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A MODAL LOGIC e-CALCULUS
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1 Introduction* First-order modal logics have been formulated in con-
ventional axiom systems, Gentzen systems, natural deduction systems and
tableau systems. In this paper we give a formulation based on the classical
€-calculus of Hubert [4]. We deal only with S4 but a similar treatment of
other modal logics is straightforward. Our proof of the analog of Hubert's
second e-theorem is non-constructive and uses Kripke's model theory [3].

A straightforward attempt at producing an e-calculus S4 by adding S4
axioms and rules to a classical logic e -calculus does not work. A look at
Kripke's model theory for S4 makes clear the reason for this failure. If X
is a formula with one free variable, x, exX classically is intended to be the
name of a constant making X(x) true, if any constant does (see [4] for a
fuller classical discussion). However, in a Kripke S4 model [2, 3, 5] there
are many possible worlds, and a constant making X(x) true in one such
world need not make it true in another. Thus in an e-calculus S4, exX
would have to be a 'world-dependent' term, that is, possibly naming
different constants in different worlds. Such things cannot be dealt with
properly with the usual first-order S4 machinery. In [6, 7] Stalnaker and
Thomason created an extension of ordinary first-order S4, by adding an
abstraction operator, to handle similar 'world-dependent' terms (definite
descriptions are things of this sort). We use this fundamental idea in an
essential way in constructing our system. The syntactic purpose of the
abstraction operator is to specify exactly the scope of a substitution for a
free variable. Let us denote substitution of the t e rm/ for free x in Xby
X{x/f). If / is a 'world-dependent' term, [OX] (x/f) and O[X(x/f)] could be
taken in a natural way to have different semantic meanings. Let Γ be a
possible world of a Kripke model and suppose /'names' the object c in Γ.
To say [OX] (x/f) is true in Γ seems to say [Όx] (x/c) or <>X(x/c) is true in
Γ. That is, for some world Δ possible relative to Γ, X{x/c) is true in Δ.
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2 MELVIN FITTING

On the other hand, to say O[X(x/f)] is true in Γ seems to say, for some
world Δ' possible relative to Γ, X(x/f) is true in Δ f . If/ 'names' b in Δ f

we would have that X(x/b) is true in Δ'. Even if Δ and Δ f are the same
there is no reason to suppose c and b are identical since / may 'name'
different objects in Γ and Δ. See [6, 7] for a fuller discussion. By using
the abstraction operator λ this apparent semantic distinction may be
represented syntactically by (λx OX)(f) and O{λx X)(f), which are indeed
two distinct formulas. Of course we must add axioms governing the use of
this λ symbol.

We begin with the statement of a more usual axiomatic formulation of
first-order S4, and its Kripke model theory, as found in [2, 3, 5]. Next we
give our e -calculus system and a Kripke type model theory suitable for it.
Then we derive various formal results about the calculus to establish it as
a convenient system of proof, and we show it is a conservative extension of
the constant-free part of first-order S4. Finally we show the completeness
of our e -calculus relative to its model theory. Not all the axioms needed
for model-theoretic completeness are needed to show we have an extension
of constant-free first-order S4. In [1] we gave a system in which some
axioms were missing and outlined some results.

2 A Fundamental First-Order S4 System (FS4) In this section we give a
conventional axiomatic formulation of first-order S4, as found in [2] or [5],
and its Kripke model theory, but in a slightly different notation than is
usual.

In this and subsequent sections we take Λ, ~, 3, O, ), ( as primitive,
and consider v, D, =, V, D to be abbreviations in the usual way. We also
use square and curly brackets informally. We assume we have a countable
collection of w-place predicate letters for each natural number n, a
countable collection of variables, and a separate countable collection of
individual symbols, or constants. We use xf y, z, w, υ, . . . to stand for
arbitrary variables, and a, b, c, d, . . . to stand for arbitrary constants.
We may also add subscripts or primes. The definition of formula is as
usual, but we follow the terminology of [4] and reserve the word formula
for the case where there are no free occurrences of variables; in the more
general case we use the term quasi-formula. We use X, Y, Z, . . . to stand
for arbitrary quasi-formulas. As indicated in section 1, by X(t/u) we mean
the result of replacing all occurrences of t in X (all free occurrences if t is
a variable) by u.

The rules and axioms of FS4 are as follows, wherein X and Y are any
formulas.

Rules

FR2 S r
FR3 p*)[x(c/J)]Dy w h e r e c d o e s n o t o c c u r i n γ
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Axiom schemas:

FAl X, where X is a classical tautology.
FA2 Π(X 3 Y) D (DX D DY).
FA3 ΠX^X.
FA4 D I D D D I .
FAS X D (3x)[X(c/x)].

Remark: FAΪ is, of course, an infinite collection of axioms, which can be
replaced by a finite number of schemas, using any of the usual axiom
systems for classical propositional logic.

