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CONCRETE COMPUTABILITY

THOMAS H. PAYNE

On the basis of several intuitively obvious properties of computability
we show, among other things, that F is a computable partial function on the
closure £# of an infinite set S under finite set formation iff there exists a
countably infinite subset U of S and a finite subset ΊJ of U such that

(1) if g is any permutation on S leaving the members of ZJ fixed, then
Fg ~ g^F where g% denotes the canonical extension of g to the members
of<S#
(2) if Θ is any bijection from U onto the even numbers then θ F θ'1 is
computable on N where θ is the unique extension of θ such that if
yi, . .,yneU^,

0({yi, . , 3>*}) = 2(2yi + . . . +2y») + 1.

1 Introduction The classical theory of computability is concerned with
finitely long processes on certain finitary or concrete combinations of
objects from a finite generating set using a finite amount of a priori
information. Church has suggested a certain mathematical (i.e., set
theoretic) definition for this abstract concept. This suggestion is called
Church9s Thesis. Various others, e.g., Turing, Post, Markov, have made
similar suggestions which have been shown equivalent to that of Church.
Interesting generalizations have been obtained by extending any or several
of these finitary aspects of computability to the infinite case. The theory of
concrete computability is that generalization obtained by allowing the
generating set to have arbitrary cardinality. This study can be motivated
by considering such questions as "In what sense are the rules for first-
order logic on uncountably many relation symbols effective?" Many
authors have suggested definitions of computability that apply in such
cases, e.g., Montague [2] and Moschovakis [3], In this paper we char-
acterize concrete computability in terms of classical computability, on the
basis of several intuitively obvious properties of computability. These
results together with Church's Thesis give an absolute characterization of
concrete computability.

First version received November 9, 1972.
Final version received May 2y 1974,



CONCRETE COMPUTABILITY 239

2 Terminology In order to be precise it is necessary to have a mathemati-
cal characterization of the abstract notion of "finitary combination." To
this end we suggest the following: x is a finitary combination of members
of £ iff x is in the closure <£# of £ with respect to the formation of finite

sets, i.e., xeΓ\{75: S c 75 and (xl9 . . ., xne Z7=H*i, •> #«}eί7)}. Our faith
in this "thesis" is enhanced by the following lemma whose proof is
obvious.

Lemma Let R be a relation whose transitive closure R is left-finite on 75
(i.e., {x: xRy] is finite for all y in 75). Let f be a function from the
R-minimal members of 75 into S. Then f has a unique extension/$: 75 -*£$
such thatf^iy) = {f*(x): xRy}for all y in 75.

To avoid certain technical difficulties we will restrict our attention to
generating sets £ which are free in the sense that the members of <£are
€-minimal in £# (e.g., {{x, S}I x e £} is always free). It then follows that
every function/: £—> 75 has a unique extension to an e-homomorphism
/* : S^ -* 75^ and that f$ is one to one (onto) iff/ is one to one (onto).

We will identify N with the finite ordinals so that for any £, N c
φ* c S#.

Definition For every set A, we let \A I denote its cardinality.

Definition For any xe£^, xh denotes the smallest subset of £ such that
xe (xhf.

Definition For any partial function F on S$ we let Fa denote λx[F(a,x)]9

where F(a,x) denotes the image of the ordered pair (a,x) e £$ under F.

Definition A one to one partial function from a free set <£ to a free set 73 is
called a change of notation from <£ into V.

Definition If F is a partial function on £# and U c £9 then Fu denotes the
largest restriction of F such thsitg^Fu = Fug# for every extension^ of ίdM

that is a permutation on £. If Fu = F we say U determines F.

Definition If / is a change of notation from £ into Z7, then Ω/(F) denotes U
{g^Foomfg^'1'' £ i s change of notation from £ into V that extends/} which is
a partial function on 73^ determined by Rng /.

It is easy to show that if there is a coinfinite subset of <£that deter-
mines F9 then there is a smallest subset U of £ that determines F9 and that
for all xe Dom F, F(x)e (Uuxh)^9 for if g is a simple transposition of a
member of F(x)i> not in xh U U with a member of £ not in F(x)h u xh U W, then
g*Fg*'1(x)^g*F(x)ΦF{x).

Definition We say that a partial function F on £$ is notationally invariant
iff it is determined by the empty set. If F is notationally invariant then we
let Fτ denote Ωf(F) where / is the nowhere defined partial function from £
into 75.

