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VARIOUS SYSTEMS OF SET THEORY
BASED ON COMBINATORY LOGIC

M. W. BUNDER

1. Introduction We consider in this paper various systems of set theory
which, in their usual formulation, are based on predicate calculus. Here
the predicate calculus is an applied predicate calculus, in that alongside the
various categories of variables we have constants of various categories;
concerning these constants we assume certain additional axioms.

In order to translate this situation into combinatory logic the axioms
we assume must be such as to make each of these new constants satisfy the
proper grammatical condition (see [2]). If that is the case, such constants
can be substituted for the variables with the same grammatical conditions,
and these grammatical conditions can be detached from the set of premises
of such formulas. Sometimes, these constants can be defined in such a way
that the only essentially new axiom is that giving the grammatical
condition.

One of these constants is the ob A, this is the range of obs over which
an ob must be a propositional function before we can apply the deduction
theorem (see [3]); we shall also take it as our range of quantification. Thus
in this chapter we apply the theorems of [2] with A for α. The condition La
can be dropped in these theorems as we have hLA by Axiom 8 of [2].

Next we consider the relation ε which is usually taken as primitive in
set theory. In our system ε can be defined by Cl so that xεy is translated
as yx. The ob Cl can be proved to be a predicate as we have in each system
an axiom which gives us

Aw, Δυv-H{uv).

This rule, as was shown in [4], is inconsistent with E for A, but with a
suitably restricted A there should be no problem. The rule gives us
Δu, Δv HH(CITO) which by the deduction theorem gives us,

hF2AAH(CI).

Other constants that we shall be using are the first order predicates M
and Mi, where M is a new primitive for the category of all sets, and Mi is
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the category of all classes. In both cases we will need to have the
grammatical condition FAHX holding, thus we have to have as an axiom:1

Axiom M. i-FAHM.

We do not need to state HFAHM! as an axiom as in the Zermelo-
Fraenkel system we do not have classes and in the other systems we can
define Mx so that this property holds.

Bernays in his system [l], where he has both sets and classes, also
has two sets of variables, one ranging over sets and one over classes.
This is not really necessary as it has been proved that these can be
reduced to a single set. In our system we can duplicate Bernay's method of
having two sets of variables by considering both Mx and M as subclasses of
FAH. The grammatical conditions then hold for sets and classes and for
example the theorem "if x and y are classes then their intersection is a
class" becomes:

Mi*, fAiy\-Mι(nxy).

Alternatively we could work without such variables and translate the
theorem as

hΞAMi.HAblrMiAΓD.Miy => M^Dxy).

Any of the systems that we consider, in as far as they do not already
have them, can be extended to include individuals. There are three ways
of handling this problem. First there is Quine/s method where an individual
is its own unit set; this requires a modification of the axiom of grounding.
Second, we could allow XY where X is an individual, always to be a (false)
proposition, but this requires a modification of the extensionality axiom.
A third solution is not to allow hHCXY) where X is an individual to be
proved in the system. Individuals will in this case not be sets or classes,
but they will have to be included in our range of quantification A. Modifica-
tions are then needed in axioms in which we quantify over sets or classes.
We will not consider these modifications for bringing in individuals any
further here.

We define the translation of a set theoretical statement and its
grammatical conditions exactly as the translation of a predicate calculus
statement in [2], For the predicate constants M and Mx we already have
grammatical conditions, we also need them for equality. Set and class
equality we define in terms of extensionality, rather than identify them with
Q. This is because certain problems arise in connection with the exten-
sionality axiom. We can state this axiom as follows.

h-SΔ[Ar] :ΞΔ[y]. (ΞA[w] .xu ~ yu) 3 Qxy ,

1. If we assume H = BLK as in [2] we also need to have hLM. If we define L by
FAH this property holds trivially.
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where in the Zermelo-Fraenkel [7] and Bernays systems Δ is M and in the
Godel system [8] Mi.2 As a result of such an axiom, theorems such as the
Church-Rosser theorem may fail to hold. To avoid this, or at least to keep
the possibility of another interpretation open, we shall define set (or class)
equality using the extensionality property and then state an axiom to give
the other property of equality. Other solutions, such as defining equality
by the Leibnitz property, are less satisfactory than the above; statements
such as hLL are then required as axioms. We could also of course leave
set equality undefined and have two axioms.

2. The Zermelo-Fraenkel System We now consider the Zermelo system
of set theory as modified by Fraenkel [7]. The modification means, for one
thing, that the class of objects we quantify over in the theory is the class of
sets itself, rather than an unspecified class. Thus in the work below we
identify A with M. One further thing we must specify is that every element
X oϊ M must be such that f-H(Xt/) whenever U is a set. In other words the
grammatical condition f-FMHXmust hold for all elements X of M.