Next we give a Kripke model theory for FS4. For convenience we
assume the domain of any Kripke model consists of the set of constant
symbols of FS4. This is sufficient, but not necessary.

By an FS4 model we mean a quadruple, (jb9 R, f=,P) where: & is a
non-empty set; R is a transitive, reflexive relation on Jb\ P is a function on
Jb ranging over non-empty sets of parameters; and ι= is a relation between
elements of Jb and formulas of FS4. These are to satisfy the following,
where Γe Jb.

1) If Δe^and ΓΛΔ, thenP(Γ) cP(Δ).
2) If Γ t= X, all constants of X are in P(Γ).
3) If all constants of X and Y are in P(Γ), then Γt=(I Λ F) if and only if
Γl=X and Γ t=F; Γ ί=~X if and only if not-Γl=X (often we write this as
Γ&X).
4) K X is a quasi-formula with at most one free variable, x, and all
constants inP(Γ), then Γ N (3χ)X if and only if Γ \=X(x/c) for some ceP(Γ).
5) If all constants of X are in P(Γ), then Γ N O X if and only if for some
Δ e ^ such that ΓflΔ, Δt=-X.

A formula, X, is called z αZ^ in the FS4 model (Jt, R, t=, P) if Γi=X for
every Γ e ^ such that all constants of X belong to P(Γ). Proofs may be
found in [2, 3, 5] (with a slightly different definition of model) that the set of
formulas provable in FS4 coincides with the set of formulas valid in all
FS4 models.

3 An e-Calculus S4 (eS4) We take the same primitive symbols as FS4 and
use the same abbreviations. We no longer have constant symbols, but we
add an abstraction symbol, λ, and a 'term forming' symbol, e. We begin
with a full definition of the notions of quasi-formula, quasi-term, and
free variable.

1) Any variable is a quasi-term,and has itself as its only free variable.
2) If P is an w-place predicate letter and tly . . ., tn are quasi-terms,
P{tι, . . ., tn) is a quasi-formula. The free variables of P(tl9 . . ., tn) are
the free variables of tl9 . . ., tn.
3) If X and Y are quasi-formulas, so is (X A F). The free variables of
{X A Y) are those of X together with those of F.
4) If X is a quasi-formula, so is ~X. The free variables of ~X are those
of X.
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5) If X is a quasi-formula, so is OX. The free variables of OX are those
of X.
6) If X is a quasi-formula and x is a variable, (3#)X is a quasi-formula.
The free variables of (3x)X are those of X other than x.
7) If X is a quasi-formula, # is a variable and ί is a quasi-term, (XΛTX)(£)
is a quasi-formula. The free variables of (λx X)(t) are those of X except
for x, together with those of t.
8) If X is a quasi-formula and x is a variable, exX is a quasi-term. The
free variables of exX are those of X other than x.

We use the word formula (respectively term) for quasi-formula
(respectively quasi-term) having no free variables. We will use t, possibly
primed or subscripted, to stand for an arbitrary quasi-term. We use
(λ#i ...xn X)(h, . . . , tn) as an abbreviation for (λ#i (λx2'- . . (λ#w Jθ(*») . •)
(fa))(*i). We also use X(tjtx', . . ., tn/tn') as an abbreviation for [. . . [[X(tn/
4')] (4-iΛ»-if)] •] (*iΛif) Moreover, we often use the following handy
'vector' notation: x for a sequence of variables, t for a sequence of
quasi-terms, provided the full meaning is clear from context. Thus, we
will use (λx X)(t) for (Xxt . . . xnX)(h, . . ., tn) andX(t/f) for X ^ / V , . . .,

tn/tn*).
Let X be a quasi-formula whose free variables are among xl9 . . ,,xn.

Let tl9 . . ., tn be quasi-terms. If (\x1 . . . xnX)(tl9 . . ., tn) is a formula we
call it a λ-closure of X. If X has no free variables we consider it to be a
λ-closure of itself. We use the phrase t is free for x in X in the standard
way to mean that, on replacing all free occurrences of x in X by t, no free
variable, y, of t becomes bound by a quantifier, (By), abstract symbol, λ3>,
or e-symbol, ey, oΐX.

The axioms and rules of eS4 are as follows.

Rules:

X X "D Y
eRl where X and Y are formulas.

X
eR2 zi-zz where X is a formula.

\3X

Axiom schemas: Let X and Y be quasi-formulas. We take as axioms all
λ-closures of the following quasi-formulas.

