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α-MODELS AND THE SYSTEMS T AND T*

NEWTON C. A. da COSTA

This paper 1 is the fourth (and last) of a series in which we study two
systems of set theory, T and T*, which were designed to serve as founda-
tions for category theory (cf. [3], [4], and [5]). It is divided into two parts;
in the first, we develop and make more precise certain results of section 3
of [5]. As the subject matter of the first part is of independent interest, it
is treated here in some detail; nonetheless, the full development of the
subject will appear elsewhere. In the second part, we only outline how T
and T* can be used as foundations for the notions of category and functor,
since it is not difficult to work out the details.

I. α?-Models

1 Introduction Let us consider a first-order language ^ containing the
family (l)ί(a of (distinct) constant terms, where a is an ordinal (in the
sense of von Neumann) greater than 0, and a set Γ of sentences of J£ (in
particular, Γ can be a first-order theory). An α-model of Γ is a model in
the ordinary sense, such that every element of it is denoted by at least one
term tt ,i e a. A sentence F of «£ is said to be a semantic α-consequence of
Γ if it is true in every a-model of Γ. Then, it seems natural to ask the
following question: Is it possible to strengthen the first-order predicate
calculus, with or without equality, in such a manner as to assure that if F
is a semantic a-consequence of Γ, then F is also a syntactic consequence of
Γ in the new strengthened calculus? A strengthened version & of the
predicate calculus is called a-complete if, and only if, whenever a sentence
F is a semantic α-consequence of a set Γ of sentences, we also have that F
is a syntactic consequence of Γ in O.

The concept of a-model appears when we consider theories in which it
is natural to suppose that their intuitive models must satisfy the condition
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that every element belonging to such a model has a "name", as in the case,
for example, of first-order arithmetic, and is related to the underlying
logic of T and T* (see [5]).

Our purpose, in this first part of the paper, is to study some methods
which can be used to modify the first-order predicate calculus in order to
ensure its a-completeness.

2 α-Models &a{&a) is a first-order predicate calculus (with equality)
having the following primitive symbols: (1) propositional connectives:
v (or) and Ί (not); (2) the universal quantifier: V(for all); (3) individual
variables: a denumerable set of individual variables; (4) individual con-
stants: a family {ci)iea of (distinct) individual constants, where a is an
ordinal greater than 0; (5) predicate symbols: a family {Rj)jeβ of (distinct)
predicate symbols, where β is an ordinal greater than 0 (for every je β, Rj
has a finite rank; in the case of O^, one of the predicate symbols is the
symbol of equality); (6) auxiliary symbols: parentheses and comma. The
notions of formula, of free variable, of sentence or statement (formula
without free variables), etc. are defined as usual. The connectives 3
(implies), & (and), and = (equivalent), and the existential quantifier 3 are
introduced by the common definitions. The usual metalinguistic conventions
and notations are employed without explicit mention.

Let Γ be a set of sentences of Oa(^a); an α-model of Γ is a model M of
this set of sentences which satisfies the following condition: For every
element m of M there is a constant c* , tea, which denotes m (a is the
"name" of m). If F is a sentence of Pai^a), F is called a semantic
of-consequence of Γ if it is true in all α-models of Γ. In this case, we
write: Γf=F; if Γ = 0, we employ the notation 1= F to express that <fi\=F.

The postulates (axiom schemata and rules of deduction) of &a(&a) are
the ordinary ones, and the notions of deduction, of theorem, etc. are defined
as in [5], with clear modifications.2 If Γ is a set of formulas and F is a
formula, we say that F is a syntactic consequence of Γ if Γ h F (\-F is an
abbreviation of φ hF). In the sequel, the Greek letters Σ and Δ will denote
sets of statements and the Latin letters G and #will stand for sentences.