Axiom MH. l-ΞM(FMH).

Now we consider the Zermelo-Fraenkel axioms. The first of these is
extensionality, which we mentioned in the introduction. The definition of
set equality which we use to replace it in this system is as follows.3

Definition Qx. Qx = [χ,y] A(Mx)(A(My)(BM[z]xz ~ yz)).

The required axiom is then:

Axiom Z[: h-FMHz =>z : ΞM|>] .HMLyKQ^y ^.ZX~ zy).

Using this definition of equality we now show that we can derive a
grammatical condition for Q lβ

Theorem 1. f-F2MMHQ!.

Proof. We have

M*ι-H(M#), (1)
MyhH(M y). (2)

Now by Axiom MH, hAz, bλx\- H(xz), and so MAT, My, hAzh-H(xz ~ yz). Thus
by Theorem 4 of [2] and i-LM,

h/ix, My \- H(HM|>]. xz ~ yz) (3)

so using (1), (2), and (3) and Definition Q1 we get MΛΓ, My \-h\iQxxy), and by
hLM and the deduction theorem, hFgMMHQi.

The second axiom asserts the existence of a set containing two given
objects, this concept can be defined in the system and then specified to be a

2. <̂  is used for the equivalence connective.

3. We can prove M#, My, Qxy \-QιXy.
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set by means of an appropriate axiom. For this set containing obs x and y,
we take Ό(Qx)(Qy), where U is defined as follows.

Definition U. U = ΦV.

Thus \Jxyz = V(xz)(yz), and Uxy can be considered as the union of sets x and
y. Similarly Π can be defined as ΦΛ. Now the axiom can be stated.

Axiom Z2. h^MMMίψUQi).

The third axiom states "If the condition Pa is definite for each element
a of a set x then there exists a set which contains just those elements a of
x for which Pa holds." Fraenkel takes "is definite" to refer to P alone;
this we could represent as FMHP, since then for any set x we have H(PΛ ).
The ob which contains those elements u of x such that yu holds will
obviously be (λyx, all that has to be done therefore is to specify that Γ\yx
must be a set under these conditions.

Axiom Z3. hFMH y =>y. FMM(Π y).

Here if YΛx restricts x to be a set, and FMH y requires yu to be definite
(i.e., a proposition) whenever u is an element of M, then M(ΠΛry) says that
the intersection of x and y is a set.

The next axiom is the power set axiom. Cogan in his thesis [5] gives
CΈX as the class of all subsets of X and goes on to state an axiom to make
any such class a set. He also has an axiom to insure that the intersection
of any set and any class is a set, so a subset of a set must be a set. Here
we can do without the second axiom by taking ΠM(CΞX) as the set of all
subsets of a set X. This leaves open the questions as to whether, for some
sets X, there may exist objects Y which are not sets, (i.e., individuals),
such that aYX. Such a Y will not necessarily satisfy the condition of
Axiom Z3. Axiom Z4 therefore becomes:

Axiom Z4. μFMM(|>]. ΠM(CΞΛΓ)).

Note that this can also be written as hFMMJPw} where {Pw} is the "power
relation" defined by [x,y]. Λ(hλy)(ayx).

With Axioms Z4 and Z2 we can prove the two other parts of Zermelo's
original Axiom 2.4 These asserted the existence of an empty set and a set
containing a given element.

Theorem 2. (a) There exists an empty set. (b) For a given set there exists
a set containing the given set as sole element.

Proof, (a) By Theorem 1 we have M*i-H(WQiΛ;), MX hH(B -(WQi)*), and so
hFMH(B -(WQi)). Now by Axiom Z3 Ux hM(Π(B -(WQJ)*). The later
axioms such as the axiom of infinity assert the existence of a set, thus
substituting any set X for x gives ι-M(Π(B -(WQi))X). This will be unique
by extensionality.

4. This is similar to the proof in Fraenkel and Bar Hillel. For Zermelo's original
axioms see [10].
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(b) If the set x is the empty set 0 we have by Axiom Z4, ι-M(ΠM(CΞO)).
If we have the extra axiom:

Axiom 12. \-Kxy ̂ >x,y x

we can say ΠM(CΞO)ΛΓI-Q1OΛ: SO that ΠM(CΞO) contains only the given set 0.
If x is nonempty then by (a) and Axiom 2, UίQxtfXQxO) is a set and

Axiom 3 gives us that ΓKUίQitfXQiOJXQx*) is a set. This of course contains
only x.