First, structural axioms.

eAl If y is not free in X, but y is free for x in X,

(λxX)(t)=[λyX(x/y)]{t).

eA2 If x is not free in X,

(λxX)(t) =X.

eA3 If x Φ y and y is free for x in X,

(λyxX)(t,t)^[λyX(x/y)](t),
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eA4 If x1 Φ x2, Xι is not free in t2, x2 is not free in tl9

(Xxxx2 X)(tu t2) = (λx2x1 X)(t2, tx).

eA5 (λx (λx X)(x))(t) = (λx X)(t).
eA6 If A is atomic,

(λx A)(t)M(x/t).

eA7 [λx(XΛF)](t)Ξ[(λx X)(t)A(λxF)(t)].
eA8 (λx ~X)(t) = -(λx X)(t).

eA9 If y is not free in any quasi-term of t and y is not in the sequence x,

[Xx(3y)X](t)^(3y)[(Xx X)(t)].

Next, propositional axioms.
eA10 X, where X is a classical tautology.
eAll Π (X D F) D (DI 3 D F).
tA12 DX D X.
eA!3 D I ^ D D I .

Finally, quantification.

eA!4 {λx X)(t) D (λx X)(exX).
eAlδ (xx OX){t) D O(λΛ: X){exX).
eAlβ (3x)X = (Xx X)(exX).

This completes the system eS4. A model theory may be constructed as
a natural extension of that for FS4 in section 2. To do this we need to give
some model-theoretic meaning to quasi-terms and the abstraction operator.
This may be done in a natural way.

The system eS4 as given above has no constant symbols, but for
purposes of model theory we extend the language to allow them. We treat
them as quasi-terms having no free variables, and allow them to enter into
the formation of other quasi-terms. For the rest of this section, quasi-
formulas and quasi-terms may contain constant symbols.

By an eS4 model we mean a quintuple, (jb, R, l=, P, F) where:
(Jb, R, N=, P) is an FS4 model (save that f= is now a relation between
elements of Jb and formulas of eS4), and F is a collection of functions
defined on subsets of Jb. These are to satisfy:

1) If exX is a term, there is an element f€xX in F such that: f€xX is a
function with domain the set of all Γ in Jb such that P(T) contains all
constants of X; if Γ* domain f€xX then fexX(T)e Γ; if T\=(3x)X then
TϊX(x/f€xX(Γ)).

(For simplicity in stating the next two items; if c is a constant, I6t/C

be the function with domain the set of Γ in M such that ce P(Γ), with values,

Λ(Γ) = c)

2) If (xx X)(t) is a formula,

Γ t= (Xx X)(t) if and only if Γ f= X(x/ft{T)).
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3) If P is an w-place predicate letter and tu . . ., tn are terms,

T*P{tl9 . . ., tn) if and only if Γ \=P(ftl(T), . . .,//fϊ(Γ)).

Again, an eS4 formula X is called valid in the eS4 model {£, R, t=, P, F)
if Γ ι= X for all Γe Jb such that all constants of X are in P(Γ).

We, leave it to the reader to verify that all axioms of eS4 are valid in
any eS4 model and that the two rules preserve validity. Thus we have

Theorem 3.1 All theorems of eS4 are valid in all eS4 models.

Any FS4 model (Jb, Λ, i=, P) can be extended to an eS4 model (jf, R, \=,
P,F). We may extend t= and define F by an induction on the degree of
formulas. Then by the above theorem and the completeness of FS4 we have

Theorem 3.2 Let X be a formula of FS4 with no constants. If X is not a
theorem of FS4, X is not a theorem of eS4.

4 Development of eS4 Since the system eS4 is rather unfamiliar we prove
some metatheorems about it to show how one may work in the system, and
to simplify such work. For instance, our axiom schemas are of the form:
all λ-closures of X are provable; we begin with a generalization of our two
rules to a corresponding form. This then has the appearance of working
with universal closures; in fact, we show it is the same. Finally we show
that eS4 is an extension of the constant-free part of FS4.

We use the notation \-X to mean all x-closures of X are provable. We
begin by showing rule eRl can be generalized.

Theorem 4.1 Let X and Y be quasi-formulas. Then

HI hID7

\-Y

Proof: Suppose K£and K£ D Y. Let (λy Y)(t2) be a λ-closure of Y we wish
to prove. Let x be a sequence consisting of all the free variables of X
other than those already in y, and let tx be a sequence of terms of the same
length as x. h i so (λxγX)(ti, t2) is a theorem. \-'X 3 Y, so similarly,
(λxy (X ^> Γ))(ti, t2) is a theorem. Using eA7, eA8, and eRl we get that
(λxy X)(ti, t2) 3 (λxy γ)(tu t 2)is a theorem. Then by eRl, (λxy Y)(tu t2) is
a theorem. Since the variables in x are not free in Γ, use of eA2 an
appropriate number of times produces (λy Γ)(t2).

Remark: From now on we will use this result without specific mention;
similarly for axiom eAlO.