3 The Calculi &* and #«*. We shall call rule (a) the following rule

, A(cQ),A(Cl),A(c2), . . .
W VxA(x)

where A(x) is a formula containing the free variable x, and A(c, ) is the

2. The principal modification is in the notion of deduction. The rule of generalization
(or, more precisely, the rule we have employed instead of it) is subject to the
following restriction: when the rule of generalization is applied to a formula of a
deduction &, it is supposed that there exists a subsequence &f of &> where &f is
a deduction having 0 a s its set of hypotheses, such that the last term of &f is the
premise of the application of generalization. For our purposes, this restriction
is better than other common ones, for instance that using the concept of variation
of variables (cf. [12]).
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formula resulting from A(x) by substituting the constant c, for each free
occurrence of the variable x.3

If we add rule (a) to Oai&a), we obtain #*(£>«*). It is easy to define
the concepts of deduction, of theorem, etc. for these calculi (cf [5]); the
new concepts are called respectively α-deduction, α-theorem, etc.4 If Γ is
a set of formulas, F is a formula and F is a syntactic α-consequence of Γ
in &% or in #£*, we write T\-aF {\-aF, if Γ = 0). All the usual deductive
rules of Oa(^a) are valid for O^O^*), with obvious modifications; for
example, we have, where θ is any set of formulas and E and F are any
formulas whatsoever: if θ U {E}^F, then θ\-aE ̂  F, and if θ ̂ E and x is a
variable which does not occur free in the formulas of θ, then Θ^VxE.

Theorem 1 In Oai&a*), whenever Σl^#, we also have Σ\=H.

Theorem 2 Suppose a > ω. Then: Y^H in &$(&s*)<=Φt-H in &a(&a).5

Theorem 3 Suppose that either a = tf0

 and ^ ^^0 or 0 < a < ω if T u {F} is
a set of sentences of &%(&a*) and Γf=F, then T\-aF in OtiPa*), that is to
say, &%(&a*) is a-complete.

Proof: By a modification of the proof of GδdeΓs generalized theorem, also
known as the Gδdel-Malcev-Henkin theorem, in Cohen [2], pp. 13-16. The
modification is the following: Let us assume that a consistent (in
&a(&a *)) set of sentences Γ is given. To begin with, we prove that it is
possible to obtain a set of sentences Γ, consistent in &a(&a)> such that
Γ c Γ and, for each sentence of the form 3xA(x) of ^*(<^α*), Γ has an
element of the form 3xΛ(x) DA(CA), where cA is a convenient constant of
the family (C;)/ecr We consider the following cases in order to prove this
fact:

(i) If a < ω, we may suppose, without loss of generality (using the axiom of
choice if required), that the sentences of ^*(^>f*) of the form 3xA(x) are
disposed in a sequence 3xA0(x), 3xAx(x), 3xA2(x), . . . As Γ is consistent
in C'ai&a*), it is clear that corresponding to A0(x) there is a constant CΛQ,
of the family (cf ), fα> such that 3xA0(x) ^ A(cΛo) is consistent with Γ. In
fact, if this were not true, l(3xA0(x) D A(d)) would be a syntactic
of-consequence of Γ for every tea. Hence, T\-^Vxi(3xA0(x) ^ A0(x)) and
Γ ^l(3xA0(x) ^ 3xA0(x)); then, Γ would not be consistent in &*(C':s*).
Therefore, if we adjoin 3xA0(x) ^^0(0,4^ to Γ, the resulting set of
sentences, Γ°, is consistent. Similarly, there is a constant cA such that
3xA1(x) ^A^CAJ is consistent with Γ°; if this last sentence is adjoined to
Γ°, the resulting set Γ1 is also consistent, etc. Having constructed Tn for

3. (a) is a generalization of the so-called Carnap's rule {cf. [1]).

4. The notion of deduction is subject to restrictions similar to those of footnote 2,
and this remark applies to all calculi that we shall consider in the present paper.

