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A CATEGORICAL EQUIVALENCE OF PROOFS

MANFRED E. SZABO

0 Introduction.* An intuitionist proof of a sequent B —* A is essentially a
"function," and in this paper we shall study certain properties of the class
of such functions. In order to gain sufficient generality, we shall adopt a
"multilinear" point of view and take a propositional subsystem of
Gentzen's calculus LJ as a starting point.

Gentzen's Hauptsatz states that for every provable sequent Γ —»A, the
class [P] of LJ proofs of Γ —> A contains at least one cut-free representa-
tive. We can regard {P} as an equivalence class with respect to the
relation Eo on proofs in LJ defined by PE0Q iff Pand Q are proofs of the
same sequent Γ-*A. The question which arises naturally in category
theory is to what extent, if at all, Eo can be refined to an equivalence
relation E for a definite propositional fragment of LJ, denoted simply by
<<L" below, such that the following are true:

(i) Each E-class has a cut-free representative;
(ii) E separates the structural and operational rules of L conservatively;

(iii) If P and Q are two cut-free proofs of the sequent Γ —> A, then PE Q iff
P and Q are equi-general, where P and Q are equi-general, roughly
speaking, if the terms in the initial sequents of P can be made as distinct
as those in Q and conversely without destroying P and Q disproofs of the
same sequent (but not necessarily of Γ —* A).

(i) and (ii) will of course establish immediately certain invariance
properties of well-known logical theorems, whereas an effective notion of
"equi-generality" is needed in order to preserve the decidability of L.

Whilst the questions raised in (i), (ii), and (iii) are of logical interest
in their own right, the motivation for studying the particular deductive
system L lies in the fact that L constitutes, as is easily deducible from
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for their splendid hospitality.
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results of Lambek [4] (implicit also in Lawvere [7]), the generating system
for cartesian closed multicategories, equivalent in a categorical sense to
cartesian closed categories, whose significance for a "categorical founda-
tion" of mathematics has been amply demonstrated by Lawvere [6].
(iii) entails a solution of the "coherence problem" for such categories by
giving an effective description of the canonical maps in " free" cartesian
closed multicategories. The deeper algebraic significance of coherence
questions in connection with the generality of proofs will however be
discussed elsewhere. The results obtained in this paper are independent of
the theory of multicategories and a proper Gentzen system results from L,
as defined below, if "multicategory" is read as "discrete multicategory."

1 The Deductive System L. We begin by recalling the definition of a
multicategory, cf. [4]:

Definition: A multicategory 2tt consists of a class of "objects" together
with a class of "multimaps" f:Al9 . . ., An-> B. Among the multimaps is
an "identity map" 1̂  :A —> A for each objects.

For obvious reasons we call the domain of/ (which may be empty) the
"antecedent" and the codomain the "succedent" of the expression Al9 . . .,
An—> B. Multimaps are composed by "substitution/' using essentially the
cut rule for LJ. Substitution satisfies, furthermore, the following condi-
tions :

W A ' Λ A T > A > * M B

 r Δ Λ / Ώ

Γ,A,\->B =T>A>*-B

T-^A Δ,A,Θ -g* B Δ, A,Θ -£ B Φ, B, ψ Λ C

( l l i ; Φ, Δ, Γ, Θ , * - + C " Φ, Δ, Γ, Θ , * - * C

Δ -^ B Θ,A, Φ,B, φ A C Γ ^ A Θ,A, Φ, B, Ψ-^ C

(. , T-^A Θ , Λ , Φ , Δ , Ψ - ^ C Δ-^B θ , Γ, Φ, B, Ψ — C
[1V) θ , Γ, Φ, Δ, Ψ->C " θ , Γ, Φ, Δ, Φ - C

Remark: All notions and notations not explicitly defined in this paper
coincide with those in [9].

For the remainder of this paper, we shall assume that 9W is a fixed,
but arbitrary multicategory, and we stipulate the " te rms," "formulae"
(sequents), "axioms," and "rules of inference" of L (= L(9W)) as follows:

Definition: The terms of L are (i) the objects of 2tt; (ii) I; (iii) if A and B
are terms, then so are AΛB and A D £ . The terms in (i) will be called
"atomic" and will be denoted by Xl9 X2, etc.