Theorem 4.2 Let X be a quasi-formula. Then

\-X

v-UX'

Proof: We show a representative special case. Suppose y-X, and (λ#i#2 π i )
(tl912) is a λ-closure o f G I w e wish to prove.

t-~~X, so \-(\xιx2 ~~X)(t[, t2

r) for any quasi-terms t[ and t2'. Then by
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eA8, h~(λΛΓiΛr2 ~X)(t[, ti). Let us suppose t[ and t2 are chosen (as they in
fact will be) so that ~(\xxx2 ~χ)(t'i> Π) i s a formula and hence provable.
Then by eR2, Π^(\Xιx2 ~X)(H, tj), i.e., ~O~~(λ#i# a ~X)(*ί, *2')> or by
standard S4 arguments,

(*) ~O(λxlX2 ~X)(H, V).

But h(λx2O~X)(t2) ^>O(λx2 ~X)(ex2~X) by eAlδ, so if we take ti to be
ex2~X, \-[λxx ((λx2 O~X)(t2) => O(λ*2 -XM))] (ti), or

(**) H*xi (λ*2 O~*)(*a))(*i) => (λ*i O(XΛ;2 ~X)(*2'))(*i).

Similarly, using eA!5,

(*••) h(λ*i O(λx2 -X)(ί»0)(ίi) =>O(λ^ (λ^2 ~X)(tl))(tl),

where ίj[ is ex^X^ ~X)(*2

f). Now, from (*), (**), and (***), - (\xx (λx2 O~X)

(h))(ti), so (λxxx2 - O - X ) ^ , ί2).

L e m m a 4 1 h(λxX)(to)^(λxF)(to)

Proo/: Suppose HJ^ D F. Let [λy ((λx X)(t0) =)(λx F)(to))] (tj be a λ-closure
we wish to prove. Since \-X 3 F, (λyx (X =) Γ))^, to) is a theorem. Using
eA7 and eA8, (λyx X)(ti, to) =5 (λyx Y)(tι, t0). But this is the same as
(λy (λxXXtJXtJ 3 (λy (λx F ) ^ ) ) ^ ) . Now using eAZ, eA8 again,
[λy ((λx X)(to) ^ ( λ x F)(to))] (tχ)

Next we show an analog of FR3.

Theorem 4.3 Let X and Y be quasi-formulas and suppose x is not free in F.
Then

l-XD F
^(3x)X 3 F '

Proo/: H X D F so by Lemma 4.1 and eA2, \-(λx X)(ex X) 3 F. Hence
H(3ΛΓ)X3 Fby eAitf.

L e m m a 4 ' 2 H( 3^ί=(L)F
Proo/: Suppose \-X 3 F. By Lemma 4.1, eA7, and eA5, ι-(λΛrX)(ί)3
(λΛΓ Y)(t) for any ί. By eAl4 and eAi^, h(λΛ: X)(t) 3 (3ΛΓ)F. Take ί to be
exX and then by eA16, \-{3x)X 3 (3ΛΓ)F.' The converse implication is
similar.

y~x = Y

Lemma 4.3 a) ^ χ ~ s ^ γ •

; H θ χ = O y
; H(Z lΛX2) = (Y1AY2) '

Now using a modification of standard proofs by induction on degree,
and using Lemmas 4.1, 4.2, and 4.3, we may show
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Theorem 4.4 (Replacement Theorem) Let A, B, X, and Y be quasi-
formulas. Let Y be the result of replacing, in X, the quasi-formula A at
some or all of its occurrences {except within quasi-terms) by B. Then

\-A = B
hX= Y'

We use the following lemma on relabeling bound variables in a later
section.

Lemma 4.4 Suppose y is free for x in X. Then

h(3x)X=(3y)X(x/y).

Proof: LetX' = X(x/y). Then:

\-(3x)X 3 (λx X)(exX) eA16

=> (λy X')(exX) eAl
D (\y X')(eyX') eA14
^>(3y)X'. eA16

The converse implication is similar.

We next wish to establish the relationship between λ-closures and
universal closures. All the expected properties of universal quantifiers
can be proved in more-or-less the usual ways. In particular, these items
(we indicate the chief axioms used).

1) Λ-(Vx)(Vy)X = (Vy)(Vx)X. (€A9)
2) If x is not free in X, \-(Vx)X = X- (eA2)
3) H(VΛΓ)X D (λx X){t). (eA!4, €Al6)
4) I-(VΛΓ) [X 3 Y] z> [(Vx)X 3 (VΛΓ)F].

^ (V \γ (similar to Theorem 4.3)

Now, let X be a quasi-formula whose free variables are xu . . .,ΛΓW.
By a universal closure of X we mean (VtfJ . . . (Vxn)X. Using item 1)
above, any two universal closures of X are equivalent. We use VX to
denote any one of them.

Theorem 4.5 (Closure Theorem) Let X be a quasi-formula. Then \-X if
and only if IX is provable.