Note that we cannot prove that B -(WQi) and Qx% are sets given that x
is one, as we can only apply extensionality to prove these equal to the above
sets if they are already sets. We could simply take hM(B -(WQi)) and
HFMMQias axioms (and grammatical conditions); we would then not need
to use Axiom 12.

Axiom Z5 is the sum set axiom. Given a set Y the class of all
elements of elements of Y can be given by {Un}F, where,

Definition {Un}. {Un} = [y,x]ΣM[u] {λ{ux){yu)).

For this to be a set is needed:

Axiom Z5. h-FMM{Un}.

The sixth axiom is the axiom of choice. Zermelo's version of it can be
translated into the combinatory system, but its meaning will be clearer if
we use a notation which is closer to the classical one. Such a notation will
now be defined.

Definition Λ. x*y = Axy.
Definition v. xvy = Vxy.

We will not introduce (V#) for SM[#] and (3x) for ΣM[#], as we may not
always want to identify A with M. We now state the axiom of choice.

Axiom Z6. μSM[#]:.(SM[tt]: ahA[v] .XUΛXVΛU Φ V D Πuv = OΛM Φ 0) :=>:
ΣM[ί]BMM ^ D {Un}^A(ΞM[M]:xu.3.ΣM[s]n tu = C^s).

Thus if X is a set, the elements of which are nonempty disjoint sets,
then their union {Un}X contains at least one subset T which has one and
only one element in common with every element of X-

The remaining axiom is the axiom of infinity. This can be treated as
Cogan [5] does, by taking a new primitive {Inf} with the following axioms:

Axiom Z7. (a) h{lnf} 0.
(b) hM{lnf}.
(c) μ B M M . {Inf}* 3 {lnf}(Q^).

As an alternative to (c) we could take the von Neumann form: ί-HM[#] .

{lnf}#D {lnf}(U#(Q*)).
The sets {inf} will be infinite in the usual sense as it will not be

possible for an element Q^Qi . . . (QiO) . . .) with k Qjs to be equal to
Qi(Qi . . . (QiO) . . .) with I Qjs. If it were possible then by rules (μ) and
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Eq5 we would get: Qi(Qi . . . (QχO) . . .) = 0, where there are k - I O[s and
this is impossible, as it leads to hOCQj. . . . (QxO) . . .) with k - I - 1 Qjs.

It is also possible to define {Clnf} as follows:

Definition {Clnf}. {Clnf} = [x]: Mx. Λ . xO . Λ HM[M] . xu D # ( 0 ^ ,

the axiom of infinity then asserts the existance of such a set, i.e.,

Axiom Z7'. ι-ΣM{Clnf}.

The above definition of {Clnf} is closest to what Zermelo expressed in
Axiom Z7 (c), but an alternative with some advantages is von Neumann's
definition, with which we can use the same Axiom Z7 f.

Definition {Clnf} (2). {Clnf} = [x]: Mx. Λ . xO . Λ SM[W] . xu z> #(Uw(Qiw)).

The Zermelo system is extended to the Zermelo-Fraenkel system by
adding two further axioms, namely the axioms of grounding and replace-
ment. The first of these states that every nonempty set has an element that
has no elements in common with it. This can be represented as follows.

Axiom Z8. hHM[#]:tf Φλ 0 .^>.ΣM[y].xy *(C)xy =x 0).6

The replacement axiom requires that given a nonempty set x and a
single valued function/(i.e., hFMM/), there is a set y such that v-yu if and
only if there is a set υ contained in x such that fυ =t u.7 An ob {Rep} is
defined so that this axiom can be expressed.

Definition {Rep}. {Rep} = [/, x, u] Σ hΛ[v]. A(xv)(fv =t u).

The axiom is then represented by:8

Axiom Z9. h-FMM/ =>/. FMM({Rep}/).

Now we can prove the general theorem for the Zermelo-Fraenkel
system.

Theorem 3. If T is a theorem of Zermelo-Fraenkel set theory and N is the
set of grammatical conditions for T\ the translation of T into the com-
binatory system, then N \-T'.

Proof, This goes exactly as the proof of Theorem 25 of [2] except that
there are some extra axioms to consider, namely those of the Zermelo-
Fraenkel set theory itself. It T is the extensionality axiom \-TT follows
from Definition Qx. V contains no variables and only the constant predicate
Qx for which we have obtained the correct grammatical condition in

5. These are as in [6]

(μ) If QλXY then Q^ZXHZY)

Eq. QiXY, XV-Y.