Definition: The formulae of L are expressions of the form Al9 . . ,,An-*B,
where Al9 . . ., An, and B are terms.
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Definition: The axioms of L are (i) L/:Γ—>A, whenever / : Γ —» A is a

multimap in 2W, and LfΦ Lg, whenever / Φ g : Γ — A; (ii) —» I; (iii) A —* A.

The axioms in (i) will be called the "eigenaxioms" of L.

Definition: The rules of inference of L are the following:

Structural rules Operational rules

Γ->A Δ , A , θ - > £ Γ,A,B,A-*C
{ K o ) Δ, Γ, θ - £ {K*} Γ,AΛB,A-^C

( R l ) Γ,£, Δ - A ( R δ ) Γ, Δ - > A Λ £

Γ,l?,2?, Δ-+Λ Γ-*A Δ,2?,Θ->C
t R 2 ) Γ,£, Δ - A i R € ) Δ , Γ , A ^ , θ - , C

( R a J Γ, 5, A, Δ - C ( R ? j T->A^B .

The structural rules (Ro)-(R3) will also be called "cut," "thinning/'

"contraction," and "interchange," respectively.

Remark: The reader will recognize these rules as mild variants of

Gentzen's rules for the appropriate fragment of LJ. The present formula-

tion has been chosen in order to simplify certain calculations in the proofs

that follow.

Terminology: For linguistic convenience, we introduce the following

expressions: the explicitly mentioned instances of the term A in (Ro), of

the term B in (Ri)-(R2), and of the terms A and B in (R3)-(R7) will be called

"active" and those of the remaining terms, "passive" terms of the

inferences corresponding to the stated rules. We shall furthermore say

that two consecutive inferences in a proof tree are "mutually passive" if

the active terms of one inference are passive with respect to the other and

conversely.

With result (ii) above in mind, we now introduce the following special

class of multicategories:

Definition: A Gentzen multicategory is a multicategory 9JΪ closed under the

"structural" operations schematically defined for L, subject to the

following conditions: The multimaps of 9K satisfy a number of equations,

expressed conveniently as equations between "histories of construction" of

such multimaps, i.e., mapping trees, as follows:

Γ-*A Γ->A

(i) (α)= = (6),

Δ -*A Δ -*A

where (a) and (b) denote arbitrary, finitely many (possibly zero) antecedent

thinnings, contractions, and interchanges,provided the same terms of Γ are

active (R2)-terms in the two trees and the trees admit the same generaliza-

tion, i.e., the following steps transform both Γ's into identical sequences of
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numerals: (a) replace the terms of Δby distinct numerals; (b) replace the
"ancestors" of each term by the numeral which replaced that term inΔ;
(c) choose the numerals which must be omitted in (Rj's so that the same
numerals, with equal frequencies, occur in the sequences resulting from Γ;

(ii) cuts are permutable with arbitrary thinnings, contractions, and inter-
changes applied to either one of the two cut formulae, whenever such
permutations are defined; and if any term occurs both as a thinning and
subsequent cut term, then the thinning introducing the term and the cut
eliminating it, are replaceable by suitable thinnings.

Remark: The category of sets and functions in several variables should be
regarded as the paradigm of a Gentzen multicategory. The defining
equations between multimaps are in fact an abstraction of the known
coherence properties of such "monoidal" categories as proved by MacLane
[8] and Kelly [l], under the obvious interpretation of thinning, contraction,
and interchange as the adjunction, identification, and permutation of
variables, respectively. These "structural" operations on the class of
multimaps of a Gentzen multicategory are "combinatory" in the sense of
Curry, and the precise connection between cartesian closed categories and
combinatory logic is examined in detail in a paper by Lambek, to appear in
the Proceedings of the Conference on the "Connection between Category
Theory, Algebraic Geometry, and Intuitionistic Logic," held at Dalhousie
University in January 1971.