Proof: If \-X, VX follows by repeated use of item 5) above. Conversely, if
VX is provable, any λ-closure follows, using items 2)-5) above.

Finally we show that eS4 is an extension of the constant-free part of
FS4. Let Xl9 X2, . . ., Xn be a proof of Xn in FS4. Let al9 a2, . . ., ak be all
the constants occurring in this proof, and let xl9 x2, . . ., xk be variables not
occurring in the proof. For each i = 1, 2, . . ., n, let X? = Xf (α/x). We
claim ι-J° in eS4. If X{ is an axiom this is straightforward; four of the FS4
axioms are immediate and FA5 follows primarily from eAl4 and eAl6.
If Xi follows from Xj and Xj 3 l f by FR1 we may use Theorem 4.1 to
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conclude h l from hl j 1 and \-(Xj ^>Xi)°. Similarly, instances of rules FR2
and FR3 become Theorems 4.2 and 4.3, respectively. Thus v-X%. Now if Xn

has no constants, X% = Xn. Thus we have

Theorem 4.6 If X has no constants and is a theorem of FS4, then X is a

theorem of e S4.

This together with Theorem 3.2 gives us

Theorem 4.7 eS4 is a conservative extension of the constant-free part of
FS4.

We note that so far we have not used axioms eA3, eA5, or eA6. They
are needed to show completeness of eS4 relative to its model theory, which
we do in the next section. The system of [l] was eS4 without these three
axioms.

5 Completeness of eS4 In the last section we showed completeness of eS4
relative to FS4. In this section we establish the completeness of eS4 with
respect to the model theory of section 3. Again, as in the model theory
discussion of that section, we add constant symbols to the language, and we
treat them as terms. This produces an extension of eS4, call it eS4*, but
all the eS4 results of section 4 still hold for eS4*. All the work of this
section is in eS4*. We will call terms and quasi-terms of eS4 e- terms and
quasi-e-terms if it is necessary to distinguish them from terms which are
constants. That eS4* is a conservative extension of eS4 is an easy
corollary of the following lemma, which may be proved by induction on n.

Lemma 5.1 Suppose Xl9 . . .,Xn is a proof of Xn in eS4*. Let c be any
constant and t be any term. Then Xx{c/t)y . . ,,Xn{c/t) is a proof of Xn(c/t)
meS4*.

Another corollary of this lemma which we will need is the following.

Lemma 5.2 Suppose (λx X)(c) is a theorem o/eS4*, where c is a sequence
of distinct constants, none of which occur in X, and x is a sequence of
distinct variables. Then h i .

Proof: We consider a representative special case. Suppose (λx1x2 X)(clf c2)
is a theorem. Since (λx1 (λx21)(^2))(c1) is a theorem, by Lemma 5.1, if we
substitute the term e^^(λA:2I)(c2) for cx we still have a theorem. It
follows that (Vx1)[{λx2X){c2)] is a theorem. By eA8 and eA9, (λx2(Vx1)X)
(c2) is a theorem, so again, we may substitute ex2^{yixι)X for c2 and get
(VxJiVxJX. Thus VX. Now by Theorem 4.5 we are done.

Our completeness proof is Henkin style. We begin with a series of dull
preliminary definitions and results.

We call X a key formula if X is of the form (λx Y)(c) where

1) the members of the sequence c are distinct constants (or else x and c
are empty sequences).
2) the members of x are distinct variables.
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3) Y contains no constants.
4) no variable of x occurs bound in Y.

We call Y the kernal of X and (x, c) the shell

Our primary interest below will be in key formulas. Next we define
the notion of trivial variant of a key formula. Let X be the key formula
(λ*i . . . x«Z)(cl9 . . ., cn).

1) (\x{i . . . xin Z)(ch, . . ., cin) is a trivial variant of X, where (il9 . . ., Q
is a permutation of (1, . . ., n).
2) (λxί . . . y . . . xn Z(xi/y))(cί, . . ., cn) is a trivial variant of X, where y
does not occur in Z and y is not one of the Xj.
3) (λy (λ#i . . . #« Z)(c!, . . ., cn))(d) is a trivial variant of X, where y is
not one of the #7 , 3; is not in Z (free or bound) and d is not any c ; .

4) (λ#2 . . . xn Z)(c2, . . ., c») is a trivial variant of X, where xx is not free
inZ.
5) Any trivial variant of a trivial variant of X is a trivial variant of X.

Thus, to get from AT to a trivial variant we are allowed to permute the
shell, relabel variables of the shell, and add or remove vacuous abstracts
in the shell. By use of eA4, eAl, and eA2, any trivial variant of X is again
(a key formula) equivalent to X.

Let P be a set of constants and M be a set of key formulas. We call
M maximal consistent with respect to P if

1) all constants in M are from P.
2) Mis consistent.
3) if (λx X)(c) is a key formula with kernal X and all constants in P, either
(λ x X)(c) e M or (λ x ~X)(c) e M.