6. z =i w stands for Q.\zw.

7. In the case of an empty set the replacement set is trivially empty.

8. Axiom Z3 becomes provable when Z9 is added (See Fraenkel and Bar Hillel [7]).
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Theorem 1. The other property of equality (Z() is in the correct translated
form if we apply Rule Ξ once. Axioms Z2, Z4 and Z5 are themselves
grammatical conditions for certain constants, similarly Axioms Z3 and Z9
become schemes for grammatical conditions if we apply Rule Ξ with
argument z. Axioms Z6, Z7 and Z8 are thus the only axioms not giving
grammatical conditions, these assert the existence of certain sets.

Axiom Z6 contains no free variables and the only constant in it we
have, as yet, no grammatical condition for is Π, however HF 2MMMΠ follows
by Axioms Z3 and MH. In Axiom Z7 we have the new primitive predicate
{Inf}, but by Axioms Z7 (b) and MH this has the correct grammatical
condition μFMH {Inf}. Similarly we can easily prove ι-FMH{Clnf} if we use
Axiom Z7 f. Axiom Z8 also contains no variables and as constants only 0, Π
and Qx for which we have the grammatical conditions. Thus all of the
axioms have the correct form and the proof of the theorem goes through as
for Theorem 25.

3. Bernays' System Now Bernays' system [l] will be considered. It
contains not only sets, as Zermelo's system does, but also classes. The
basic idea of a class is that one is determined by every predicate over
sets. This property is expressed formally by Church's scheme, as given
by Bernays, which, in classical notation is given by:

xε{x\φ(x)}~φ(x)

whenever x is a set.
As Bernays only has sets as objects, talks of predicate over sets and

quantifies only over sets, we can again let A be M in this section. A
"predicate over sets" will thus be an ob X such that f-FMHX, and
such that hLX. By the use of this a simple combinatory logic version of
Church's scheme can be proved. In combinatory logic the concepts "x is
an element of y" (or xεy) and "x has the property y" (or y(x)) can both be
expressed by yx. Instead of Church's scheme we then get:

FMH y, hAx\-yx~yx.

(Note that FMH y and MΛ: are the grammatical conditions for yx^yx.)
A class in the Bernays sense (the category of these we will denote by

Mx) must therefore have the property FMH. At this point however we have
some further alternatives. We can leave Mx as primitive and have
i-MiΛ: =)x FMHΛΓ, as an axiom; we can define Mx as FMH, which will be an
extension of Bernays' system as we will have ι-FMH(WQ) and thus a
class which will contain obs other than sets; or we can define Mi by
Π (FMH)(CΞM), thus restricting classes to obs containing only sets. Here
we shall use the second of these approaches. Bernays has no axioms to say
that all elements of classes must be sets and FMH also has the advantage
of being a grammatical condition.

We now define class equality as we did set equality in the previous
section.

Definition Q{. Q[ = [x,y](BNi[u] .xu^yu. Λ . \Λxx. Λ .Vλxy).
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Especially if we assume Mx to be FMH it is better not to assume that Q[ is
the same as Q. In that case it is conceivable that there might be two
classes which have all their sets in common, but which are not equal
combinatorially. With Q[ as it is however, we can prove

Mi#, Vλλy,x =! y t-UΔ[u] .xu^yu,

using our version of Church's scheme.
Next Bernays has two axiom schemes for equality over sets.

E l . M x £ , Yλx, hAy \-x =ι y . 3 . zx D zy.

E 2 . MΛΓ, hAy \-a\sλ([z\.xz™yz) . D . # =X y.

In his system he has a certain class " represented" by a set if it has
the same sets as elements as that set. In our system where we can
compare sets and classes more easily the "representation" can be
replaced by something similar to the notion Q1#

Definition Qo. Qo = [x,y]. M ^ Λ M J Ά Ξ M M .xu^yu.

If we define set equality by Qx as in the previous section we have E2 as
a result of the definition and the following assumption.

Axiom MiM. t-EM(FMH),

which is equivalent to the grammatical condition i-F2MMHI.
We then can derive El from a generalisation of Axiom Zj, viz.

Axiom E l ' . \-hA1z =>z ΞM[#] EM[;y] :x = 1 y^.zx^ zy.

Of the remaining axioms Al asserts the existence of an empty set.
This we can represent as:

Axiom BA1. t-M(B -(WQi).

Note that we write the combinatory versions of Berneys' Al, . . . as
BA1, . . . . His second says that a set with an extra element added is a set.
This can be stated in the following way.

Axiom BA2. hF^MMίCίBBUίQi).