Definition A one to one function θ from £$ into N is said to be a coding of
£ iff
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(1) θ [£] is a recursive subset of N,
(2) {(θ(x), θ(y)) :xey} is a recursive subset of N x N,
(3) λx[ I θ^1(x) I] is a recursive function on N.

Notation Let e be an object not in 0#, so that {e} is free. For example we
may let e = N. Let W/ denote {{n, e}: neM} and Φ denote λ#[2w if ΛΓ = {n, e};
2(2*(yi) + . . . + 2*(yw)) + 1 if x = K . . ., y»}eM^- W].

Clearly W is a free subset of {e}^ and Φ is a coding of WΛ Also, if g is
a total change of notation from £ into W such that Rng Φg is recursive, then
a one to one function Γ: £$ —> N is a coding of <£ iff ^g^Γ'1 is a one to one
partial recursive function having a recursive range and domain.

Definition (s19 . . ., sm) denotes that finite change of notation from Winto £
that sends {i, e} to s, for i = 1, . . ., m.

3 Assumptions We are now in a position to state our assumptions about
computability. Intuitively, when we say that F is a computable partial
function (c.p.f.) on £#, we mean that F has an algorithm describing an
effective procedure which a clerk can follow to compute F(x) for any x e £$.

Assumption I If f is a total change of notation from V onto £ and F is a
c.p.f. on £%9 thenf^'1 Ff# is computable on ZJ#.

Comment When we say that F is computable on £$ we mean that it is
computable using only the membership structure on £^ and not using any
other structure that £ may happen to possess, so computability is
preserved by €-isomorphisms. We obtain an algorithm for f^"1 Ff# by
taking an algorithm for F and replacing every mention of a member of £$
by the corresponding mention of its image under f^"1.

Assumption II Let F be a c.p.f. on £%. Then there exists a countable set
U<^£ such that if U c V c £ and V$ is closed under F then the restriction
of F to V$ is computable on V#.

Comment Choose U so that xh c U for every xe£^ mentioned in some fixed
algorithm for F. This same algorithm then computes the restriction of F
to V# if U c V and V# is closed under F.

Assumption III The composition of two c.p.f.'s on £# is a c.p.f. on £^.

Assumption IV The c.p.f.'s on N are the closure of the partial recursive
functions (p.r.f.'s) together with a finite set A of nonrecursiυe partial
functions on N under composition and iteration. {The iterate F°° of F is

Γ\{G: G = λx[x if F(x) = x; GF(x) otherwise]} i.e., λ#[F^ [ ^ + 1 ( x ) ^ ( * ) ] (*)]•)

Comment While it is fundamental to the notion of computability to assume
that the p.r.f.'s are computable and that the c.p.f.'s are closed under
iteration, there may be some question about the existence of a finite
generating set. It is shown in [4] that this assumption is equivalent to
assuming that the c.p.f.'s contain a universal function which we will
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henceforth denote by φ (i.e., F is a c.p.f. on N iff F = φa for some ae £$).
We justify this assumption by the observation that we can effectively
number the algorithms for c.p.f.'s on N and that for all n, me N, applying to
n the algorithm obtained by decoding m is an effective procedure. Church's
Thesis then is simply the statement that A is empty.

Definition γ denotes λ((n, w19. . . , wm), x)[Ω(Wl,...,wm) (^Ψn^'1)^) if wu •>
wmeW] which is a notationally invariant partial function on W%.

Notice that for every £9 γs is notationally invariant and that γS(n,slt...,sm) =
Ω(Sl,.. ,,sm){^Ψn^"1) which is a partial function on £% determined by {su . . .,
sm} and hence, if defined, γs((n, sl9 . . ., sm), x) e (xh u {sl9 . . ., sm})#. It
follows that γS(n,Sl,...,sm)(χ) = y Hf y = θ~1φnθ{x) for all and at least one
bisection θ from the transitive closure of {x, y} into N such that

(1) θ(Si) = 2i if Si e Dom θ,
(2) θ({yu . . ., yk}) = 2(2 y i + . . . + 2yk) + 1 if {yu . . .,yk}e Dom θ,
(3) θ[xh-{sl9 . . .,sm}] = {2(m + l), . . ., 2(m+j)}wherej = \xh-{su . . .,

sm}\.

It should be noted that there are at most j\ such θ's. This suggests the
following assumption.

Assumption V F is computable on £# if F has a yg-index in the sense that
F= ΎS(n,s1,...tsm) for some neN and sl9 . . ., sm e S.