A minor variant of the usual argument shows

Lemma 5.3 Let C be a consistent set of key formulas all of whose
constants are in P. Then C can be extended to a set M, maximal consistent
with respect to P.

Key formulas divide naturally into six classes depending on the type of
formula the kernal is. We are interested now in those key formulas of the
form (λx (λy X)(t))(c) where t is a quasi-e-term and y is not bound in X.
Call such formulas pseudo-abstracts. Note that since this is a key formula
no variable in x can occur bound in (λy X)(t), and thus y is not in x.

Let us say two pseudo-abstracts (λx (λy X)(t))(c) and (λz (λw Y)(t'))(d)
are congruent if t(x/c) and V(z/ά) are the same e-terms. By use of eAl
and eA4 we may show the following

Lemma 5.4 Let X and Y be congruent pseudo-abstracts. Then there are
pseudo-abstracts X* and Yr congruent and equivalent to X and Y respec-
tively, such that X' is of the form (λx (λy Z)(t))(c) and Y* is of the form
(λx(λyW)(t))(c).
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Let S be a set of key formulas. The above congruence relation is an
equivalence relation on the set of pseudo-abstracts of S, and so partitions
this part of S into disjoint sets which we call congruence classes of S. If O
is one of the congruence classes of S and (λx (λy Y)(t))(c)e O9 by the
e-term corresponding to C> we mean the e-term t(x/c).

Let & be one of the congruence classes of S. We say S is term
complete with respect to & if there is some associated constant bσ such
that

1) b<y does not occur in the e-term corresponding to O.
2) if (λx (λy Y)(t))(c)e & where bσ is not in c, then (λx (λy Y)(bc))(c)eS.
3) if (λx (λy Y)(t))(c) e & where bσ is a in c, then (λx Y(y/xi))(c) e S.

We say S is term complete if it is term complete with respect to each
of its congruence classes.

Call Γ a model element with respect to P if Γ is maximal consistent
with respect to P, and term complete. Call Γ a model element if, for some
P, Γ is a model element with respect to P.

The principal result we need is the following.

Theorem 5.1 Let M be maximal consistent with respect to P. Let bί9 b2,
63, . . . be a countable sequence of constants not in P. Then M can be
extended to a set Γ which is a model element with respect to P u {bu b2,

6s, •}.

Proof: Let S be the collection of all key formulas with constants from
P U {bly b2, b3, . . .}. Let &l9 O2, #3, . . . be the congruence classes of S.
We define a sequence of extensions of M as follows.

Let Mo = M. Suppose we have defined an extension Mn of M. Let Oa be
the first congruence class of S having an element in Mn but such that Mn is
not term complete with respect to <5a. Let ba be the corresponding member
of the list of constants (which by construction will not occur in Mn). Let
Mn+1 consist of all formulas of Mn together with all trivial variants of
formulas of the form (λx {λy Y)(ba))(c) such that for some quasi-e-term t,

(λx(λy Y)(t))(c) e Mn Π Oa. Finally, let Γ = U Mn.
w = 0

We show four facts, from which the theorem follows.

Fact 1 If Mn is consistent, so is Mn+1.

Proof: Suppose Mn+ί is not consistent. Then for some W^ . . ., Wf e Mn and

Zl9 . . .,ZkeMn+1- Mn,

(WXA. . . A W J A Z I A . . . A Z J 3 / .

(/ is A Λ ~A for some constant-free formula A.)

Since Zl9 . . ., Zk all arise from congruent formulas, as in Lemma 5.4
we may fine} equivalent formulas whose shells are the same; that is, each
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Zi is equivalent to a key formula of the form (λx (λy Yi)(ba))(c). Then,
using eA7 and eA8.

{^A.\ ,AWf A(λX(λy [FXA. . .ArJ)(6e))(c)}=>/.

For convenience, let W = WxA . . . Λ WJ and Y = Y1 A . . . Λ Yk. Thus

[WΛ(λx(λyY)(ba))(c)]^f.

By eA4

[tfΆ(λ3> (λχ F)(c))(δ«)]=>/.

Now the only occurrence of ba in this formula is the one indicated. By
Lemma 5.1 we may replace it by the term e;y(λx F)(c) and still have a
theorem. Thus

[WΛ(3y)(λxY)(c)]?f.

By eA9

[WΛ(λx(3y)Y)(c)]^f.

But then, using primarily eA14 and eA16,

[W*(\x(\y F)W)(c)]=>/,

or

{WXA. . .A»5 A(xχ(λy [FiA. . .ArJ)(ή)(c)}D/.

But each of (λx (λ y F, )(ί))(c) is equivalent to a member of Mw. Thus Mn is
inconsistent, a contradiction.

Fact 2 If Mn is maximal consistent with respect to Q, Mn+1 is maximal
consistent with respect to Q u {ba}.

