (b Aa) = b Aa ^ b.
Thus we conclude by (Cl) that α r v δ < a-> b. On the other hand, since
(« —> δ) < (α —> δ), we have (α —* δ) Λ a ^ δ. Thus (α -• δ) Λ α Λ δf < δ Λ δf = 0
so (β-δ)Λ(flΛ δf) = 0. But (α -> δ) = (Λ -» δ) Λ 1 = (a — δ) Λ ((a' v δ) v (a' v δf)f) =
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({a -> δ) Λ (a1 v b)) v ({a -> δ) A (a Λ 6')) = (α — δ) A (α' v δ ) ^ α ' v δ . Thus α -> δ =
α'vδ. We note in passing that 2.2 (12) through 2.2 (15) are the axioms
usually called PM for the classical propositional calculus.

Theorem 2.2 suggests that we should at least consider the connective
—* on any orthomodular lattice (indeed, on any orthocomplemented lattice)
defined by the formula a —> b = ar vb. We then ask if this is a suitable
implication connective for quantum logic. In particular, we need to know
what properties of —> carry over from the Boolean case and how (CI) is
weakened.

Before we state the next theorem, we recall some definitions. Let ^
be an orthomodular lattice. If a, b are in ^ and a ̂  δ', we say a is
orthogonal to b and write a ±b. Note l is a symmetric relation on «£.
When a ±b, the logical interpretation is that a and b are "mutually
exclusive" propositions in the sense that from each is deducible the
negation of the other. We say a is compatible with δ, in symbols aCb, when
βΛδ = βΛ(6vfl'). The conventional interpretation of two propositions being
compatible is that they are simultaneously testable. It is a fact that C is a
symmetric relation [1], p. 53. One fact we shall use is that aCb if and only
if a = (a Λ 6) v (a Λ&'). The essential result for performing computations in
orthomodular lattices is the Foulis-Holland Theorem [1], p. 53: this
fundamental theorem states that every distributive law holds among any
three elements as long as one is compatible with the other two. In the
sequel, we use this result almost without comment. The center of *Q, in
symbols C C£), is the set of all elements of <£ which are compatible with all
elements of «£. For notational convenience, we use "iff" for the phrase
"if and only if". We next state the properties of —> which remain valid in
any orthomodular lattice.

2.3 Theorem Let <£ be an orthomodular lattice. For a, b in <£ define
a —• b = a* vb. Then

(1) a -* a = lfor all a
(2) 0 — α = lfor alia

(3) a-*0=a'foralla
(4) 1 —> a = a for all a

(5) a — 1 = I for all a
(6) af -> 0 = a for all a
(7) a —> ar = af for all a
(8) ar —> a = a for all a
(9) if a ^ bf then a -• b = 1

(10) ^/α -Lδ, ί/z£?2 α —> δ = af and conversely
(11) a C b iff a A (α —> δ ) ^ δ . M o r e o v e r , i n t h i s c a s e a A (a —> δ ) = « Λ δ
(12) z/α ±b,then aΛ(a -> b) = 0
(13) x->a=aiffx'^a
(14) (αvδ)-»δ^α-> δ
(15) a-*b = biffa'^b

The proofs of these statements are easy and left to the reader. Of
more interest is the following example.
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2.4 Example The following is the Hasse diagram of a non-Boolean
orthomodular lattice.

1

0

1

Routine computation shows that C(^1 2) = {0, 1, c, c'} = c\Λcr. We compute

0
—> explicitly for jζ12.

-> I 0 a b c d e a' br c' d' e' 1

0 1 1 1 1 1 1 1 1 1 1 1 1
a a1 1 a' a' 1 1 a1 1 1 1 1 1
b b' br 1 b' 1 1 1 b' 1 1 1 1
c cr c' c' 1 c ' c ' 1 1 <?' 1 1 1
d d' I 1 d' I dr 1 1 I d' I 1
e e' 1 1 e' e' 1 1 1 1 1 ef 1
α f α α c f b' c' cr 1 δ f c r 1 1 1
δ f b c' b af c' cf ar 1 c f 1 1 1
c' c br a' c er d1 af bf 1 dr e' 1
d f rf c f c f ef d c' 1 1 c ' 1 β f 1
e F e c' c' d' cf e 1 1 c' dr 1 1
1 0 Λ 6 c d e a1 b' c' d' er 1

There are several interesting things to note from this example. First
we note every element of j£12 is an implication. More importantly, the
converse of Theorem 2.3 (9) fails in general. We see a —» d = 1 but a ^ d.
Thus 1 appears in the table in at least two ways. There are other
pathologies that could be pointed out. However, most of them are due to the
failure of a very important rule of inference, namely Modus Ponens:
a A (a —* b) ^ b. N o t e f o r e x a m p l e i n jQ12f a Λ ( a - * d ) = a Λ l = a b u t a ^ d.
It is principally for this reason that we reject —> as a suitable implication
in quantum logic.

We now proceed to give our first candidate for a suitable implication
for quantum logic. To motivate our condition replacing (CI) we note the
following theorem.

2.5 Theorem Let 4! be an orthomodular lattice. Then <£ is Boolean iff
xΛa = (xvaf) A a for all x, a in *Q.

Proof: If -C i s Boolean, we can distribute and get (x va1) Λ a = (xΛ a) v (αf Λ a) =
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(xhά) vθ = x*a. Conversely, the condition says all pairs of elements of <£

are compatible. The global distributive law now follows from the Foulis-

Holland Theorem (see Birkoff, [1]).

In view of Theorem 2.5, we could replace x*a in (CI) by (xvar)*a in

the classical case and not change the meaning of (CI) at all. Our generali-

zation of (CI) is

(QI) x < (a D b) if and only if (x v a1) Λ a < δ.

The next theorem shows that D is well behaved on any orthomodular

lattice.