5. In the sequel, the symbols =Φ (implies) and Φ Φ (equivalent) are employed as

metalinguistic abbreviations.
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every ne ω, the set Γω = U j Γ
w i s consistent in £>*(#α*), since a is finite and

if any contradiction is derivable from Γω, then it would be derivable from
Tn, for a convenient neω, and this is absurd. Next, we proceed to construct
the sets Γω+1, Γω+2, Γω+3, . . ., until all formulas of the sequence 3xAQ(x),
3xAx(x), 3xA2(x), . . . are considered. Therefore, if a < ω, given a con-
sistent set of sentences Γ, there exists a set Γ of sentences which is
consistent in &£(&£*) (a nd a fortiori in &a{&a)), contains Γ, and satisfies
the following condition: For every sentence of ^*(^α*) having the form
3xA(x), Γ has an element of the type 3xA{x) ^>A(cA), where cA is an
appropriate constant of the family (c^i€0ί.

(ii) If a = No and β ^Ko, the reasoning is analogous; nevertheless, there is a
denumerable set of sentences of the form 3xA(x)y whose elements belong to
^>*(^α*)> and the resulting set, Γ, is consistent in Oa(O^)y but is not in
general in #£(<3-α*). (It deserves to be noted that if a is infinite, the
reasoning is valid only if the set of formulas of the calculus is denu-
merable.)

Now, it is easy to verify that in Cohen's proof we can use only
constants of the family (c^)ieαin order to construct a model for Γin&a(&a);
that is, no new constants are necessary. Indeed, the model so obtained is
an α-model, and the theorem is proved.

Remark The above theorem is essentially the ω-completeness theorem for
ω-logic (cf. [8] and [13]).

Assuming the axiom of choice, by Zermelo's theorem there are well
orderings on the open interval (0,1); let δ denote the least ordinal number
of such orderings. Since there is a bijection between (0,1) and the set of

constants of &$, U {c,-}, this last set can be indexed in (0,1), and repre-

sented as a family (vr)r€(0,i), where, for all r1} r2e (0,1), vri Φ vr2 if rλ Φ r2.
We describe now a theory F8 having &% as its underlying logic, and

whose specific symbols are a single binary predicate symbol L and three
unary predicate symbols D, T, and B. The set Aδ of non-logical axioms of
F δ is the following (aside from the postulates of O%)\

VΛΓ Ί L {xt x),
VxVyll(x,y)vx =yv L(y,x)],

VxVyVz[L(x,y)A L{y,z) => L(#,*)],
VxVz[L(x,z) D 3y(L(x,y) & L(y,z))],

Vx3yl(z,x) &Vy3zl(y,z),
3xΌ{x) & 33;ΊD(3;),

VxVy[D(x) & ΊD(y) D L{x,y)],

V ^ T W = D(x) & Vz(D{z) hz Φx^> L{z,x))],
Vy[b(y) = ΊD(y) & VZ(ΊD(Z) &z Φy^ L(y,z))],

l(vr,vs) for all r<s;r,se (0,1).

Lemma (Henkin) (i) The set of theorems of F$ is closed under rule (δ)
(that is, Carnap's rule for the family of constants of Fδ); (ii) Aδt= 3#B(AΓ) v
3ΛΓT(ΛΓ); (iii) 3xb(x)v3xΊ{x) is not a formal theorem of F$.
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For the proof of this lemma, the reader may consult Henkin's paper
[7], pp. 5-14.

Applying the preceding result, it is not difficult to see that the calculi
&*(&a*) are in general not α-complete. This is made precise by the next
theorem.

Theorem 4 If a ^ 2 °̂ and Oaί&a*) contains at least one unary and two
binary predicate symbols, then &a(&a*) is not a-complete.

Proof: Consequence of the above lemma.

Definition 1 In O% and £>«*, Σ is said to be (simply) complete if for every
sentence H we have either Σ ĥ  H or Σ l̂  ΊH.

Theorem 5 In CΌii&a*), if Σ is complete and Σή^H, then Σ \-aH.

Definition 2 Σ is atomic if for every formula of the form Rn{kι, k2, . . ., kp),
where Rn is a predicate symbol of rank p and k19 k2, . . ., kp are any
constants, either Σ\-aRn{ku k2, . . ., kp) or Σ ^ΊRn(klf k2, . . ., kp).