Proof: Suppose (λx X)(c) is a key formula (with kernal X), all the constants
of c are in Q Ό.{ba} and (λx X)(c)fίMn+1. We show (λx ~X)(c)e Mw+1. If all
the constants of c are in Q, the result follows since Mn is maximal
consistent with respect to Q.

Suppose ba occurs in c (of course only once). Let ta be the e-term
corresponding to Oa. Let α be a sequence made up of the constants of ta.
Let b be those constants of c other than those of α or ba. Let y and z be
sequences of variables, all distinct, not in X, corresponding in length to α
and b, and let w be yet another 'new' variable. Let t% - ta(a/y) and let
X° = [X(x/c)] (α/y, b/z, bjw). Then

(λyz (λwX°)(tS))(a,b)e Pa-

li must be that this formula is not in Mn, since (λx X)(c) is a trivial variant

of (λyz (λw X°)(ba))(<x, b) and would then be in Mn+1. Since Mn is maximal

consistent with respect to Q.

(λγz~(λwX°)(t!ϊ))(a,b)eMn.

It follows by eA8 that
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(λyz (λw~X°)(tS))(a,b)eMn.

But this is also in Oa. Then all trivial variants of (λyz (λw ~X°)(δα))(α, b)
are in Mn+i, in particular, (λx ~X)(c).

Fact 3 Mn+1is term complete with respect to Oa.

Proof: Suppose (λx (λy Y)(t))(c) e Mn+1 Π Oa. If this formula is in Mn .we are
done by construction. Otherwise, ba occurs in c. Without loss of generality
let us suppose the formula is of the form (λz (λw (λy Y)(t))(ba))(d).

We note that w can not be free in t. If it were, ba would appear in the
€-term corresponding to Oa and hence would occur in each formula in Oa.
But MnΠOa φφ and ba is not a constant of Mn.

We claim (λz (λw (λy Y)(t))(t))(d) e Mn Π Oa. It clearly belongs to Oa.
If it did not belong to Mn, (λz (λw ~(λy Y)(t))(t))(d) would, but this too is in

Oa, SO

(λz (λw ~(λy Y)(t))(ba))(c)eMn+1,

contradicting consistency.

Since (λz (λ w (λy Y)(t))(t))(ό) e Mn, by eA3,

(λz (λw Y(y/w))(t))(ό)eMn.

But this is in <ya. Hence

(λz(λwY(y/w))(ba))(d)eMn+u

and we are done.
Fact 4 Suppose Mn Π &β Φ φ and Mn is term complete with respect to Oβ.
Then Mn+1 is term complete with respect to C/β.
Proof: Suppose (λx (λ^ Y)(t))(c) e Mn+1 Π Oβ. We treat only the case that
bβ is not in c. If this formula is in Mn we use the fact that Mn is term
complete with respect to Oβ. Otherwise it must be that ba is in the sequence
c. Again, we may suppose without loss of generality that the formula is of
the form

(*) (λz (λw (λy Y)(t))(ba))(d) e il^+1 n Oβ.

Since this is in Mn+1, as above, for some quasi-e-term t\

(**) (λz (λw (λy Y)(t))(V))(ά) e Mn n oa.

Since (**) is a key formula, y is not in the sequence z, thus y is not free in
V. Also w cannot be free in t, since (*) is in Oβ and this would imply ba is
in every formula of &β, but Mn(^Oβφφ, and ba is not in Mn.

Now, by eA4,

(λz (λy (λw Y)(t'))(t))(d) e Mn.

This formula is in Oβ since (*) is and w is not free in t. Since Mn is term
complete with respect to Oβ,

(λz(λy(λwY)(t'))(bβ))(d)eMn.
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But this formula is in Oa since (**) is, and y is not free in t[. Thus
(λz (λy (λw Y) (ba)) (bβ)) (d) e Mn+1 together with all trivial variants, in
particular,

(λz (λw(λy Y)(bβ))(ba))(ά)eMn+1.

This completes the proof.

Now we proceed to construct a model from model elements. Let Jb be
the collection of all model elements. If Γ e ^ , let P(Γ) be the set of
constants occurring in formulas of Γ. For Γ, Δ e Jb, let ΓΛΔ hold provided
that whenever a key formula of the form (λxDX)(c)e Γ, then (λx I)(c)eΔ.
Let X be a formula with constants α, and let x be some sequence of distinct
variables, not in X, of the same length as α. We say Γf=Xif (λxl(α/x))
(α)e Γ. Note that since Γ is maximal consistent with respect toP(Γ), this
definition is independent of the ordering of α and of the choice of variables
in x. Finally, let exX be an e-term with constants α, all inP(Γ). Again,
let x be some sequence of distinct variables, not in X, of the same length as
α. One and only one of

(*) (λx[(λxX)(exX)](a/x))(a)
(**) (λx [(λx ~X)(exX)](a/x))(a)

belongs to Γ. Let/£ x X(Γ) be the constant associated with the congruence
class (5 of Γ such that (*) e O or (**) e O. Thus we define a function f€xX on
{TeM all constants of X belong to P(T)}. Let F be the collection of all
such functions.