2.6 Theorem Let <£ be an orthomodular lattice with a binary connective D

satisfying (QI). Then Ί> is uniquely determined. In fact, a D b = a*v (a/\b)

for all a, b in J£. Moreover,

(1) a A (a D b) < δ

(2) a < b iff a D b = 1

(3) a D a = 1 for all a

(4) 0 D a = 1 /or «ZZ a

(5) β D θ = af for alia

(6) β D l = l /or α/Z α

(7) 1 D a = α/or αZZ α

(8) α f D 0 = a for alia

(9) a D ar = ar for all a

(10) a* D a = a for all a

(11) a J> b *ζ a-> bforalla, b

(12) (αsδ)C(α-δ)

(13) ifaΛb = O,thenaDb = a'

(14) ifaxb, then a D b = a'

(15) ifaCb, then a D b = a -* b

(16) ifa±b, then a Ί> b - a-* b

(17) aλ(aΊ>b) = aΛb

(18) ((α D b)va')Λa^ b

(19) (α v δ) Ί> b ** a-> b

(20) α ϊ ) M c ) = (flΛδ) i) c iff aCb

(21) z/α < δ, ί/̂ βn c D α < c D δ

(22) z/α < δ, ί ^ n α D ( δ D c ) = α D c

(23) α ^ (6 D (δ D αf)0
(24) af ̂  a D b

(25) αCδ iffb^aDb

(26) «C(α D δ)

(27) a D ( a Λ b ) = a D b

(28) (α D δ) Λ (α D c) = « I) (5 Λ c)

(29) (α D δ) i) (« D c) = (α A δ) D C

(30) ( β D δ ) ΐ > M ( δ Λ c)) = ( o δ ) ΐ ) M c ) = ( f l Λ δ ) i c

Proof: Let ΛΓ = α'v(«Λδ). Then (xva')Λa = ((#' v («Λ5)) v a % α = ((αfv

(«Λδ))Λα) v (flΆi) = (α'v(flΛδ))Λβ = (aΆa) v ((α Λ6)Λ α) = α Λδ < δ. We
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have used the Foulis-Holland Theorem in the above calculation. Thus by
(Ql),α f v{aΛb) < a D δ. Also, a D b < a D δ, so by (QI), ((Λ D b)va')Λd « 5.
Then ((a D b) v a')*a ** b*a so (((« D δ) v « ' )Λ α) v α' < α f v (<2 Λ δ). But
(((a D δ) v a')Λa)var = ((a D δ)v<zf V«')Λ (a vfl') = (α D δ) va'. So a D b ^
(a Dδ)vflU«fv(flΛδ).

(1) Using Foulis-Holland, # Λ (a D δ) = β Λ (α' v (α Λ δ)) = (α Λ af) v (α Λ {a Λ δ)) =
«Λ δ ^ δ.
(2) If a < δ, then α D δ = a'v{a*b) = a' va = 1. If a D δ = 1, then α = α Λ 1 =
a A (a D δ) < δ.
(3) through (11) are all one line proofs and will be omitted. (12) follows
from (11) and the fact that in an orthomodular lattice, comparable
elements are compatible.

For the sake of space, the remaining proofs will be left to the reader.

We shall refer to D as the "Sasaki implication connective" or, more
briefly, as the "Sasaki hook".

2.7 Example

D 0 a b c d e ar b' c' d* ef 1

0 1 1 1 1 1 1 1 1 1 1 1 1

a ar 1 a' ar a' a1 a' I 1 a1 ar 1

δ δ ' b' 1 δ ' b' δ f 1 δ f 1 b' br 1

c cr c' cr 1 cr c' 1 1 c' 1 1 1

d dr d' dr d' 1 dr d' dr 1 d' 1 1

e e' e' er e' er 1 β f β f 1 1 β f 1

a' a a cr br a a 1 δ ' c f δ f δ r 1

δ f δ c' b a' b b ar 1 c' a' ar 1

c' c b' a' c er d* α f δ f 1 ^ f e' 1

ίZf d rf d e' d c' e' e' cr 1 β f 1

^ f e e e d' c' e d' df c' d' 1 1

1 0 α δ c rf e « r δ f c f rff e f 1

Note again that every element of ^ 1 2 is an implication. The reader
would do well to compare this table with our previous one. We note that
Theorem 2.6 (15) says that D and —> agree on compatible pairs of elements.
Also we see from (2.6) (1) and (2.6) (2) that D retains our minimal demands
for an implication connective. However, there are non-classical features
that D exhibits. For example, the law of contraposition fails. That is, it is
not universally true that a D δ = δ' D ar. A glance at the above example
shows that a D d= a* while d* D ax = ef. Finch [7] has shown that D satis-
fies contraposition iff ̂  is Boolean. It is also interesting to note, as Finch
points out, that Λ and v are expressible in terms of D. Namely, avb = a* D
(ar D b')1 a n d f l Λ δ = (a' J> (a -i> b)')r.

Also, a strong version of transitivity fails, namely, (x D y) Λ (y D Z) <
(x D z). To see this, take x = d, y = 1, £ = αf in the above example; then
xDy=dDl=l and yΊ>z=lΊ)at = at and Λ: D Z = <i D αf = df, but (Λ: D]))Λ
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(y D z) = 1Λ ar = a* ̂  (x D Z) = df. it might be desirable that these laws of

logic fail in quantum logic. This will need to be decided on empirical

grounds. However, we can still ask if it is possible to have an implication

connective which is consistent with the tenets of quantum logic, and

which satisfies the law of contraposition. Our next candidate shows

this is indeed possible.

2.8 Definition Let J£ be an orthomodular lattice. For a, δ in *Q define

a E> b = (a Λ δ) v (ar
 A δ) v (ar

 A b')

2.9 Theorem Let £ be an orthomodular lattice. Then

(1) (a D b)i\a < b

(2) a^biffa®b=l
(3) α E> a = 1 /or all a
(4) « E) 0 = a1 for all a
(5) l D f l = α/or all a
(6) α D δ = δ ' E ) β f

(7) a ® ar = a1 for all a
(8) a1 & a = a for all a
(9) if aCb, then a ® b = a i> b = a —> b

(10) α 'ID M α E ) δ ^ α - * δ

(11) (« D δ)Cβ αwrf (« E> b)Cb

(12) « D δ = (f l D δ ) Λ ( δ f D Λ ' )

Proo/:

(1) (« Dδ)λβ = flΛ[(αΛδ)v(flfΛδ)v(flfΛ6')] = (flΛflΛ6)v(βΛαfΛδ)v(flΛα'Λ

δ f) = α Λ 6 ̂  δ, using lots of compatibi l i ty.

(2) If α < b then aΛb = a and δ ' ̂  α f so a'*br = b'. Thus α D b =

β v ( f l f Λ δ ) v δ ' = ( α v & O v f o Ά δ ) = (a v δ r) v (α f Λ b) = ( α v δ f ) v ( f l v 6 ' ) ' = 1. Con-

v e r s e l y if a ε> 6 = 1, then α = f l Λ l = αΛ(β D δ) ^ δ .