2 The Equivalence Relation E. We refine the equivalence relation Eo

mentioned in the Introduction by requiring that E is the largest refinement
of Eo satisfying the following conditions:

(i) all equations between "mapping t rees" in a Gentzen multicategory give
rise to equivalent proofs;
(ii) the rules of inference of L preserve the equivalence of proofs;
(iii) the pairwise permutations of consecutive, mutually passive inferences
in a proof tree preserve equivalence;
(iv) if fg is the result of substituting the multimap / in the multimap g, and
Lfg, L/, and Lg are the induced axioms of L, then Cut(L/, Lg)ELfg;
(v) the following proofs act as "identities" with respect to the cut:

A]ΛA B^B A'ΛA B^B
(a) f1— (b) A, B — AAB (C) A, A z> ff-> B

AAB —AAB Λ D B-* A D B

(vi) all proofs of the formula Γ —* I are equivalent;
(vii) the proof

A]ΛA B±B

A, B -> AAB Γ, AAB, Δ-> C

T,A, B, Δ -> C

induces a bijection between [Γ, AAB, Δ; C] and [Γ, A, Bf Δ; c];
(viii) the proof
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A*A B^B

Γ -> A =) B A, A^ B-> B
A, Γ-> B

induces a bijection between [Γ; A D B] and [A, Γ; B\\

(ix) the proofs

_ _ A _ M Λ B]3B

A, B-> A A, B -+ B

Γ-> A Λ £ AΛB-* A Γ-> AΛB A Λ £ - > B

Γ-> A Γ— B

induce a bijection between [T; AAB] and [Γ; A] x [Γ; 5];

(x) the following proofs are equivalent:

Γ-» A A -> B Θ,A, B, φ-» C Δ — £ θ , A, ff, Φ -> C

(a) Γ , Δ - ^ A Λ £ Θ , A Λ £ , Φ - ^ C (b) Γ -> A θ , A, A, Φ -> C

Θ, Γ, Δ, Φ->C Θ, Γ, Δ, Φ - C

"IV' and ( Ί β " denote the corresponding instances of axiom schema (iii).

Γ-^A A A Θ-^7?
"Cut(L/, M " denotes the cut Δ γ ' Q ^ .

f ί[Γ; A]" denotes the E -class of proof of the formula Γ — A and "[Γ; A] x

[Γ; J3]" the cartesian product of the corresponding classes.

For the sake of simplicity of notation, we shall also write "P = Q" for

Pe[P] and Qe[P\.

Remark: Conditions (i)-(x) have been stated in their most perspicuous form

and as such are highly redundant. This is immaterial for the purposes of

this paper.

3 Cut Elimination in L° Relative to E . We can now state and prove our first

result:

Cut elimination theorem. Every E -class of proofs in L has a cut-free

repres entative.

Proof: We assume familiarity with Gentzen's proof of the Hauptsatz for

LJ and merely indicate the modifications required in Gentzen's argument in

view of the differences between L and LJ and the presence of E. We first

note from a cursory study of the conditions on the multimaps in a Gentzen

multicategory that the following two proofs are not equivalent:

Γ,A,A, A-+B

(a) Γ, A, A-+B * 2 (b) Γ,A,A, A-> B.

Γ, A, A, Δ - B (Rl)

Hence Gentzen's "mix rule" is unsuitable for our purposes and we must

establish the theorem directly for cuts. Since L contains the term I and is

purely intuitionistic, we are also forced to specialize Gentzen's notions of

the "degree" and "rank" of a cut Cut(Q, P) where Q and P are repre-

sentatives of [Δ, A, Θ; B] and [Γ; A], respectively, as follows:
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The degree of Cut(Q, P) is the total number of Γs, Λ'S, and D's
occurring in the cut term A. We agree that a cut-free proof has degree 0.

The rank of Cut(Q, P) is the sum of the left rank and right rank of
Cut(Q, P). We agree that a cut-free proof has rank 0.

The left rank of Cut(Q, P) is the largest number of consecutive
formulae in a path of P, up to and including Γ—> A, which contain the cut
term A as their succedent.

The right rank of Cut(Q, P) is the largest number of consecutive
formulae in a path of Q, up to and including A, A, Θ —* B, which contain the
cut term A as an antecedent term.