(This could be replaced by hF2MMMU and f-FMMQi.)
Axiom A3 asserts that if z is a function over sets (i.e., an element of

FMM) then the union of all the sets zx where \-yx and h-M y, is again a set.
This can be represented by {Rp} which is defined by,

Definition {Rp}. {Rp} Ξ [z,y, u]. ΣM . [x] A (yx)(zxu).

All that is needed then is an axiom to assert that {Rp}^ is a set, under the
required conditions.

Axiom BA3. hF2(FMM)MM{Rp}.

Thus FMM-ε, My \-M({Rp}zy). Axioms BA2 and BA3 in this system replace
Axioms Z2 and Z3 of Zermelo's system. Axioms A4, A5 and A7 are the
power set axiom, the axiom of choice and the axiom of grounding and for
these Z4, Z6 and Z8 can be used.
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Axiom A6 is Bernays' axiom of infinity. He defines natural numbers,
in terms of a zero ordinal and its successors and then has an axiom to the
effect that the class Nn of these is a set. Instead of this we can have
Definition {Clnf} and Axiom Z7\

Thus we have obtained all the axioms of Bernays' system and we can
prove the general theorem for the Bernays' system.

Theorem 4. If T is a theorem of Bernays' set theory and N is the set of
grammatical conditions for Tr, the translation of T into the combinatory
system, then N \-Tr.

Proof. This again is proved as Theorem 25 of [2]. We have a theorem with
the correct grammatical conditions to correspond to Church's scheme.
Also we have Axiom E2 proved from Definition Q1# Axiom schemes
corresponding to Bernays' Axiom Schemes El and A3 follow by one use of
Rule H and our Axioms El ' and BA3, also with the correct grammatical
conditions. Axiom BA2, itself a grammatical condition, is the translation
of Bernays' A2. The remaining axioms are handled as they were in the
Zermelo-Fraenkel system. Thus we have all the axioms of Bernays in the
correct form and the theorem is proved.

4. Gδdel's Set Theory As in the other two systems of set theory we shall
base the system on the predicate calculus we developed in section 3, taking
this time A as the set of all objects. This A cannot be M as it must include
Mχ; but it is possible to replace A by Ml5 the category of all classes, as in
the system M is a subclass of M1# Below we will use A keeping this
possibility in mind, and also leaving open the possibility of A containing
individuals and perhaps relations, as well as classes. It is certain in any
case that we will need the following as an axiom.

Axiom Mi. hΞMiA.

GδdeΓs notion of a class is somewhat more restricted than that of
Bernays in that he has an axiom to the effect that all members of classes
must be sets. For Bernays XεY where both X and Y are classes is not
defined, however in the previous section we extended his system to include
this possibility. Also Gόdel has an axiom to ensure that all sets are also
classes, whereas Bernays has certain classes represented by sets, if they
have the same elements. The two axioms of the Gδdel system that were
mentioned above, can be written as follows.9

Axiom GA1. hBM[#]. Mx 3 M^.
Axiom GA2. μΞ A[ΛΓ] :. hλxx ^>: ΞA[j;]. xy ^> My.

Gδdel's Axiom A3 is identical to Bernays' axiom of extensionality for

9. Cogan [5] had as a definition Mi = FMH. This gives us obs such as K(WQS) as
classes, which have elements which are not necessarily sets. This is
Titgemeyer's paradox. This section gives a solution to this paradox. See [9].
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classes, for class equality we can use the same definition, with A for M.
Also we need Axiom Z[ with ΞA[ΛΓ] . M^ 3 " instead of M^ =V', and Q[ as
the equality.

The fourth axiom of the A group is the pair set axiom which we can
state as follows.

Axiom GA4. HEA|>]. ΞAb]. Mx^My^ M(\J(Q[x)(Q[y)).

Now we consider the C, D and E axioms. There are four axioms in
group C, these are the axiom of infinity, the sum set axiom, the power set
axiom and the "definiteness axiom"; they can all be formulated as in the
first section with SA[w]Mw3 and ΣA[M]MMΛ instead of EA[w] and ΣA[M],

This can also be done for Axioms D and E, the axioms of grounding and
choice.

Note that in the other two systems some of the axioms were them-
selves grammatical conditions for some constant ob. With our replacement
of quantification over M by quantification over A statements such as
hFMM{Un} no longer constitute grammatical conditions, and to fit in the
predicate calculus this has to be replaced by HEA[M] . Mw^ M{Un}w). Also
we need a grammatical condition for {Un}, viz.

Axiom A{Un}. i-FAA{Un}.