(3) a k) a = (aA a) v («fΛ «) v (aΆ ar) = a v 0 var = 1
(4) β D θ = (βΛθ)v(β'Λθ)v(fl fΛl)=fl f

(5) I ® a = {1 A a) v {0 A a) v (0 A a') = a v 0 v 0 = a

(6) 6' E)«f = ( δ f Λ f l f ) v ( δ " Λ α f ) v ( δ " A « " ) = (br A a) v ( 6 Λ α f) v ( 6 A α) = « E> δ

(7) « D ar = (a A a') v (ar A a') v (ar A a") =0va'v0 = ar

(8) a1 ® a = a' E> (α f ) f = α " = «

(9) Clear s ince then α E> δ = (βΛδ) v ((arAb) v (aΆb')) = («Λδ) v δ f =

(avar) A(bva') = 1 A (δ v«') = α -* δ

(10) Clear

(11) Clear

(12) (α D δ) A(δr D βf) = (α' v («Λ5))Λ (δ v (bΆa')) = ((a' v(a A b)) A b) v ((a* v

(βAδ))A(δΆfl')) = (δΛβ')v(βΛ6)v(δ'Λfl')v(flΛδ)Λ (δΆα') = (a A b) v (ar A b) v

(a*Abr) = a D δ .

2.10 Example Once again we compute on £12.
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P I 0 a b c d e af b' cr df e* 1

0 1 1 1 1 1 1 1 1 1 1 1 1
a a1 1 a' ar c c a' 1 1 c c 1
b b' b1 1 δ ' c c 1 b' 1 c c 1
c cr cr cr 1 c ' c f 1 1 e ' 1 1 1
d d' c c d' 1 d' c c 1 d' 1 1
£ £ f c c # ' e' 1 c c 1 1 er 1
af a a cf br 0 0 1 br cr c c 1
δ f 6 c ' 6 « f 0 0 a' 1 c f c c 1
c' c b' a' c e' d' a' b1 1 d' e' 1
dF rf 0 0 e' d c1 c c c' 1 e' 1
e' e 0 0 <if c' e c c' c' df 1 1
1 0 a b c d e a' br c' dr er 1

Note that once again, strong transitivity fails. Let x = d, y = 1, and
z - a. Then (x E> y) Λ (3; D 2) = 1Λ a = α ^ (Λ: E> 2) = C.

Is it possible to have an implication connective which is consistent
with the tenets of quantum logic and which satisfies both the law of
contraposition and the strong transitivity? Once again, we can give a
positive answer.

For the remainder of this section, assume *C is a complete ortho-
modular lattice. Recall a complete lattice is one in which arbitrary meets
and joins exist.

2.11 Definition Let C(-C) denote the center of the complete orthomodular

lat t ice <£. F o r a and b in j£9 define a © b = V{ce C(«Q) \c*a < b}.

2.12 Theorem Let J^ be a complete orthomodular lattice. Then

(1) a D a = lfor all a

(2) 0 5 f l = l for all a
(3) flM=l for all a
(4) 1 3 0 = 0
(5) a © b e C{£) for all a, b in £
(6) a A (a s> b) < b
(7) aA(ai)b)^aΛb
(8) α < δ zj^α 3 6 = 1
(9) For ceCU), c^α ^biffcAa^b

(10) α D b ^ a D b ** a -> b for all a, b
(11) (β £) b)Λ(b & c) ^ (a © c ) / o r αZZ α, 6, c

(12) « s> (α s> 6) < Λ a δ

(13) « < (6 © δ)

(14) if b ^ c, then a 3 δ ^ α © c
(15) if c ** a, then a 3 δ < c 3 δ
(16) (α © 6)Λ(« © c ) ^ α © (6ΛC)

(17) (α © δ) ^ c © (α D δ) / o r α ^ c
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(18) a s> b = b' © a'
(19) (a © ar) < a1

(20) Md'JA^O
(21) ifceCU), then c © 0 = cr

Proof:

(I) through (4) are clear since 0 and 1 are always in the center of an
orthomodular lattice.
(5) follows from the fact that the center of an orthomodular lattice is
subcomplete, that is, the join of central elements is central.
(6) Here we use another fact about the center, namely a certain distributive

law [32], p. 86. « Λ ( « D b) = <2ΛV{C€ C U ) / C Λ « <S b} = V{cAa\ce CU),

CAa^ b}^ b.

(7) is clear from (6).
(8) If a ^ δ, then 1Λ<Z < b and le C(-C) so a D b = 1. On the other hand, if
α § δ = 1, then b ^ a*(a τ> b) = a A \ = a.
(9) If c e C(-0 and c A α < δ, then c ^ α s δ. Conversely, if c ^ a τ> b9 then
CΛfl< (α D 6) Λfl ^ 6.
(10) (α © 6)A(α D δ)' = (α s> b)λ(a' v (αΛδ))f = (« s> 6) Λ (ΛΛ («A 6)f) = ((α ©
b) A a) A (a A b)r ^ (a A b) A (a A b)r = 0. Now, α © b is central and disjoint
from {a D δ) f. Hence fl^Hs orthogonal to (α ^ δ) f, That is a D 6 ^
(β D δ) f f .
(II) Note (α © 5)Λ {b © c) is central. Now (α © 6)Λ (6 s C)Λ α = (α © 6)Λ «Λ
(δ © c) < & Λ (& © c) < c. So by (9), (a 'τ> b) A (b D C) < a D C .

(12) α 3 (α D 6)Λ α ^ {a © &)Λ α ^ δ. So by (9), a ?> (a ?> b) ^ {a ?> δ).
(13) is clear since δ D δ = 1.
(14) Let δ ^ c. Then (a © U)A a < δ < c. So by (9), α © δ < a © c.
(15) Let c < β. Then (α © &)Λ c < (a © &)Λ α < δ. So by (9), fl^Hc^,
(16) (α © δ)Λ (α © C)Λ α = (α © &)Λ«Λ ((α © C)Λ«) ^ δ Λ c. So by (9), (α © δ)Λ

(a © c) ^ α © (δΛc).
(17) (a3b)AC^ac)b. So by (9), (α © δ) ^ c © (β © δ).

(18) I t s u f f i c e s t o s h o w a © δ < b' s> α F . L e t c e C ( ^ ) w i t h C Λ # < δ . T h e n
δ ' < ( c Λ f l ) ' = c ' v a * . T h e n C Λ & ' ^ C A ( C ' V G ' ) = ( c Λ c ' ) v ( c Λ α ' ) = c Λ f l ' ^ α f .

That is <?Λδ' < α f. Thus {ceCU)|cΛfl < δ} c {ce C(^) \c AV < αf} and so

V{eeCU) |cΛα^ δ} < V{ce CU) \c Λ6' < α'}.

(19) β s α f =V{ceCU)|cAβ ^«'} = V{ceCU)|cΛα = 0} = V { c e C U ) k <

(20) is clear from (19).

(21) c © 0 =W{zeCU)\cAZ < θ} = V{^eC(-C)U < c ' }^ c f.