Theorem 6 Let Σ be an atomic set of sentences of &a(&a*). If Σ \=^H, then
Σ\-aHin &%.{&%*).

Remark Rule (a) is equivalent, in £><*(#ά"), to the following one:

, v 1 A ( C Q ) , Ί A ( C l ) , 1A(C 2 ) , . . .
(ai) UAW '

where the meaning of the notations is clear. In case en < ω, (a) is also
equivalent to the schemata VΛΓA(ΛΓ) = A(c0) & A(Cι) & . . . & A(cα_i) and
3xA(x) = A(c0) Vi4(cJ v . . . v i fcαJ.

4 The Calculi Oa\ and Oaf Oaji^aj) is the calculus having the same
primitive symbols and the same postulates as &a(&a), together with new
axioms, as follows: There exists a function/ which associates with each
formula A(x), containing x as the only free variable, a constant f(A(x)) (or,
simply, /(A)), of the family ( c ^ α , such that 3xA(x) D A(f(A)) is an axiom.

It is easy to define the notions of aj-deduction, of α/-theorem, of
syntactic of/-consequence of a set of formulas, etc. for <%|and Oaj- Hence,
if Σ u {F} is a set of formulas of Oaj{θaf), the notations TfyF and tyF have
clear meanings. The usual meta-theorems of Oa{Oa) are valid for &af(&af)',
for instance, if θ is a set of formulas and£ andF are formulas, we have:
(1) eu {E} \-afF=^θ\-afE ^F; (2) θ\-afE and θ fyE 3 F =^θ^-afF; (3) If the
variable x does not occur free in the formulas of θ and θ ̂ fE, then θ ^VΛΈ.

Theorem 7 For every formula A(x), in which x is the only free variable,
^jA{f(ΊA)) ^VxA{x), where /(ΊA) is the constant of the family (c,•),-£α

associated with lA.

Theorem 8 In Oaj(Oaf) the following weak form of rule (a) is valid: If A(x)
is a formula in which x is the sole free variable, and A(a) is obtained from
A(x) by replacing every free occurrence of x by c, , then we have: {A(c0)} U
{A(Cl)} U {A(c2)} U . . . tyVxAix).
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Definition 3 In &af(&af), an c*y-model of a set of sentences Σ is an α-model
of Σ which satisfies also the axioms 3xA(x) DA(/(A)), for every formula
containing x as its only free variable. If the sentence H is true in every
α/-model of Σ, we write Σ \=^fH(\^fH9 if Σ = 0).

Theorem 9 In Oafi&af)'- Σ ^f

H'^ΦΣ ^fH-

Theorem 10 Let H be a syntactic consequence of Σ in Oii&a*)', then,
Σ\ΰf H in Oafi^aj), for every function f {which associates with each formula
A(x) the constant f(A(x)), under the conditions of the definition of &af(&af))

Theorem 11 Σ\=$H if, and only if, for every f, Σ \^,H.6

Corollary Σ\=$H if, and only if, Σ ty H for every f.

5 Rule (#') The aim of this section is to present an a-complete version of
the first-order predicate calculus, with or without equality. To attain our
objective, we use and make precise a new kind of rule, called here rule
(αf), introduced in [5], p. 8.

Definition 4 Let λ be an ordinal different from 0. A family (k/)/eχ, where
k/, for every le λ, is a constant of the family (ci)Ua, is called a λ-family of
constants.

&ά(&a') is the calculus obtained from &%(&%*), by changing the notion
of deduction as follows:

Definition 5 In Oai&a )> a formula F is said to be a syntactic ar-
consequence of a set of formulas Γ if: (i) F is an axiom; or (ii) F is an
element of Γ, or (iii) F is an immediate consequence of syntactic of'-con-
sequences of Γ by one of the rules of £>*; or (iv) there exists a family of
sentences (3xAι{x))ί€χ, where λ is an ordinal greater than 0, such that:
(iv') for every λ-family of constants (k/)/eλ, F is a syntactic a '-consequence

of Γ u U{4/(k/)}; and (iv") for every le λ, 3xAι(x) is a syntactic α'-conse-
leλ

quence of Γ. If F is a syntactic α;'-consequence of Γ, we denote this fact by
Γ f e l ^ F w h e n Γ = 0).