Similarly we need:

Axiom An. HF2AAAΠ.

Axiom A{lnf}. t-FAA{lnf}.
Axiom Asubc. f-FAA([y] .ΠM(CΞ y)).

Thus we have the C, D and E axioms in their correct translated form with
the appropriate grammatical conditions. The A axioms are also in the
correct form if we have:

Axiom AU. hF2AAAU.
Axiom AQ^ f-FAAQί.
Axiom HQi. hF2AAHQ{.

The last of these will be derivable from Definition Q1 and Axiom HA which
we introduce later on. In addition to these we need i-ΞMiίFAH) and f-FAHMj
but these become derivable when we define N/̂  below.

GδdeΓs set of axioms B deals with relations and classes, using this
set of axioms he later proves his ''general existence theorem" from which
his axioms are then derivable. In our system it seems more natural to
define relations as many-placed predicates rather than as classes or
ordered n-tuples of sets. We shall therefore prove GodePs general
existence theorem directly using definitions of classes and relations and
then show that this method is equivalent to Gδdel's.

Definition M«. Mw = [x] . FWA . . . AH#. Λ . SA^] . . . ΞA[#J . xx1 . . . xn =>
MXXA . . . Λ Mxn.

In particular N/̂  = [x]. FAHΛ Λ . EA[#J . xxι => M^. This definition of hA1 we
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will take for GδdeΓs primitive notion, the definitions of relations can be
regarded as temporary and as a means by which we indicate how GδdeΓs
work could be carried out without the use of ordered pairs. GδdeΓs defini-
tion of relations can then be used as he does, in terms of M and Mx. Note
that Axiom GA2 is now derivable.

Before proving the theorem we require a number of assumptions.
First we need Axiom 1210 which gives

Axyhx, (1)
hxyv-y, (2)

for which we could take t-Λxy ^>x,yy as an extra axiom. Also the universe
A has to be restricted in such a way that we have:

Axiom HA. h-HA(FAH).

This together with Definition VAX gives us t-FAHM1# This property would
seem most natural if we identified A and M1? but then our definition of Mi
would circular, as M is defined in terms of A. We could make the
identification and then have what is in Definition Mx in the form of two
axioms. In the work below we leave this question open.

Before stating his general existence theorem Gδdel had an inductive
definition; this we shall repeat writing "xy" for "y εx," U ΣA[M].MWΛ" for
(3u) etc.

Definition ppf.11 (i) If X and Y are sets or special classes12 then XY is a

PPf
(ii) If X and Y are ppfs, then so are -X and AXY.

{Hi) If X is a ppf then so is Σ A[w] . M M Λ I , and if provided H M # , X is a ppf
then provided \-Yλuy [x]Xu is a ppf.13

Theorem 5. (The general existence theorem for ppfs.) Ifφ(xί9 . . . , xn) is
a ppf containing no free variables other than at most xly . . . , Xni then there
exists an ob X such that hM H I and fsλx1}... , VAxn^Xxι . . . xn~φ{xi, , %n).

Proof. By induction on the structure of φ(xu . . . , xn).
Case 1. φ has no logical operators. Then φ(x1} . . . , xn) is xsxr or kh,xr

(where Â  is a special class). The case GA& (where G is a set or class) can
be represented as Σ A[ΛΓ] . M# ̂  A (Q[χAk)(Gx) by Axiom GA2, and Q[#A& by
ΞΔ[u]: Mw ̂ .xu *> ΔiU by Axiom GA3. Now let

10. It is possible to avoid the use of this axiom if we introduce a number of extra
primitives and further axioms.

11. This notion Gϋdel calls a "primitive propositional function." It is not a function
in our sense; it is one only in the sense that it may involve parameters.

12. These Gb'del leaves unspecified.

13. Gb'del had' a fourth clause which said that ppfs could only be formed as in
clauses (i), (ii) and (iii). This we take to be understood in inductive definitions.
In our system, where we can do without variables and our functions do not
involve them, the last part of condition (iii) is really irrelevant.
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X = [xl9 . . . , # „ ] . xsxr Λ MΛ;! Λ . . . Λ bλxn.

Then by propositional calculus and IΛxs hFMH# s , we know hAxly . . . ,

M ^ h X l i . . . Xn™XsXr> AS

A#i, . . . , Δxnt-H(Xxι . . . Xn) (3)

by Axioms M and HA, we have

h-FwA . . . AHX. (4)

By (2) we have Xxλ. . . ^ ( - M ^ A . . .ΛMΛΓW; SO by (3) Axί9 . . . , Δxnt-Xx% . . .

xn => Vλx1 Λ . . .Λ M#w, and thus hHA[#i] . , . ΞA[Λ:W] . Xxx . . . xn

 D M.% Λ . . .