Again we make an explicit computation of our canonical example

2.13 Example
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s I 0 a b c d e a' br c' dr e' 1

0 1 1 1 1 1 1 1 1 1 1 1 1
a c l c c c c c l l c c l

b c c l c c c l c l c c O

c c
r
 c' c

r
 1 c' c' 1 1 e

f
 1 1 1

d c c c c l c c c l c l l

e c c c c c l c c l l c l

a ' O O c ' c O O l c c ' c c l

b ' O c ' O c O O c l c ' c c l

c ' c c c c c c c c l c c O

d ' O O O c O c ' c c c ' l c l

e
r
 0 0 0 c c

r
 c' c c c

r
 c 1 1

l O O O c O O c c c ' c c l

Here we note that the set of implications is exactly equal to the center
of Ci2 We remark further that whereas a D b depends only on a and b,
a £> b takes into account a more global view of the structure of the whole
logic. Also note that D satisfies the axioms given by Zeman for implica-
tions in quantum logic, and our example 2.10 differs from his in [36].
Zeman's example can be recaptured by replacing C(-0 in definition (2.8)
by C = {0, c, l}. Thus we see the possibility of defining many more
implication connectives analogous to D by joining over other subsets of
C(j£). This motivates an axiomatic treatment of implication connectives
which is the subject of the next section.

3 Deductive Lattices In this section, we give an axiomatic treatment of
certain kinds of implication connectives on general lattices. Indeed the
reader will note that our arguments will work even for a meet semilattice.
Later we will focus on the case where the lattice is orthomodular. We
begin by writing down what we consider the minimal properties a mapping
3 should satisfy to be considered as a candidate for an implication
connective.

3.1 Definition A weakly deductive lattice is a pair {J£9 D) where <£ is a
lattice and =>. ^ x ^ ~~* -C i s a mapping such that

p i ) if a < bf then a o b = 1 (Exportation)

and

(32) a A (a 3 b) < b (Modus Ponens)

3.2 Theorem Let {£, D) be a weakly deductive lattice. Then

(1) 0 3 b = 1 for all b

(2) a 13 a = 1 for all a
(3) α => 1 = 1 for all a
(4) flΛ(flD5)<flΛδ

(5) a^biffa^b=l
(6) a D (α D 6) < α Λ b
(7) (β => b)*(b D C ) Λ « < c
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(8) (a 3 δ) Λ (a 3 c) A a ^ b A C

(9) if b ^ c, then (a 3 b) A a ^ c

(10) ifc^a, then {a 3 δ) A C < δ

(11) (α 3 δ) Λ (α Λ c) ̂  α A δ Λ c

(12) if c Ab = 0, then (a ̂ > b) A(a AC) = 0

(13) if c ^ a ^ b, then c ACL < δ

(14) α < (δ -Db) for all b

Proof:

(I) through (4) are clear from the definition.

(5) The if part is p i ) . Suppose α 3 δ = 1. Then a = a A\ = a A(a ^ b) ̂  b

so a ^ b.

(6) (α ̂  (α ̂  6)) Λ α < a A (a 3 b) < 6.

(7) (« ^ 6 ) Λ ( 6 3 C ) Λ « = {{a D 6 ) A « ) A ( ( 6 D C)) < 6 Λ ( 6 D C) < c.

(8) (β D δ) Λ (a 3 c) Λ a = ((a 3 δ)Λ a) A ((a D c)Λ α) ^ 5 Λ C.

(9) If 6 < c, then (α =) 6) A α < 6 < c.

(10) If c ^ ay then (α 3 6) A C ̂  (α D 6) A α < b.

( I I ) (a ̂  b) A(a AC) ^ a AbAC.

(12) is clear from (11).

(13) If c < « ^ 6, then c Λ α ^ (α D 6) A a < 6.

(14) Clear since (δ ̂  6) = 1 for all δ.

3.3 Proposition If D α ^ D make <£ weakly deductive then so does D where

a D b = (a D δ) A (a D δ) /or αZZ α, δ.

If arbitrary meets exist this proposition generalizes in the obvious

way.

We shall see that p i ) and p2) are not enough to prove the deduction

theorem we are after. So we move to a definition suggested to us by Zeman

and considerations from modal logic.

3.4 Definition An n-deductiυe lattice is a pair (j£, D) where £ is a lattice

and =>: ^ x ^ —• <£ is a mapping such that

(^1) if β < δ, then α 3 δ = 1

(32)' if c can be written as a meet of n implications, then

c A a < δ if and only if c < {a 3 ft)

We say (-£, 3) is completely deductive iff it is n-deductive for all

cardinals w.

Note that (32)' is a weakening of (CI) in the sense that (CI) is

applicable only for distinguished elements c, namely, when c is a meet of

implications. There is still a kernel of distributivity in the axiom as we

shall presently bring out.

3.5 Theorem Let n be a natural number. If («(*, 3) is n-deductive, then

(£9 3) is k-deductive for all k < n.

Proof: The proof is clear since 1 is an implication.
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3.6 Theorem Let {£, 3} be a 1-deductive lattice. Then {£, 3} is weakly

deductive. Moreover

(1) {a^b)*a^bha

(2)a^biffaΏb=l

(3) a 3 b ^ (c 3 (a 3 6)) /or all c; so that if x is an implication, x ^ c 3 x

for all c

(4) a 3 (b 3 c) < (α A 6) D c

(5) α 3 (<z 3 δ) = α 3 δ; so repeated antecedents can be absorbed

(6) if b ^ c, then α 3 δ <? <z 3 c; thus the map x\->a 3 x for fixed a is

isotone

(7) if c ^ a, then a 3 b ^ c 3 b; thus the map y \-^>y 3 δ /or fixed b is

antitone

Proof: To show (-£,=>) is weakly deductive, we need only argue modus

ponens. But α 3 b ^ aΏ b and α ^ δ i s an implication so by (^2)', (a 3 b) Λ

a ^ b. Now (1) and (2) are clear.

(3) (« 3 δ) Λ c < (α =) δ) so by (=>2)', β ^ N c D ( f l 3 δ ) ,

(4) (a ^ (b Ώ c)) A(a Ab) ^ (b Z) c) Ab ^ c so (4) follows by p2) f .

(5) Take c = a in (3) and get a^>b^a^>(ao>b). Also take α = δ and δ = c

in (4) to get α 3 (α D 6) ^ α D b.

(6) follows from (3.2) (9) and (32)'.

(7) follows from (3.2) (10) and (32)'.

3.7 Theorem Let(aQ,o>) be 1-deductive. If a and c are implications, then

for any b in JQ we have ( « Λ 5 ) V ( C Λ 5 ) = (a v c) Λ b. In particular, if the set of

implications in a 1-deductive lattice form a sublattice, this sublattice must

be distributive*

Proof: Let a and c be impl icat ions . Let beJζ, and let r = (a A b) V ( C Λ b).