We claim the structure (jb9 R9 f=, P, JF> so defined is an eS4 model.
The proof is a straightforward adaptation of those usual in modal logic
[2, 5] so we only exhibit a few of the more interesting parts.

Suppose Tejb and T\=(3x)X. We wish to show T\=X(x/b) for some
beP(T). Let the constants of X be α, let x be a sequence of distinct
variables not in (3x)X, of the same length as o. Then (λx (3x)X(a/x))(a) e Γ.
Let y be a variable not in this formula. By Lemma 4.4, if X' = X(a/x, x/y),
(λx (3y)X')(a)e Γ. By eA16, (λx (λy X')(eyX')) (α)e Γ. Since Γ is term
complete, for some constant, b, (λx (λy X')(b))(a)e Γ. Thus Γ \=X(x/b).

Suppose Γt=(λx X)(a) where a is a constant. We wish to show
Tϊ=X(x/a). Let us suppose, to simplify things, that x has no bound
occurrences in X and that a does not occur in X. Let c be the constants of
X and let x be a corresponding sequence of 'new' distinct variables; let y be
'new' to X, and not in x. If X' =*X(c/x), since Γ ι= (λxX)(a), (λxy (λx X')(y))
(c, a) € Γ. By eAl and eA5, (λxy X'(x/y))(c, a) e Γ. Thus T^X(x/a).

Suppose T\=OX. We show for some Δ e ^ such that ΓRΔ, Δ\=X. Let
the constants of X be α and let x be a corresponding sequence of distinct
variables not in X. Then

(λxθX(α/x))(α)eΓ.

For convenience, let Xr = X(a/x) so that

(λxθl ')(α)e Γ.
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Let E consist of the formula (λ x X')(ά) together with all key formulas of the
form (λy Y)(c) such that (λy GF)(c)e Γ. We claim E is consistent. If not,
then for some Zl9 . . ,,ZneE.

( Z l A . . . A Z J =>~(λx X')(a).

For simplicity we only consider the n = 1 case. Thus we have

(λyF)(c) D~(λx xθ(α).

Let b be the constants common to c and α, let c f be the constants of c not
in α, and α' the constants of α not in c. Let v, w, z be corresponding
appropriate sequences of variables. Let Y° = Y(b/v, c'/w) and X° = Xr(b/v,
α'/z). Then we have

(λvwz (r° 3 ~X°))(b, c f, α r).

Now, by Lemma 5.2, h F ° 3 ~X°. Thus by Theorem 4.2, \-Π(Y° D ~X°), so
hD F° 3 D ~X°. So in particular,

(λvwz (Dr0DG~X°))(b, c',α')

Then

(λvw D F°)(b, cf) 3 (λvz D ~X°)(b, α f).

Thus

{(λvwGΓ°)(b, c'), ~(λvzG~X°)(b, α')}

is inconsistent. It follows that

{(λy GF)(c),(λx~D~X)(α)}

is inconsistent, a contradiction.

Now that we have E consistent, we may extend it to a model element,
Δ, with respect to Q, where P(Γ) c Q. Then Δ e ^ and ΓΛΔ. Moreover,
(λx X(α/x))(α)e Δ, so Δ \=X.

Suppose Γl=(λ*^)(e3>r). we wish to show T\=X(x/f€yY(T)). Without
loss of generality, let us assume x is not bound in X and does not occur
in Γ. Let α be the constants of Y and let b be the constants of X other than
those already in α. Then for suitable sequences of variables v and w, if we
let Y° = F(α/v) and X° = X(α/v, b/w), we have

(*) (λvw (λx X°)(eyY°))(a, b) e I\

Let O be the congruence class of Γ containing (*) and let b^ be the
associated constant. It follows that (λvw (λΛτX°)(%))(α, b)e Γ, so Y^X{x/
bσ). Now it is easy to see that (*), (λv (λy Y°)(eyY°))(a) and (λv (λy ~Y°)
(eyY°))(a) are all congruent. It follows that bσ =f€yY(T).

We leave the other cases to the reader. Thus we have an eS4 model.
We note that if X has no constants, Γt=X if and only if Xe Γ. Now we
may finish simply. If X is a formula of eS4 with no constants, which
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is not a theorem, {~X} is consistent. We may extend this set to a model
element, Γ. Γe jb, and ~Xe Γ so Γ&X. We thus have

Theorem 5.2 // I is valid in all eS4 models (where X is a formula of eS4
and hence contains no constants), X is a theorem of eS4.
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