Comment If ne N and sί9 . . ., sme S and γs ((n, sl9 . . ., sm)9 x) has a value
y, then one can determine y by computing/# Ψ'1 φn Ψf (x) for all changes
of notation / from <£ into W such that

(a) Rng•/={«!, . . ., s J u Λ
(b) Dom / is an initial segment of W under the ordering: {i, e} ^ {j, e} iff

(c) / ({i, e}) = sf. for z = 1, . . ., m.

Notice that there are at most \xh\\ such/'s. Let/satisfy (a), (b), and (c).
Let θ denote Φ/^" 1 . To compute θ~1φnθ, one begins by computing θ on the
members of ({slf . . ., sm} u x^y in order of rank until θ(x) is computed.
One then computes φnθ(x) and then continues computing the values of θ until
φnθ(x) occurs in the range of θ. This will eventually happen provided
ΛreDom γ{n,s1,...,sm) since y(κ,Sl,...,sw) is determined by {sl9 . . ., sm}. This
procedure fails to terminate if XjέDom y(n,sι,...,smy If the outcome of this
procedure is y for every possible /, then γS(n>Sι,...tsm)(x) =y. It is not hard
to show that γs has a y^ -index.

Assumption VΊ If a partial function on N zs computable on {e}^ then it is
computable on N.

Comment Embedding N into {e} , clearly, gives no new information or
structure from which to compute additional partial functions on N.

Assumption VII If F is a c.p.f. on W^ then F is computable on {e}^.
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Comment To compute F(x) for any xe{e}$, first apply to x the character-
istic function for W which is computable on {e}# since it clearly has a
y-index. If one determines that xe W#, then one applies to x an algorithm
for computing F on W*.

4 Computable Partial Functions

Theorem Let F be a partial function on S . The following are equivalent:

(1) F is computable on <£ .
(2) F is locally computable in the sense that if Γ is a coding of a subset V
of S such that V# is closed under F, then TFT"1 is a c.p.f. on N.
(3) F is finitely determined and S has a subset U with cardinality min(tf0, \S I)
that determines F and that has a coding Γ such that TFT"1 is a c.p.f. on N.
(4) F has a γs-index in the sense that F = γf for some ae S^.

Proof: (4 => 1) by Assumption V.

(1 =#> 2). Notice that ^ and Φ"1 are computable on {e}^ since they obviously
have y-indices. Now suppose that F is computable onS^. Let Wbeas in
Assumption II, and let V be a subset of S such that V^ is closed under F.
We will suppose that V is infinite for otherwise (2) visibly holds. Let gbe
a total change of notation from V onto a coinfinite subset of W whose image
under Ψ is recursive. Let ZJ be the smallest subset of S such that U U V c

75 and Z7$ is closed under F. Let H e a total one to one extension of g from
ϋ onto W. By II, the restriction of F to Z7# is computable on Z7#. So, by I,
}FFhP~ι is computable on W^. So, by VII, it is computable on {e}^. Hence,
by III, ^h^Fh^"1^"1 which is a partial function on N is a c.p.f. on {e}#. So,
by VI, it is computable on N. But then its restriction to Rng Φgΰ,
Φg^Fgΰ"1^'1, is computable since Rng Φg^ is recursive. This finishes the
proof since every coding Γ of V is of the form δΦg^ where δ is a one to one
partial recursive function.

(2=>3). Suppose that (2) holds and F is not finitely determined. Then
clearly <£ is infinite.

Given a partial function ξ on N, each finite change of notation / from S
into W has an extension f such that ^f^F Φ ξ^f^ for otherwise F =
Ω xίΨ"1 ξ Ψ). Obviously we can take / ' to be finite.

We construct a chain 0 = f0 c fx c . . . c U / ; = / o f finite changes of
ί' = l

notation from S into W and an ω 2 -sequence al9 a2, . . ., aω, . . ., a2ω, . . . of
m e m b e r s of S by taking fk to be any one to one finite extension of /&_i such
that

(1) {k,e}e*ngfk,
(2) *//F * % * / / ,
(3) F(anω+m)e (Dom /&) , where k is the image of {n, m) under some fixed
pairing function,

and akω, akω+1, . . ., to be such that

F[(Dom/J#] - (DomΛ)# C {ak(ύ9 akω+1, . . .}.
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Then (Dom fψ is closed under F and Ψ/# is a coding of Dom / . But for all
ne N, ψf^Ff^'1^'1 Φ φn; and, hence, it is not a c.p.f. on N, contrary to our
assumption that (2) holds. Thus, F is finitely determined. The rest of (3)
is an obvious consequence of (2).