Λ MΛ:W. Thus by (4) we have t-MwX. Similarly we prove this for

X = [X, . . . Xn] kk%r ΛMXL Λ . . . Λ YλXn.

Case 2. Here we assume that 0 has m of the logical connectives - , Λ and

(Σ A[M] MWΛ) and that the theorem holds for 0's with fewer logical connec-

tives, φ can take three forms.

Form (i): φ(xl9 . . . , xn) = -(i//(#!, . . . , xn))

where MΛΓ1? . . . , Vλxny-Vxx . . . xn^ψ(xi9 . . . , Λ «̂), and hMnY. Now let

X = [#Ί> J
 χn] -(Y^i . #«) A M ^ Λ . . . Λ MΛ;W.

Then as A#1? . . . , Δxn\-H(Yxι . . . xn), we have AΛΓ1? . . . , A ^ t - m x ^ . . .

xn), and thus μF«M . . . AHX. The other propert ies of X we obtain as in

Case 1, so t-MwX. Also MΛΓ1? . . . , M^nh-X^ . . . x w ~-(Y^i . . . # » ) so

MΛΓI, . . . , KΛXnh-XXx . . . Xn^φiXi, . . . , λ j •

Form (ii): 0(x2, . . . , % „ ) = ι//(^1? . . . , Λ J Λ X(#I, . . . , xn),

where by the inductive hypothesis there is a Y and a Z such that, Nlxl9 . . . ,

M#ΛhY#i . . . xn~Ψ(xi, , Xn), MJVI, . . . , MΛ:WI-ZΛΓI . . . #»~X(*i, . . . , xn),

and h-MwY and hM«Z. Let

X = [^u , Xn]YXι . XΠΛZX! . . . Xn^Wix1 Λ. . . Λ M ^ .

Then similarly all the necessary propert ies hold for hMwX.

Form (iii): φ(xly . . . , xn) = Σ A[w] Mw Λ Q(μ,xl9 . . . , x»)

where MΛΓ1? . . . , hAxn, MM l-βίw,^, . . . , ΛΓ^^TWΛΓJ. . . . ΛΓW and h-Mw+1T. Then

let

X = [JVX, . . . , xn] Σ Δ([u] MMΛ TuXi . . . xn) Λ M^x Λ . . . Λ MΛΓW

and again all properties hold. Thus the theorem holds in all cases.

Gόdel also states a generalisation of this to "normal functions/' this

proof however does not depend on any of his assumptions concerning

relations so it would be trivial to repeat it here.

To prove our method of dealing with relations equivalent to that of

Gbdel we have to show that for every one of our w-ary relations X we have

a class Y such that KAxί9 . . . , hΛxn y-Xx1 . . . xn~ Y (xl9 . . . , xn) where the

ordered n-tuple (xl9 . . . , xn) is defined as follows.
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Definition (xlt . . . , %,).

(Xl,..., xn) = u « J ί < * l f . . . , Λ:H-1>)(QI(U(Q;(X1, . . . , v ^ X Q W ) ) .

We can prove that there is such a class. First we shall show that any
ordered n-tuple of sets is a set.

Lemma 1. MA:15 . . . , VAxn\r\Λ(xu . . . ,xn).

Proof. From Axioms GA4, GA1 and Mx we get, tsAx1\~M(U(Qr

1x1)(Qf

xx1)) send
also M#15 MΛΓ2 HMdJίQίtfiKQίA^)). Thus again by Axiom GA4,

M^M^hMίUίQίtUίQί^ίQί^JJtQKUtQί^ίQίΛi))))

which is, MΛΓ1? Mx2^bΛ(x1,x2). Thus we have the theorem for n = 2. We
now assume the case of n - 1, then MΛΓ1? . . . , fsAxn^ί\-fsA{x1, . . . , ΛΓW-J).
Then by Axiom GA4,

Yλx,, . .'. , M^hM(Qί(U(Qί<^, . . . , V i»(QW»

and using the inductive hypothesis, MΛΓ1? . . . , \Λxnv-VA(xx, . . . , xn). Now
we can state the theorem.

Theorem 6. If \-bAnX then there exists a Y such that i-N^Y and Nlxv . . . ,

\sλχn\-XXl . . . Xn^YiXl, 5 Xn).

Proof. Let

Y = [ί]ΣA[x1] . . . Σ A W . Q ί ^ l 5 . . . 9xn)AXxλ . . .Xn.