We now carry out a double induction on the degree and rank of
Cut(Q, P). In each case to be considered, the difficulty lies not in finding a
proof of lower degree or rank (since the Hauptsatz already provides such
proofs), but lies rather in finding equivalent proofs of lower degree or
rank. We shall examine four cases in detail.

(i) The following two proofs are equivalent by condition (iv) of E and are of
ranks 2 and 0, respectively:

( a ) rHx Afχl7Θ
LJχ2 { b ) Δ ; Γ ) Q u / χ 2 _

Δ , 1 , KJ —> A 2

(ii) The following two proofs are equivalent by condition (iii) of E and are of
ranks n + 1 and n respectively:

A, A, ff,θ, C, Φ-+ D Γ-*C A,A, £, Θ, C, Φ-* D
(a) Γ — C Δ , A Λ £ , Θ , C, Φ-^D (b) A, A, B, Θ, Γ, Φ -> D

Δ , A Λ £ , Θ , Γ, Φ->D Δ , A Λ £ , Θ , Γ, Φ — D

(iii) The following two proofs are equivalent by conditions (i) and (x) of E
and are of degrees 1 and 0, respectively:

A, xl9 x}, xu xue
L-ίχ2

A, x u XUX1AX19Θ^X2

(a) Γ 4 χ1 Γ -£ Xx A, I l A I b Xι/<Xue ->X2

T, Γ-> XjΛXx Δ , X I A X I , β — X2

A, Γ, Γ,θ-X2

L/ Lg
Γ —» X± Δ, Xίf Xu Xx, X1} Θ—* X2

r —> xx A, .XΊ, Zt, .XΊ, r, θ —> x2

Γ H I . Δ,xltxlt r, Γ , Θ - ^ ^ 2

(b) T-^Xy Δ,X,, Γ, Γ, Γ,Θ->X2

Δ, Γ, Γ, Γ, Γ,O->X 2 ( p o s s i b l y (Rs),s

Δ,Γ,Γ,Θ^X2

 a n d ( R 2 ) ' S )

By condition (iv) of E, (b) is equivalent to the cut-free proof A, Γ, Γ, Θ —>
X2, where h stands for the multimaps obtained from / and g by the indicated
structural operations.
(iv) The following proofs are equivalent by conditions (i), (iii), and (viii) of
E and (a) and (d) are of degrees n + m + 1, and m and n, respectively:



A CATEGORICAL EQUIVALENCE OF PROOFS 183

A, Γ-> B Δ -+ A Θ, B, Φ -> C

(a) Γ-^AD.B Θ , Δ , A ^ f f , Φ - > C

θ , Δ, Γ, Φ - C

A]ΛA B^B

Δ - * A A, A D ^ - ^ J 5

(b) A, Γ-+B Δ,AQB-^B θ , £, Φ-^ C
Γ-* A D £ θ , Δ, A D £, Φ-» C

θ , Δ, Γ, Φ-> C

A, Γ - * £ A ^>A B]-Z B

Γ -» A 3 JB A, A ^ ^ - ^ B

(c) A, Γ-^B Θ,B, Φ-> C

Δ-^A Θ,A, Γ, Φ-^ C

θ , Δ, Γ, Φ - C

A, Γ-^ ,5 θ , B, Φ-* C

(d) Δ -> A θ , A, Γ, Φ-^ C

Θ, Δ, Γ, Φ— C

The remaining cases are proved similarly and establish the theorem.

4 Canonical Proofs in L Relative to E. Each E-class [P] is sufficiently

rich in cut-free representatives to enable us to reduce any given cut-free

proof Pe [P] to a definite canonical form within [P], We shall describe the

canonically equivalent proof Pr in several steps. All proofs occurring in

the reduction procedure will be cut-free.

(i) Inductions on the number of Λ'S and ^ 's, together with condition (v)

of E, show that P is equivalent to a proof Qx which does not involve axiom

schema (iii).