Clear ly r ^ b Λ (α v c). Now α Λ δ < r so s ince a i s an implicat ion, a < δ 3 r .

Similar ly C Λ δ ^ r s o c ^ δ 3 r . Thus α v c ^ δ 3 r . By 3.2 (13) we get

(α v c) Λ δ < r . Thus r = δ Λ (a v c) and we a r e done.

3.8 Theorem Let (4!, 3) δe α 2-deductive lattice. Then

(1) (α 3 δ) Λ (δ 3 c) ^ {a 3 c) (strong transitivity)

(2) (α 3 δ) Λ (α 3 c) = α 3 (δ Λ c)

(3) a 3 δ = a 3 {a A δ)

(4) α 3 (δ 3 c) < (α 3 δ) 3 (β 3 c)
(5) α 3 δ ^ (δ 3 c) 3 {a 3 c)

(6) a 3 (Λ 3 δ) = a 3 δ

(7) α < (δ 3 δ)

Proo/:

(1) ((α 3 δ) Λ (δ 3 c)) Λ α = ((α 3 δ) Λ α) Λ (δ 3 c) < δ Λ (δ 3 c) ^ c. Now use

P2)'.
(2) ((« 3 δ) Λ (α 3 c)) Λ α = ((α 3 δ) Λ α) Λ ((α 3 c) Λ α) ^ δ Λ c so (« 3 δ) Λ (a 3 c) ̂

a 3 (δ Λ c). But b ΛC ̂  b so az>(bλc)^aθb and δ Λ C ^ c s o α 3 ( δ Λ c ) <

<z 3 c. Thus β 3 (δ Λ c) ^ (a 3 δ) Λ (a 3 c).
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(3) Take c = a in (2) and get a D 6 = a 3 (α Λ 6).

(4) (α ^ (6 3 c) Λ (α 3 b)) Λ β = ((α 3 ( P c)) Λ α) Λ (a 3 δ) < (6 => c) Λ (β 3 δ) <

β 3 c, so α ^ (6 3 c) Λ (α 3 5) ^ a 3 (α 3 c) = α 3 C. Again, a 3 (6 3 c) <

(α D 6) 3 (α 3 c).

(5) through (7) were obtained previously.

In view of 3.8, we see that in a 2-deductive lattice, the axioms for implica-

tion in the Lewis modal system S4 are satisfied.

3.9 Swap Lemma Let {£, 3) be a 2-deductiυe lattice. Then

(1) if b is an implication, then a 3 (6 =) c) < 6 D (α 3 c)

(2) z/α cmd 6 αr^ implications, then a 3 (6 z> c) = δ 3 (« 3 c)

Proof:

(1) Let 6 be an implication. By 3.8 (4) we have a D (6 3 c) < (α D 6) D

(« 3 c ) . By 3.6 (3), b ^ a^> b so by 3.6 (6), we get ( f l 3 & ) D ( f l D C ) ^ D

(fl ^ c).

(2) Use (1) and get α ^ (5 D c) < δ 3 (β D c) < α D (5 D c).

3.10 Proposition Let{£, 3) δβ α 2-deductiυe lattice. Then

(1) zf δ is an implication, then {a 3 δ) 3 (α D C) < δ 3 (α 3 c)

(2) z/α α^<i δ are implications, then (a ^> b) ^> (a ^> c) = a ^> (b ^> c)

(3) if a is an implication, then a ^ (a 3 δ) 3 b

(4) flDH ((« D δ) 3 δ) D δ/or βK α, δ

(5) z/α is αw implication, then a => δ = ((a D δ) D δ) 3 δ

(6) z/α is α?z implication, then \ ^> a - a

Proof:

(1) By 3.6 (3), we have δ < (α 3 δ) so ((α 3 δ) 3 (a 3 c)) Λ b*a < ((α 3 δ) 3

(β 3 c)) A (β 3 6) Λ « < {a 3 c) Λ α ^ c. Thus (β 3 δ) 3 (β 3 c) Λ δ < β 3 c and

SO (β 3 δ) 3 (β D c) < δ 3 (β 3 c).

(2) Using (1) we have a 3 (δ 3 c) < (β 3 6) 3 (α 3 c) < δ 3 (β 3 c) = a 3

(δ 3 c).

(3) Let β be an implication. Then as{a^> b) ^ b so by (32)' we get

a < (β 3 δ) 3 δ.

(4) is clear.

(5) Let β be an implication. By (3), β ^ (β 3 b) 3 b. By 3.6 (6), ({a 3 δ) 3

δ) 3 δ < β 3 b. The other inequality is (4) above.

(6) Let a be an implication. By modus ponens, U f Π α l ^ f l s o P f l ^ f l

always. By 3.6 (3) with δ = 1, we get a ^ (1 3 a).

We remark in passing that the implications in a 2-deductive lattice

form an implicative model [28, 29]. If the set of implications forms a

sublattice, then this sublattice is a Brouwerian lattice.

4 Semantics in Deductive Lattices—An S4 Deduction Theorem We take our

point of view of semantics from that expressed by Halmos [13] in his

approach to algebraic logic. Throughout this section, let (£, 3) denote a

2-deductive lattice.
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4.1 Definition A ^-filter is a subset 9 of £ such that

(1) le 9 (Law of Tautology)

(2) if ae 9 and a ^> be 9, then be 9 (Law of Detachment)

Let S be a subset of *Q. Define S = (\{915 is a 3-filter and 5 3 S}. AS

notation, we write S hw iff weS. If 9 is a ^-filter on -C, then the pair

(«C, 9) might be called an applied logic. It is consistent iff 0 / J .

4.2 Lemma L^ί 9 be a ^-filter on X. If ae 9 and a ^ bt then be 9.

Proof: Since a ^ b9 we have by (31) that α D δ = 1. Thus a o> b = le 9 and

α e J , so by Detachment, be 9.

4.3 Lemma L#£ S be a subset of £.. Then 5 is a ^-filter. Indeed, it is the

smallest ^-filter in £ which contains S.

Proof: The proof is easy and is omitted.

4.4 Lemma Let S c «C with le S. Suppose there exist al9 a2, . . ., an in S

such that a1 3 (. . . (an_2 3 (aw_x 3 (αw 3 W)) . . .) = 1 where w is some element

off. ThenShw.

Proof: Suppose the condition holds. Then aλe S QS and aγ 3 (a2 3 . . .) =

1 e S. So by Detachment, α2 3 (α3 3 . . .) e S, since S is a ^-filter. But now

a2e S c S, so again by Detachment, α3 ̂  (α4 = ) . . . ) e S. Continuing in this

manner, we finally arrive at an^eS c S and an_λ D («W 3 ^) e S, so f lβ^weS,

Now ane S c S and αw D ̂ e 5 so by Detachment we S9 that is S hw.