Clause (iv) of the above definition, whose intuitive meaning is clear, is
named rule (of') and represented in the following manner:

laf)
 3 x A ^

κa> A(co)vA(Cl)vA(c2)v. . . *

Thus, Oai&a') i s the calculus resulting (in a certain sense) from
^*(^α*)) when we adjoin to this last calculus rule (af).

6. The expression "for every / " is an abbreviation of "for every function which
associates constants of the family (c/)/£α to formulas of o^io^j), according to
the definition of this calculus".
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Theorem 12 If Γ and θ are sets of formulas and E and F are formulas of

<yά(&a'), we have:

(i) Γ \^,E for any axiom E or for any EeT;
(ii) ΓuMtF^Γh/D^;
(iii) T\-alE and T^,E D F =^Th^,F;
(iv) ΓI^,£=>ΓU Θ^E;
(v) If Th^,E, and if x is a variable which does not occur free in any

formula of Γ, then Γ^VxE;
(vi) If T\a,E for all E eθ, and Θ^F, then Γ^F.

Proof of part (ii): The proof of the deduction theorem for C>£ and &%' is
rather lengthy, though not difficult. An outline of it is as follows. In
Oai&a'), we may define the notion of deduction from a set of formulas
(hypotheses) Γ as a (finite or infinite) sequence of formulas, Λ, each of
which, F, is an axiom, or is an element of Γ, or is an immediate con-
sequence of preceding formulas of Λ by one of the primitive rules of &%, or
is obtained from immediate subsidiary deductions of Λ of the forms

Γ u U {A/ίkj)}^, F, for every λ-family of constants (k/)/£λ, and Γ \^,3xAι(x),
kλ

for every leλ. An immediate subsidiary deduction of Λ is said to be a
subsidiary deduction of Λ of grade 1; an immediate subsidiary deduction of
grade 1 is said to be a subsidiary deduction of Λ of grade 2; etc. It is easy
to define rigorously the notions of subsidiary deduction of a given deduction
and of grade of a subsidiary deduction. The grade of a subsidiary deduction
Λ is always finite. Taking all this into account, it is possible to prove that

all subsidiary deductions of Λ which are of the form Γ u \J{Aι(kι)}hάfFca.n

be changed to deductions of the form Γ\ u {A\ U U { A ^ Ai(k/)}b/ F, where A
kλ

is any formula of Γ and Γ\ = Γ - {A}; next, by (finite or transfinite) induc-
tion, we complete the proof of the deduction theorem, by noting that it is
true for deductions having no subsidiary deductions.

Theorem 13 IfΣ is consistent in 0/a{0/:a ), then Σ has an a-model.

Proof: The following is a consequence of rule (ar): Let Γ be a set of
formulas, λ as ordinal number greater than 0, and {A^x))^ & family of
formulas, such that, for every le λ, Aι(x) has only one free variable x; if

Γ u U {4/(k/)}|α/C & ΊC for every λ-family of constants (k,)^, then
kλ

ΓU \J{^xAι(x)}^C & ΊC.
Uλ

Hence, the already cited proof of Cohen's book [2] can be adapted to the
present case: in the construction of the final model, we can employ the
constants of the family (C;)^ instead of using new constants. As the model
so obtained is really an α -model, the proposition is proved.

Theorem 14 In Oi(O^): Σ^#<=>Σ^,#.
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Theorem 15 Σ\-a,Hin &a{&a') if, and only if, for every f, Σ fyHin <ya,(OZ).

Theorem 16 If a^ω and \^,F in Oai&a'), then \-F in &a(&a).

6 α-Saturation In this section we list, without proof, some consequences of
the foregoing exposition.