(ii) The following sequence of equivalent proofs shows that Q± is

equivalent to a proof Q2 which does not contain thinning terms of the form

BAC:

T,D,A->A

/ v Γ,C, D, Δ-+A
W Γ, B, C, D, Δ -*A

Γ, BΛC,D, Δ -+A

C -Sc C, D-> D Γ,D, Δ->A

(b) B, C-> C Γ, C, D, Δ -> A

Γ, ^ , C, D, Δ — A

Γ, BΛC, D, Δ -» A

c'Sc D^D
, . ^ , C -> C C, D-> D T, D, Δ -> A

- B A C - ^ C Γ ? C, Z), Δ->A

Γ, 5 A C , Z), Δ — A
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c]±c
(ά)

 B> c ->c Γ, D, A -*A
{ } . B Λ C -» C Γ, C,Z>, Δ ->A

Γ, B ΛC, D, Δ — A

(e) Γ,D,A-*A
V ' Γ , J 3 Λ C , Z > , Δ - A .

The equivalences of proofs (a)-(e) follow from conditions (i), (iii), (i), and
(i) of E, respectively.

(iii) The following two proofs are equivalent by conditions (i) and (iii)
of E and show that Q2 is equivalent to a proof Q3 which contains at most an
instance of (b):

Γ, A, B,A,B,A->C

Γ,A, B,AΛB,A->C
1 ' Γ, AAB9 A Λ £ , Δ -> C

Γ, AΛB, Δ -> C

Γ, A, £, A, B, Δ -> C

Γ, A, A, B, B, Δ -» C
(b) Γ, A, A, £, Δ-^C

Γ? A, B, Δ -> C
Γ, A Λ 5 , Δ -» C

(iv) The following pairs (a)-(b) and (c)-(d) of respectively equivalent
proofs show that Q3 is equivalent to a proof (?4 which does not contain
contraction terms of the form A z> B, if 5 was introduced by a thinning:

Γ, B, A 3 £, Δ -> C
JB -» A Γ, £, ^ , A 3 B, Δ -» C

(a) Γ, By B, A DB, A D B, Δ-* C
Γ, £, ^ , A 3 B, Δ -> C

(b) Γ, B, A 3 B, A — C

Γ, A, A 3 £, Δ -« C
A->A Γ, A, £, A 3 jg, Δ -> C

(c) Γ, A, A, A D JB, A 3 £, Δ -> C
Γ, A, A, A 3 B, A — C

T, A, A D 5, Δ - C

(d) Γ, A, A D 5, Δ — C.

The equivalence of (a) and (b), for example, is established by the following

sequence of equivalent proofs: (a) as above

A]-^A B]-% B B, B-> B T, B, A => B, A -* C
A,A^>B-+B T, B, B,A ^ B, A — C

(b) B-+ A Γ, B, A, A D £ , A ΏB, A -> C
Γ, Jg, JB, A D Jg, A 3 JB, Δ -> C

Γ, .g, Jg,A 3 B, Δ-> C
Γ, 5, A 3 5, Δ — C
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B-+A B^B B^B
B,A^B->B B, B-* B
B, B,A^ B— B Γ, £, A D B, Δ — C

Γ, £ , £, A => £ , A => £, A -> C
Γ, B, B, A D £, A -* C

Γ, 5 , A D 5, Δ -* C

B,A^B-B
B, B,A^ B — B Γ, £ , A 3 £, A -^ C

( } Γ, £ , £ , A D £ , A D £, A -> C

Γ, B, B, A => B, A -> C
Γ, E, A D £, A -* C

T, B, A => B9 A -> C
Γ, ^ , A 3 ^ , A D ̂ , A -» C

(e) Γ, ,5, ̂ , A D .g, A 3 £, A -» C
Γ, B, B,A^ B, Δ-> C

T, B,A^ B, A -> C

Conditions (i) and (iii) of E yield the equivalence of proofs (a)-(e) and of (e)
and Γ , ΰ , A ^ ΰ , Δ - C .