Now by Axioms AQ{ and AU, Aί, A^, . . . , Ax»ι-H(Qίί(#i, . . . ,xn))9 and by
Definition Mn, MWX, A^1? . . . , A^h HίX^ . . . Xn). Therefore,

M«X, Aί, kxλ, . . . , Ax«hH(Qίί<^, . . . ,xn)*Xxx . . . xn), (5)

and so

MnX,AthH(ΣA[Xί] . . . Σ A W Q ; ^ , . . . Λ > A X % . . .*«), (6)

and by the deduction theorem, MWX h FAHY. Now let

Z = [t, Xl9 . . . , #«] Q j ί ^ u . . , Xn)* X*l . . . Xn,

then, as AΛ:1? . . . , A#«, MWX, XΛ:! . . . ^ H M ^ Λ . . . Λ M ^ , we have by the
lemma and the axioms for equality, Aί, A^1? . . . , Δxn, MWX, Ztxx . . . %MhMί.
Then by (5) and the deduction theorem for P, MWX, At, AΛΓ1? . . . , Δxn\-Ztxx

. . . Xn => Vλt, and by \-LA and the deduction theorem for Ξ, MWX, At h Ξ A M

. . . Ξ A k ] . Z ^ . . . ^ D M / . Then by (5), AίhH(Mί) and by Theorem 30
of [2],

M W X, Ath-Ύt^ hAt. (7)

Therefore by (6) MWX hHA[ί]. Yί 3 Mi. Thus by (6) again,

N/UChMiY. (8)

Now A#1? . . . , Axn, Y(xu . . . , Xn) H Σ A K ] ΣA[ttJ. Qί<^i, . . . , Xn)
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(uί9 . . . , un) s XttjL . . . un. Also kxx, . . . , Δxm kuu . . . , Aww, Qi(xl9 . . . ,

xn) (ul9 . . . , un) 1-Qί^iMχΛ . . ^O[xnUn, so s ince we have the c o r r e c t g r a m -

mat ica l conditions as in the proof of (7),

A*i, . . . , Δxm Δuu . . . , Δun, Ql(xχ, . . . ,xn) <Mi, . . Λ ) Λ

Xux . . . tin \~XX\ Xn

and thus A# 1 ? . . . , Δxn, Aw1? . . . , Δun\-Qχ(x19 . . . , xn) (ul9 . . . , I^)Λ XZ^

. . . M P X ^ . . . ^ . There fore by T h e o r e m 26 of [2]

A*!, . . . , kxn h Σ A W Σ A [ M » ] . Q ' < # I , . . . , * « > (Mi, . . . , un)Λ

Xuλ . . . un. ^ X^i . . . Λ:«

and so

M^i, . . . , Yλxn I-Y(A:I, . . . , xn)
 D X^i Xn (9)

Now X^i . . . xn, Mxl9 . . . , MΛΓ« l-Qί <ΛΓ1? . . . , # „ ) (ΛΓU . . . , Λ:W)Λ X^ t . . . #«,

so X^! . . . xn, MΛΓ1? . . . , M#«HΣ A[ttJ . . . Σ A [ M J . Q{<^!, . . . , ΛΓ«) (W1 ? . . . ,

WW)Λ Xxλ . . . xn. There fore Xxλ . . . xn, MΛΓ1? . . . , VAxn h Y ( ^ , . . . , #„), and

by MWX, M^ 1 ? . . . , VλxnV-Xxi . . . Xn^ Y<^i? , #«>. Thus by (9),

MΛΓ15 . . . , ϊλXnV-XXi ^ ^ Y ^ ! , . . . , X«).

Now we combine T h e o r e m s 5 and 6 to give u s :

Theorem 7. // φ(xl9 . . . , xn) is a ppf containing no free variables other

than at most xlf . . . , xn then there exists a class Y such that M#i, . . . ,

Mxn\-Y(xl9 . . . , xn) ~ φ(xi, . . ? Xn)-

This is the general existence theorem exactly as Gδdel has it. If we apply

the deduction theorem for P to the formula in Theorem 7 several times we

get:

t-ΞAfo] . . . ΞAU J . M * ! D . . . Mxn =>. Y<#i, , Xn)yφ(X\, , Xn)>

This theorem from which we derive all the axioms of the B group is also in

the correct translated form. We therefore have proved the general theorem

for the Gδdel system.

Theorem 8. If T is a theorem of the Gδdel system of set theory and N is

the set of grammatical conditions for Tr, the translation of T into the

combinatory system, then N \-Tr.
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