(3 =Ξ>4) Suppose that (3) holds and that {slf . . ., sm} determines F. Let/
be a one to one extension of (sl9. . ., sm) from an initial segment of W onto U.
Then Ψf^'1 is a coding of U and hence f^ψ'^-FΨf^'1 is a computable partial
function on N, say φn. Thus F = Ω/(*<?„*'*) = γfn>Sι sj. Q.E.D.

Notice that while every c.p.f. on W# is a c.p.f. on {e}^, the converse is
not true since, for example, λ{n, e}[{n + 1, e}] is computable on {e}^ but
not on W$ since on W^ it is not finitely determined.

5 Computable Sets

Definition We let Wa denote Dom γa. A set S c S# is computable on S# iff
it has a PF-m<fe*r, i.e., it is the domain of a c.p.f. on £$. S is bicomputable
on £# iff both S and £#-S are computable on £#.

To get a reasonable theory of computable sets we make

Assumption VIII There exist a complexity measure h on Dom φ, i.e.,
h: Dom φ —> N αwd[ ί/ẑ  graph Qh of h is bicomputable.

Comment We justify this assumption by letting h(i, x) denote the number of
steps taken to compute (pity) under some fixed algorithm for φ. It should
be noted that this assumption is equivalent to assuming that the c.p.f.'s on
N are the partial functions that are Turing reducible to some total function
on N (i.e., the members of A are total); for in such a case, by Kleene's
normal-form theorem, a complexity measure for Dom φ exists, while if
such a measure exists then we may let A = {g\ where g = λn, x, m [φnty) if
h(n, x) = m; else 0] so that φnty) = g(n, x, h (n, x)).

Notice that λ((w; sl9 . . ., sj, x) [h(n, x) if γ((n, su . . ., sm), x) is de-
fined] is a notationally invariant measure for Dom γ.

Lemma For every partial function F on £#, F is computable on £$ iff its
graph QP is computable on £#.

Proof: Suppose that QF is computable on £%. Then QF is locally
computable. It follows by the classical theory that F is locally computable.
Hence F is on<£#. Conversely, if F is computable on<£# then λ(χ,y) [(x,y) if
F(x) =y] is computable on<£# and hence its domain QP has a W-index. Q.E.D.

Henceforth we identify partial functions with their graphs.

Definition Let δ be the first order language having two binary predicates
"e " and " = " and having the members of £ UA as constants. We consider <£#
to be an δ- structure in the obvious way. A set S c £# is Σ-definable in A iff
S is of the form p[R] where p denotes \(x, y) [x] and R is Δ0-definable in A
in the sense that R = {(x, y)e£^: £$X^cA(x, y)} for some formula cA in the
closure Δo of the atomic formulas under negation, conjunction, and bounded
quantification of the forms iί3vieyj . . . "
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Theorem The following are equivalent:

(1) S is computable.
(2) 5 is Σ-definable in A,

(3) S is the range of a c.p.f. having a bicomputable domain.
(4) S is the range of a c.p.f.

Proof: (1 =#> 2) The partial functions Σ-definable in A include φ and hence
γ and hence ya since the p.r.f.'s and the members of A are Σ-definable in
A and the partial functions Σ-definable in A are closed under composition
and iteration. (Of course the domain of any Σ-definable partial function is
Σ-definable since if R is Σ-definable in A so is ρ[R].)

(2 =#3) S = Rng p \R and R is bicomputable if S = p [R] and R is Δo-definable
in A.

(3=Ξ>4) Obviously.

(4 =̂ > 1) Suppose that S is the range of a c.p.f. F and that Γ is a coding of a
set U of cardinality min (No, \S\) that determines F. Then Γ[S] = Rng TF =
Rng TFT'1. So T[S] is a computable subset of N, so Γ id5 Γ"1 is com-
putable. But clearly U determines ids and hence by our main theorem id5is
computable on S$. Thus S = Dom id5 is computable on S$. Q.E.D.

6 Conclusion From the results of Gordon [1] and our last theorem we see
that, when the definitions of computability proposed by Moschovakis [3] and
Montague [2] are relativized to A, they correspond to the intuitive notion of
computability. Thus Church's Thesis (((A = Φ") is equivalent to the
statement that their absolute form corresponds to intuitive computability.
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