(v) Calculations similar to those in (iv) also show that Q4 is equivalent
to a proof Q5 which contains at most the shorter proofs of the following
pairs (a)-(b) and (c)-(d) of respectively equivalent proofs:

Γ, A, Δ-> B

A-+A Γ,C,A,*-*B Γ A Δ - > i ?
(a) Γ , A , A ^ C , A ? Δ - > i ? (b) ^ C A κ - B

Γ , A D C ? A ? A , Δ - ^ ^ Γ ' A C ' A ' Δ B

Γ, A D C, A , A - J5

Γ, A, A -> B

A ^ C Γ ? A ? A ? A - . ^ Γ A A - ^ E
(c) Γ ? A ? C D A ? A ? A - ^ ^ (d) A L ^ [ ^ ^

Γ ? C D A ? A ? A ? Δ - ^ ^ Γ > C D A > A > Δ 5 '
Γ, C -DA, A, A - B

(vi) By conditions (iii) and (ix) of E, Q5 is equivalent to a proof Q6

which contains at most a segment similar to (a) of the following two
equivalent proofs (a) and (b):

A -+A A -> B A-> A A— C

A, A DA -*B A, A-D A-> C

A,A^A,A,A^A- BΛC
( \ A, A,A^*A

9
A^A— BΛC

W
 A, A, A QA — BΛC

A-^A A,A-DA-* BΛC
A,A^ A,A^ A-* BΛC

A, A DA -^ BΛC



186 MANFRED E. SZABO

A — A A — B A -> A A-* C
A^A A, A D A-* B A-£ A A,A~D A— C
A,A^A,A^A — B A,A^ A,A^> A-> C

. A,A^A->B A,A^A->C
1 ' A, A D A, A, A D A-> BΛC

A,A,A^A,A^A->BAC

A,A9A^A-^ JBAC

A, AD A -» BΛC

(vii) By condition (i) of E, Q6 is equivalent to a proof Q7 which contains
at most the shorter proofs of the following pairs (a)-(b) and (c)-(d) of
respectively equivalent proofs:

T,A, A-*B
(a) Γ, A, A, A- B (b) Γ, A, Δ -> £

T,A, A^B

(c) Γ, B, A, A, θ -> C s, (d) Γ, A, B, A - C ,
VK3) S

Γ, A, Δ, 5, Θ — C

where the steps in (a) and (c) may have been made consecutive by the
permutation of several inferences in agreement with conditions (i) and (iii)
of E.

(viii) By conditions (i), (iii), and (iv) of E, Q7 is equivalent to a proof
Q8 which contains no applications of (Rj-ίRa) which can be relegated to the
corresponding structural operations on 2tt, and which can therefore be
avoided altogether.

(ix) By conditions (i) and (iii) of E, Q8 is equivalent to a proof Q9 with
the following properties: Q9 contains a maximal contraction-free subproof
R (with the obvious meaning of "subproof") such that QQ results from R by
means of applications of (R!)-(R3) alone in such a way that

(a) all contractions precede all thinnings;
(b) the only interchanges which follow R are interchanges required in (a);
(c) all interchanges precede all thinnings;
(d) the only thinnings which follow contractions are thinnings by which
contraction terms are re-introduced.

— I
(x) We agree that " the" canonical proof of Γ -^ I is the proof ZZZZ {a),

Γ— I
where (a) consists of thinnings only. By condition (vi) of E, Q9 is therefore
equivalent to a proof Q10 with the property that any "subproof" of Qlo

terminating in I is canonical.
Qlo is irredundarit in an obvious way and we let Pr = Qw. This

completes the description of a canonical representative of [P],

Terminology: The maximal contraction-free subproof R of Pf will be called
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the "principal part" and the part following the principal part, the
"ending" of Pr.

5 The Categorical Generality of Canonical Proofs inL. In order to define
the ''generality" of canonical proofs, we introduce the notion of an
"arrow" multicategory (Lambek calls it a "testing multicategory").

Definition: An arrow multicategory is a finite multicategory m whose
objects are denoted by " 0 " , " 1 " , . . ., "m - 1", and "ra", respectively,
and which has precisely one non-identity map α : 0, 1, . . ., m - 1 —» m.

Notation: "The" finite coproduct of the arrow multicategories xau . . ., mn

in the category of small multicategories (i.e., the "disjoint union" of
ml9 . . ., mn) will be denoted by Σ/, mt .