4.5 Lemma Lei «i and a2 be implications. Then

(a, 3 a2) D (M; 3 AT) < αx 3 ((α2 D w;) 3 (α2 D Λ:)).

Proof: a2 ^ (aλ D α2) by 3.11 (7) so (ax 3 α2) 3 (w 3 Λ;) ^ α2 z> (w 3 ΛΓ) by

3.11 (6). But a2 3 (w 3 Λ:) < («2 3 ^) D (α2 3 ^ ) . Then (a2 3 w) 3 («2 3 ΛΓ) ^

αx 3 ((a2 3 w) 3 (α2 3 ΛΓ)) again by 3.11 (7). The lemma is now clear.

4.6 Theorem Let S be a set of implications in £ with le S. Let w be any

element of j£. Then S Y-w iff there exist al9 a2f . . ., an in S with aγ 3 (a2 3

. . . 3 (an^ 3 (an 3 w)) . . .) = 1.

Proof: That the right side implies the left is lemma 4.4. We need to prove

the converse. Let

T = {w e -C I there exist au . . . , an in S with ax 3 (a2 3 . . . 3 (an 3 w)...) = l}.

It suffices to show T is a filter which contains S. For any aeS,

# 3 α = l so S Q T and le T. Let we T and w 3 χe T. Show i e T . There

exist al9 . . ., ane S such that αx 3 (α2 3 . . . D (αw 3 w) . . .) = 1 and there

exist cl9 . . ., ck in S such that cx 3 (c2 3 . . . 3 (w 3 x) . . .) = l. As the

notation becomes somewhat cumbersome, we shall consider a special case

which is still general enough to make all contingencies arise. Assume n = 3

and k - 2. Then we have aγ 3 (a2 3 (a3 3 w)) = 1 and cλ 3 (c2 3 (w 3 #)) = 1.

Now 1 = ((«! 3 β2) 3 α3) 3 1 = ((a, 3 α2) 3 a3) 3 (C l 3 (c2 3 (w 3 Λ:))) = C l 3

(((«! 3 β2) 3 a3) 3 (c2 3 (w 3 #))) by the Swap Lemma.
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The idea of the proof is to swap out the c's, and then use Lemma 4.5
repeatedly. Thus c1 3 ({{a1 3 a2) 3 α3) 3 (c2 3 (w 3 #))) ̂  d 3 (c2 3 (((αx 3
α2) D α3) 3 (w D *))) ^ d 3 (c2 3 (( Λ l 3 a2) 3 ((α3 3 w ) 3 (a3 D # ) ) ) ) ^ C l 3

(c2 3 (Λ l 3 ((α2 3 (α3 3 w )) 3 (α2 3 (α3 3 #))))) < C l 3 (c2 3 (( Λ l 3 (α2 3 (a3 3
w))) 3 (Λ l 3 (a2 3 (β s 3 #))))) = C l 3 (c2 3 ( 1 3 (β χ 3 (β2 3 (a3 3 #))))) = C l 3

(c2 3 (# x 3 (a2 3 («3 D Λ;)))). Thus ΛΓ is in T as was to be shown.

4.7 Corollary (S4 Deduction Theorem) Let S be a set of implications with
leS. ThenS{j{a}\-biffS\-(aθb).

Proof: Suppose S h(a 3 b). Show S U {a}\-b. We have a 3 6 e S . We want

beS U {a}. But SQSu{a}soa^>beSU {a}. By Detachment, & e S U {a}.

Conversely, let S l){a}\-b. Show S h(a ^ b). Let 6 e S U {α}. Show
a 3 & e S. We must find β^ . . ., an in S such that (a1 3 . . . 3 (an 3 (# 3
δ)) . . .) = 1. Now there do exist cu . . ., ck in S u {«} such that (c1 3 . . . D
(cΛ 3 ft) . . .) = l. Once again we simplify the situation to avoid notational
problems. Let k = 3.

Case 1: No c is equal to α. Then cλ 3 (<?2 3 (c3 3 &)) = 1 and cλ 3 (c2 3 (<?3 3
fo 3 &))) ^ d 3 (c2 3 (Λ 3 (c3 3 6))) ^ C L D (a 3 (c2 3 (c3 3 &))) ̂  β 3 (C l 3
(c2 3 (c3 3 &))) = f l D l = l , Thus a ̂ beS.

Case 2: Some c is equal to α. Say c2 = a. We have 1 = cγ 3 (c2 3 (c3 3 5)) =
d 3 (α 3 (c3 3 δ)) < d 3 (c3 3 (a 3 &)). Now the idea is to swap all a's
down to the right. By 3.9 (1), the quantity will at worst get bigger. If you
should collide with another a while doing this, use 3.6 (4) to absorb the
iterated antecedent. Once again we conclude that a 3 be S.

5 Deductive Orthomodular Lattices In this section we return to the context
of orthomodular lattices to see what more can be said about implication
connectives in this more specialized environment.

5.1 Definition A weakly deductive orthomodular lattice is a weakly
deductive lattice (<£, 3) where ^ is an orthomodular lattice.

5.2 Theorem Let Si be a weakly deductive orthomodular lattice. Then in
addition to the properties of 2.2, we have

(1) if b ±c, then (a 3 b) Λ {a Λ C) = 0
(2) (a 3 b) A (a A b') = (a 3 b) A {a - b)r = 0
(3) (a 3 6 ) A ( f l A ( f l A 6 ) f ) = (a 3 & ) Λ ( α s δ ) ' = 0

(4) (a^b)C(a->b)iffa^b^a->b
(5) (α 3 δ) C (α Ί>b)iffa^b ^a D b
(6) */ (α 3 δ) C(α 3) δ), taew {a 3 δ) C(« — δ)

Proof:

(1) If δ J-d then δ A C = 0 so use 3.2 (12).

(2) is clear since δ ± δ ' .
(3) is clear with c = («Λ δ) f in (1).
(4) If a 3 δ ^ α ' v δ , then, being comparable, they are compatible. Con-
versely, suppose {a 3 δ)C(α' vδ). Then (a 3 δ) = ((<2 3 δ) A (αf vδ)) v ((# 3 &) Λ
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{a1 v δ)') = ({a 3 δ) Λ (a' v b)) v ((a 3 6) A (α Λ 6')) = ((« => δ) A {a1 v 6)) v 0 = (a 3 δ)Λ

(α'vδ) < β'vδ.

(5) If α 3 δ < α' v (α A δ), then (a ^> b)C(a'v (a Λ δ)). Conversely, suppose

(α 3 δ)C(αf v (α A 6)). Then (β => δ) = ((α 3 δ) A («' v (a A δ)) v ((α 3 δ) A (a* v

(α A δ))') = ((« D 5)Λ(fl'v(αΛδ))v((fl 3 δ)Λ (ΛΛ («A δ)')) = ((« => δ) A («' v («Λ δ)) v

0 = (a D δ) A (α' v (α A δ)) < a' v (a A δ).