Definition 5 A basic sequence of formulas of Oa(Oa) is a sequence
3xA0(x) => A0(k0), 3xA1{x) D A^kJ, . . ., where A0(x), Ax(x), . . . are all
(distinct) formulas of CΌti&a) in which x is the only free variable, and
k0, k1? . . . are any not necessarily distinct constants of the family (c^ieα

Theorem 17 The two propositions (a) and (b) below are equivalent:

(a) A^Hinσί(θf);

(b) Δ u{3xA0(x) =>A0(k0), 3xAx{x) DA^ki), . . .}v-H in Oa{Oa), for every
basic sequence of formulas of &a{&a).

Definition 6 Let Δ be a theory having Oai&a) as its underlying logic, that
is, a set of sentences of &a(&a) such that if Δ h-E, then Ee Δ. Δ is said to
be α-saturated if, for every sentence H, Δ\^H implies Δi- H.

Theorem 18 A theory Δ having &a(&a) as its underlying logic is a-
saturated if, and only if, we have: for every sentence H, Δ \- H is equivalent
to Δ ^,H.

Definition 7 In Oai^), a theory Δ is called a Henkin theory if, for every
formula A(x) in which x is the only free variable, Δ ^-3xA(x) z> A(cA), where
cA is a constant of the family (Ci)i€a.

Theorem 19 Every Henkin theory in Oa.(β/:a) is a-saturated.

Theorem 20 A theory having &a(&a) as its underlying logic is a-saturated
if, and only if, it is the intersection of all Henkin theories {in Oa(O^))
containing it.

Definition 8 In Pai^a), a theory Δ is said to be α-complete if, for every
formula A(x), in which x is the sole free variable, A(c0) e Δ, A(d) e Δ, . . .
imply VxA(x) e Δ.

Theorem 21 If the set of primitive symbols of &a(&a) is denumerable or if
a < co, then a theory Δ whose underlying logic isC^ai^a), is a-complete if,
and only if, Δ is a-saturated.

7 Generalizations The above results can be generalized to cover cases in
which we add operation symbols to Oa and to &a9 and in which the constants
are introduced by definition (there are terms different from individual
constants serving to "name" the elements of the model). Moreover, they
can be suitably adapted to apply to the many-sorted first-order predicate
calculus, with or without equality; as a consequence, the underlying logic of
T and T* is complete in a precise sense (we have shown this in [5]).
Clearly, other extensions are possible. For instance, it is not difficult to
define the notion of α-model for sets of sentences of the predicate calculus
of order ω and to extend to this calculus the most important of the previous
results (cf. [7] and [13]).
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II. The Systems T and T*

1 Introduction In this second part of the paper it is shown how the systems

T and T* can be used as bases for category theory. Since the formal

structures of T and T* are very similar, it is sufficient to consider only

the case of T.

For the sake of clarity, we briefly describe T, whose underlying logic

is a two-sorted predicate calculus with equality, conveniently strengthened

(see [5] for details). T is a combination of type theory with Kelley-Morse

system of set theory ([9], appendix).

Symbols of T: (1) logical symbols: =), &, v, Ί, =, V, 3, =, and

variables; (2) auxiliary symbols: ( and ); (3) specific symbols: e,{:}n,

n ^ 2 , (classifiers) and the individual constants VΊ, V2, V3, . . .

n and p will denote integral indices greater than 0. The symbols of T

with analogous definitions in the Kelley-Morse theory will be employed

without any explanation.

Specific Postulates of T:

Postulate of extent:

( P I ) Vz(z ex=zey)^x = y.

Structural postulates:

(P2) xeVn^xc: vw,

(P3) # c vn=>#e VΛ+i.

Definition 1

x is a class of type p =def xe Vp,

x is a set =def xe Vi,

x is a class of order strictly p =def xe Vp and xi Vm n< p.

Postulate of classification:

(P4) If F(x) is a formula and x and y are variables satisfying certain

conditions (cf [4]), then:

Definition 2

xvny =def{z:zexvzey}n,

x Πwy =def {z:zex & ze y}n,

0 =def{x:x4x}2

Postulate of subclasses:

( P 5 ) x e V w 3 3 y ( y e \fn & V z ( z C X D z e y ) ) .

