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A GENERALISED PROPOSITIONAL CALCULUS

PETER JABLON

1 Introduction Any propositional variable ambiguously denotes a state-
ment, but it is also the case that any pair of different propositional
variables are orthodoxly taken always to ambiguously denote statements
completely independently of each other. In this paper we examine some of
the consequences of suppressing the convention that they do so completely
independently of each other. Of these, perhaps the most interesting is the
undecidability of the two-valued propositional calculus which results when
the propositional variables of the classical two-valued propositional
calculus are replaced by a more general kind of variable which, although
more general, still ranges over statements.

2 Independence of variables In this paper, the term ‘‘propositional
variable’’ shall refer to any variable that ranges over statements and
satisfies the following conditions. (1) To each pair of propositional
variables there corresponds a (unique) mutual truth-table. This truth-table
has 1, 2, 3 or 4 rows and 2 columns., The rows are all distinct. Each entry
isa 1 or a 0, where 1 represents truth and 0 represents falsity. (2) Given
any 2 propositional variables, consider the pairs of statements whose first
member is one of the statements which the first propositional variable
ambiguously denotes and whose second member is one of the statements
which the second propositional variable ambiguously denotes at the same
time. For each such pair of statements, the first statement must have a
truth-value which occurs in the first column of the mutual truth-table for
the 2 variables, and the second statement must have a truth-value which
occurs in the second column and in a row containing, in its first column,
the truth-value of the first statement.

The variables which are here referred to as ‘‘propositional variables’’
include all the propositional variables of the classical propositional
calculus. In fact, the latter form a proper subset-—-that of those variables
any pair of which always has a mutual truth-table made up of 4 rows. The
following definition is therefore meaningful.

Definition Two propositional variables will be said to be independent if,
and only if, their mutual truth-table has 4 rows.
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We shall refer to pairs of propositional variables which are not
independent of each other as dependent (on each other).

Thus if p and ¢ are propositional variables which are dependent on
each other, there will be pairs of statements which the pair of variables
consisting of p and g ambiguously denotes but which will be such that the
connection between their truth-values is an intensional and not (orthodoxly)
a formal one.

Example If p and g have the truth-table

rle
1]1
0|1
0o

then the pair of statements ‘‘Joan takes an aspirin’’ and ‘‘Joan has a drink
of water’’ would (respectively) be one pair of statements which p and ¢
together simultaneously denote if it should happen that in fact Joan always
takes aspirins with water (though not otherwise).

Some elementary properties of the (binary) dependence relation include
the following:

(a) it is symmetric;

(b) it is not transitive;

(c) pis dependent on p, as well as on ~p and on gv ~gq;
(d) the independence relation is not transitive.

Although each pair of propositional variables has a determinate
truth-table associated with it, it shall be completely ambiguous (as far as
the notation for propositional variables is concerned) whick truth-table
their mutual truth-table may be, and therefore whether or not they are
independent of each other.

3 A genevalized propositional calculus When the classical propositional
variables of the propositional calculus are replaced by the ‘‘propositional
variables’’ of this paper, the number of tautologies is greatly increased.
For example, if p and g have the truth-table

|OOH|"§'
lo»-ﬂo-Al-Q

then p D g is a tautology. We shall be using the convention that it shall be
notationally ambiguous which pairs of propositional variables are indepen-
dent of each other and which are not.

Example There exists at least one pair of propositional variables which
yield a tautology when substituted for X and Y in X D Y, but by convention
it will not be possible to specify which would be a pair of this sort and
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which would not, as not all formulas of the form X O Y will be tautologies.
On the other hand, however, all formulas of the form Xv(Yv~7Y), for
instance, will be tautologies.

Consider, in the interest of precision, any one of the deductively
equivalent systems commonly referred to as the classical propositional
calculus, and call it CPC. Let GPC (‘‘generalized propositional calculus’’)
be the system which is derived from CPC by suppressing the convention of
uniform substitutivity of letters representing propositional variables, and
which has, in addition, ¢ll propositional variables (an uncountable number).

Theorem 1 Let ¢ map the theory GPC into {0, 1} and be defined as follows:
If X is a tautology then ¢X = 1;

if X is not a tautology then ¢X = 0.

Then GPC is incomplete relative to the intevpretation ¢.

Proof: Consider the propositional variable which has a truth-table—
relative to any other propositional variable—that contains solely 1’s in its
column—that is, which is itself a tautology. Then its image under ¢ is 1,
but it is unprovable in GPC since the wiff p is unprovable in CPC.

Theorem 2 GPC is undecidable.

Pyroof: It suffices to show that the cardinality of the truth-functional
relations between pairs of propositional variables is uncountable, since it
then follows that it is impossible to finitely axiomatize GPC. But this
cardinality is uncountable, as can be demonstrated in the following way.
Given any set C of propositional variables, there always exists a proposi-
tional variable p' not in C which is independent of every propositional
variable in C that is independent of at least one element of C. Thus,
letting C, = { }, take C = C,, and then let p, = p'. Then take C = C, =p;j C; U
{pi}, and let p; = p' for C = C,; and in general, take C = C;,, =p; C; U{p'},
fori=1,2,3,.... Every element of the resulting set {p;} is independent
of every other, and therefore the totality of the truth-functional relations
between pairs of elements of the set {p;} is uncountable. Hence the
theorem.

Australian National University
Canberra, Australia