(6) If (β ̂  b)C(af v (α A δ)) then α D δ < α' v (α A δ) < α f v δ so that (α 3 δ)C(α' v

δ).

5.3 Lemma Let X be an orthomodular lattice with x, a, b in -C. If xCa,

then x*a < δ implies x*b *ζ af D b.

Proof: S u p p o s e xCa a n d XAa^b. T h e n # = ( I Λ C ) V (xλa') so Xλb = ( ( ^ Λ U ) V

(λΓΛα ;)) Λ & = ( ^ A « Aδ) v(λΓΛα f A δ) = (ΛΓA α) v (ΛΓΛ ( α f A δ)) < α v ( α Ά δ ) .

5 . 4 Theorem L£ί (X, D) δe α weakly deductive orthomodular lattice. If

{a D δ)Cα, ί/zen (α D δ) A δ ^ α f i δ,

Proof: Let # = α 3 δ in 5.3. Then ΛΓC« and x*a = (a ^> b)Λ a ^ b. So 5.3

applies and so (α 3 δ) A δ ^ (β f A δ) v a.

5.5 Corollary Lei (J£, 3) δe α weakly deductive orthomodular lattice. If

α 3 be CU) for all a, δ, then

(1) α 3 δ ^ α i ) 5 ^ α — > δ /or αZZ α, δ

(2) (α 3 δ) A δ < a' s δ

5.6 Examples

(1) < 'trivial hook?> D :

/1 if a < δ

Define <z D δ = <

^0 if otherwise

Then (-C> D ) i s a weakly deductive orthomodular lattice for any ortho-

modular lattice *C.

(2) "Sasaki hook" D :

Recall a D b = a'v(a *b). From properties developed in a previous

section, we see that («£, D) is a weakly deductive orthomodular lattice for

any orthomodular lattice <£.

(3) "classical hook" -»:

Recall α —» δ = af v δ. The next theorem shows that -> is never weakly

deductive in a quantum logic.

(4) "Kotas-Kalmbachhook" D:

Recall a E> δ = (α A δ) v (αΆ δ) v (af Λ5' ) . From properties developed in

a previous section, we see that (£, D) is a weakly deductive orthomodular

lattice for any orthomodular lattice -£.

We remark that even a Boolean algebra can be a weakly deductive

orthomodular lattice with several different "hooks".



IMPLICATION CONNECTIVES 323

5.7 Theorem Let ^ be an orthomodular lattice. Then (jζ, -*) is weakly

deductive iff £ is Boolean.

Proof: Suppose <£ is Boolean. Then a A {a —> b)=a *(af vb) = (aΛ a') v (a Λ b) =

a Λ δ ^ b so (32) holds. Next, let a ^ b. Then α v α U δ v f l ' = α - > 5 so 1 ^

α —* δ. Hence a —* b = 1 and we have (31) also.

Next suppose (JC, -*) is weakly deductive. Then by 3.2 (4) we get

(a ~> b) *a ^ b so (ar v b) Λa ^ b whence (β' V6)Λ a ^ a Λ δ. Also α Λ δ 4 U Λ

(b vaf) so a λb = a *(ar vb). This means #Cδ and we have that every pair of

elements in j£ is compatible. Thus «C is Boolean.

5.8 Definition An w-deductive orthomodular lattice is an w-deductive

lattice (j£, 3} where <£ is an orthomodular lattice.

5.9 Proposition Let £be a 1-deductive orthomodular lattice. Then

(1) if (a 3 b)Ca, then a 3 b < b ^> (αf D b)

(2) if c is an implication and cCa, then

c < a D δ implies c ^ b' ^> a*

Proof:

(1) Let (α D 6)c«. Then by 5.4, (α 3 6) Λ δ < {a1 vb) va so by p 2 ) f , a 3 δ ^

δ D (α'Λδ)vα.

(2) Let c be an implication and suppose cCa. Suppose c < a D δ. Then

CΛG ^ δ s o δ ' ^ (c Λα)' = c ' vfl'. Then C Λ 5 ' ^ ( c ' v a ' ) ^ c = (cΆc)v(f lΆc) =

aΆc^a'. Thus <? < δ f =)«'.

5.10 Proposition (X, D) ZS a 1-deductive orthomodular lattice iff *C is

Boolean.

Proof: Suppose (-C, D) is 1-deductive. Recal l s D δ = α f v(αΛδ). Note 1 D

δ = δ. By 3.6 (3), α < δ D α for all a, b. Thus by (QI), (αvδ')A& ^ a so aCb

for all α, δ. Thus .C is. Boolean. Conversely, if „£ is Boolean, D = -• and

we are in the classical situation.

5.11 Theorem Let X be a 1-deductive orthomodular lattice. Then

(1) let c be an implication. Then cCb iff c < (δ vcr) ^ δ

(2) let c be an implication. If br 3 (δΆ c) < (δ vc') 3 δ, ί/ĵ w cCδ

(3) ifa^b = δ f ^ a'for all a, b in ^ , toα 3 beCU) for alia, b in £

Proof:

(1) Let c be an implication and let cCδ. Then c Λ (δ vc') = (c Λ δ) V(CΛ cr) =

C Λ 6 ^ δ. So by (32)', c ^ ( δ v c f ) ^ 6. Let c ^ ( δ v c f ) 3 δ. Then CΛ(δvc') =

δ Λ c . Thus 6 Λ C = CΛ(δvc') which means cCb.

(2) Let c be an implication. Let δ f 3 δ f ΛC < δ vc ' 3 δ. But c*bf ^ cΛbr

and c an implication implies c ^ δ r 3 (cΛδ f). Thus c ^ (b v c') 3 δ which

says cCδ.

(3) If α 3 δ = δ ' 3 β

f for all a, b, then δ f 3 (δ f Λ C) = (δ v c
f) 3 δ for all δ and

c. Put c = α 3 δ and take δ = #. Then c is an implication so using (2), we

get (a 3 b)Cxm But x is arbitrary so a 3 δe C(-C) for all α, δ.
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5.12 Theorem Let (£, 3) be a 2-deductive orthomodular lattice with a 3
b < br 3 ar for all a, b in £. Then

(1) a^b = b'^ar

(2) (a o c)λ(b ^ c) = (avb) ^ c
(3) a 3 6 = (αvδ) 3 6 = bf 3 α '

(4) (a 3 c) Λ (6 3 c) Λ (α v b) < c

(5) ( β D δ ) Λ ( β v δ ) ^

(6) (α 3 β ' ) ^ α '
(7) « ^beCU) for alia, b
(8) αδHβ^HflDHα^δ

(9) a Ώ b ^ b ^ (ar
 Ί> b)

Proof:

(1) flDHδ'DαUfl"Dδ"=βDδsθβ^ = δf3fl'.