Definition 3 xn =def{z %e Vw-i ^ x = z\n.

Postulate of union:

(P6) xe vn-i & y e Vn-i D x U n y e V ^ .
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Taking into account the preceding definitions, it is easy to see how we

have to define the concepts of ~nx, \Jn

χ> w-relation, n-function, domain^/,
range nf, etc.

Postulate of substitution:

(P7) f is a n-functίon & domainnfe Vn.χ ^ rangenfe VM_i

Postulate of amalgamation:

(P8) xeVn-^ΌnXeVn-i

Postulate of regularity:

(P9) x Φ 0 & xe Vw 3 3y(y ex & x C\ny = 0).

Postulate of characterization:

(P10) For each x there exists Vn such that xe Vw.

Postulate of infinity:

(Pll) 3y(ye Vx & Oey &Vx(xey ^ x u 2 { 4 ^ ) ) .

Definition 4 x ~ny =def x nn(~ny).

Postulate of choice:

(P12) There is a n-choice function fsuch that domainnf = Vw_!̂ w{θ}w.

To say that we are working in certain Vw will mean that all classes we
are talking about are subclasses of Vn and that all terms we are consider-
ing, distinct from variables, have the form {x:F(x)}n+1. Hence, whenever
we are working in Vw, a statement like "Let / be a function such that . . ."
is to signify "Let / b e a ( n + l)-function such that . . .", etc.

2 Universes and Categories in T In this section it is supposed that we are
working in V«.

Definition 5 F is a formula of Kelley-Morse set theory (KM) and t is a
term whose free variables have to satisfy clear conditions. The t-
transform of F, F\ is the formula obtained from F by replacing each
quantification Vy(. . .) by Vy(y c ί D . . .), each quantification 3y(. . .) by
3γ{γ c t & . . . ) , and each term {r :g(γ)} by {γ: (g(γ)Ϋ}n+1.

Definition 6 A class x is called transitive if Vy(ye x ^ y c x).

Definition 7 A class xe Vw is said to be a model of KM if the ^-transforms
of the closures of all axioms of KM hold in T.

Theorem 1 If p < n, Vp is a model of KM.

Proof: Immediate consequence of the manner in which the axioms of T
were chosen.

Definition 8 A class x is said to be extensional if V̂ Vz;[w, υ e x 3 (Vz(z ex^>
(ze u Ξ zev)) 3 u - v)].
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Theorem 2 If P(x) is extensional, then x is transitive.

Theorem 3 Every model of KM is transitive.

Proof: By the axiom of extent, any model of KM is such that P{x) is
extensional. Hence, x is transitive.

Theorem 4 No Vn is a set; but Vnis a class of order strictly n + 1.

Definition 9 Let x be an element of V». x is called a universe of Sonner-
Grothendieck if it satisfies the following conditions:

(Ul) yex^y^x,
(U2) yex^P(y)ex,
(U3) y e x & fe xy => U range fe x.

Definition 10 A universe t is said to be normal if 3y(ye x & y is infinite).

Theorem 5 Suppose that xe Vn; x is a normal universe if, and only if, x is a
model of KM.

Theorem 6 If p < n, sup {y : y is a cardinal number & 3x(xe Vp & y = x)}n+i is
a strongly inaccessible cardinal.

Theorem 7 If p < n, Vp is a normal universe.

Theorem 8 If T is consistent, then KM is also consistent.

In order to have an idea of the proofs of Theorems 5 and 6, the reader
may consult, for instance, Kruse's paper [11].

Theorem 7 shows that it is possible to solve in T the foundational
problems of category theory in the ordinary way, via the systematic use of
universes (cf. [14]). Though such problems can apparently be solved in a
set theory with only one normal universe, a system of set theory having a
hierarchy of universes seems to be logically more satisfactory. From this
point of view, T, being one of the most interesting forms of the theory of
types, is a very intuitive system; and to base extant mathematics (including
category theory) in T is indeed a very natural matter (this is really what
specialists in categories implicitly do).7
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