(2) (α D C)Λ (δ 3 c) - (cr Da') Λ (cr Dδ') < c' D (aΆbf) = (aΆb')' Ώ c = (a v
b) 3 c.
(3) Let 6 = c in (2).
(4) is equivalent to (2) via (32)'.
(5) Take b = c in (4).
(6) Setδ = β ' in (5).
(7) follows from Theorem 5.11 (3) and (1) above.
(8) follows from Corollary 5.5 (1).
(9) follows from Proposition 5.9 (1).

5.13 Examples Let <£ be a complete orthomodular lattice. Let C c C U )

be such that 1 e C. Define a^b by a^b= V{c e C \cs a < b}.

(31): Let α < b. Then 1 e Γ and l Λ α = α < 5 s o « ^ 5 ^ 1.

(32): a*(a Ώ b) = a λV{ce C \c*a < δ} = V{βΛc |ce (Γ, CΛ« < b} < δ.

Hence, (-£, 3) is a weakly deductive orthomodular lattice.

Now suppose C QC(<£), leC and Γ is closed under the formation of
arbitrary infima and suprema. Then (£, 3) is a completely deductive
orthomodular lattice. For, suppose c is a meet of implications. Each
implication in a supremum of elements from C, so is in C. Also, the meet
of implications is a meet of elements of C, so is in C. Thus c e C. Suppose
CΛβ ^ δ , Since c e C, c < a 3 δ. Conversely, if c < α 3 b9 then α Λ C < a Λ
{a ^> b) ^ b. So we have (32)\ We note ί7 is exactly the set of implications
since C is closed under joins and since if c e C, then 1 3 c = c.

Next, we show the law of contraposition. Let ce C with c A a < b. We
claim C Λ 5 ' < β\ But c e C and C Λ « < 6 gives 6' < (c*a)r = cf var so 5 ' Λ C ^
(cfvfl')ΛC = (c'Λc)v(β'Λc) = β f Λ C ^ f l f . Thus {ceΓlcΛα < b] c {c e C\c A
br ^ a'}. Examples of subsets C satisfying all the above are C = {l, 0} and

c =cu)



IMPLICATION CONNECTIVES 325

For the remainder of the paper, let (j£f 3) be a 2-deductive ortho-
modular lattice. We finish our discussion by gathering more evidence that
orthomodular lattices are intimately related to modal logic. Modal logic
concerns itself with the concepts of "necessity" and "possibility'\ We
take the view that to each proposition is associated another proposition
asserting its necessity and another asserting its possibility. First we
recall a definition,

5.14 Definition A closure operator on a lattice £ is a mapping φ:
*Q x £ ->£ such that

(1) φ is isotone (i.e., a ^ b implies φ(a) ^ φ(b))
(2) φ = φ2

(3) a ^ φ(a) for all a

We say φ is normalized provided φ(0) = 0 whenever <£ has an order zero 0.

Closure operators are discussed, for example, in [l] and [16].

5.15 Definition Define la - 1 D a ("necessarily a") and hAa=(lar)r

("possibly a9').

5.16 Theorem

(1) (Mα)f = La'
(2) tλa' = {la)1

(3) L « = ( M Λ ' ) '

(4) LL«=(MMαf)
(5) Ha1 = (MMα)'
(6) MM«' = (LL«)'
(7) LM«' = (MLα) f

(8) MLαΓ = (LMα)'

Proof: The proof of 5.16 is easy and is omitted.

5.17 Theorem

(1) LI = 1
(2) la ^ a for all a

(3) L0 = 0
(4) lla = la for all a
(5) ifa*zb, then la < Ib
(6) L α Λ lb= L(aΛb)

(7) lav Ib ^ l(avb)
(8) L α ^ δ D la for all b
(9) L(α D b) = β D 6

(10) L ( α ^ δ) = β D b for alia, b
(11) TTze seί of implications is exactly the set of fixed points of I
(12) L(flO b) ^ la-D Ib

Proof:

(1) LI = 1 D 1 = 1.

(2) Lα= 1A la= 1 A ( 1 D α) < a.
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(3) By (2), LO < 0 so equality must hold.
(4) lla = l^Lfl=n(nfl) = l3β=Lfl.
(5) If a ̂  δ, then Π α ^ l D δ s o L α ^ Lδ.
(6) a*b^a so L ( f l Λ δ ) ^ L(α). Also a*b^b so L ( α Λ δ ) ^ L δ . Thus
L(αΛδ) < L<ZΛ Lb. But L ( « A 5 ) = 1 D ( « Λ 6 ) = (1 D Λ ) Λ ( 1 D δ) = LtfΛ Lδ.
(7) α < α v δ s o Lα < L(«v δ) and δ ̂  α v δ so lb ̂  l(av b). Hence lav lb <
L ( α v δ ) .
(8) Lα=n«^δ^(nα)for all δ.

(9) through (12) are left to the reader.

Next we have a dual theorem to Theorem 5.17.

5.18 Theorem

(1) MO = 0

(2) a ̂  bAa for alia
(3) Ml = 1
(4) MMβ = hλa for all a
(5) if a ^ δ, then tv\a ^ Mδ
(6) M(αv δ) = MαvMδ
(7) M(βΛδ) < tλaAtv\b
(8) (M(αvδ))' = (Mα)Ά(Mδ)'
(9) ( δ D Lα f)' < Mα

(10) M(α 3 δ)f = (α 3 b)' for all a, b
(11) the set of fixed points o/M is the set of negations of implications
(12) M is a normalized closure operator on -C

Proof: The proofs are easy using the definition of M and the properties of
L derived in (5.17). They will be omitted.

5.19 Example Let <£ be any complete orthomodular lattice. Recall that

a 2) δ = V{ce C(<£) \c*a ^ δ}. Then (j£9 s) is a completely deductive ortho-

modular lattice. Then Lδ = 1 © δ = V{ce CU) |CΛ 1 < δ} = V{cβ C(-() k <

δ} which is the largest central element under δ, the ' 'central kernel of b".

Similarly, Mδ = (Lδ f) f = (V{ce C(-C)|c < δ f})' = A { c f e C U ) | c < δf} =

Λ{c feC(.C)|δ < c'}=A{ceC(βC)|δ < c}, the central cover of δ. This makes
contact with a well studied object in the dimension theory of orthomodular
lattices. One need only consult the work of Loomis, Maeda, and Janowitz to
see the importance of the central cover, cf. [25, 27, 16].
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