The generality of a canonical proof P: Γ —> A in L is now defined as
follows:

Definition: The generality of P: Γ —> A is the generality of the principal
part PΊT'-^A' of P. The generality of P' is the set of all pairs

\H,λji mi), where E'.LJI m* —* 9H is a functor for which there exists a

proof P°: Γ° - A0 in L ( Σ * m,) such that H(P°) = P1 (with the obvious
meaning of H(P0)). "P°" will be called a "generalization" of P'. We define
H(\) = I for all functors H.

Definition: Two canonical proofs P and Q of the same formula Γ —»A are
equi-general iff P and Q have the same generality, contain the same
number of contractions, and P° and Q° are proofs of the same formula
whenever H(P°) and H(Q°) are the principal parts of P and Q, respectively.

We can now prove the existence of an effective criterion for the
equivalence of canonical proofs:

Generality theorem. Two canonical proofs P and Q of a formula Γ —> A in L
are E -equivalent iff they are equi-general.

Proof: Suppose that P and Q are equivalent. We may assume that they
contain eigenaxioms, since the theorem holds trivially otherwise. By the
definition of generality, it suffices to show that P and Q can differ only in
the order of application of permutable mutually passive antecedent in-
ferences. Since it is clear from the lack of choice in the construction of
succedents that P and Q must contain the same number of applications of
rules (R5) and (R7), we need merely show that they also contain the same
number of applications of (R4) and (Eβ), that the relative order of applica-
tion of rules (R5) and (Rj is the same in P and Q, and that the eigenaxioms
of P, ordered from left to right, contain the same number of antecedent
terms as the corresponding eigenaxioms of Q. These properties of P and Q
are a direct consequence of the definition of canonical proofs and the
following easy calculations:
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C) Γ ? xi> xi> A —> X 2 , Γ, A -+ X 2

Γ, Xl9 X2, Xι, X2, A —> X3

Γ, X1ΛX2? XJ,ΛX2, Δ —* X3 Γ, X1 Λ ! 2 ) Δ —* X3 ,

Γ, l i Λ ^ , Δ —» X3

where / f results from / in 2JΪ by the required interchange and contractions;

A -> C A, Γ-> £ , A, Γ->£
U l l } A, CD A, Γ - J 5 ^ A , CD A, Γ - 5

C -> D A, Γ-+ ^
C -> Z) C, i>D A, Γ-^ J9 C -» Z) A, Γ — B

(iv) C -» Z) C, D=> Cf Z> DA, Γ-^ ^ y C -^ D C, D P A, Γ-+ff
C, D P C, D D C, D D A, Γ — B C, D D C, D D A, Γ -> B

C,D ^ C, D DA, Γ— £

(v) step (vi) of the reduction to canonical form assures the identical
order of application of rules (R5) and (Re) in P and Q;

(vi) if P1^P2, then
P P

Γ-±A Δ -2 A , A, Γ - > A Λ A

Γ Λ — A A A ^ l 3 j

Γ,Δ AAA Γ ? Δ _ A Λ A .

(vii) if Pλφ P2, then

Λ , Γ - i £ i , Δ - ^ £ / A , Δ , g 3 i , Γ - ^ g
4 Γ R D 4 Λ - ^ 7? ^ 3

A, Γ , ϋ D A , Δ - i ^ A ? Γ , J 5 D A , Δ - 5

Γ, A, A, A -> -B
(viii) Γ,A,Δ — B £ Γ, A, A, Δ — J5.

Γ, A, A, A - £

Remark: Here and below, we are loosely labelling the following two
equivalent proofs as "mutually passive7 7:

Γ, Xl9 X2, A —* X3 Γ, Xl9 X2, A —» X3

(r>\ Γ, Xl9 X2, Xl9 A —•» X 3 /, v Γ, X ! Λ X 2 , A —» X 3

Γ, X 1 ? X 2 , X 1 ? X 2 , A —> X 3 Γ, X 2 ? XlhX2, 4 —> X 3

1 , -^ij -^2> Λ^ Λ -^2j A * JC3 1 , A^ij -Λ 2̂> A î A A 2 > A > A^3 .

This is reasonable since their equivalence follows from condition (iii) of E
via a trivial calculation using conditions (i) and (ii) of E.

Suppose now that P and Q are equi-general. It suffices to show that
(i) P and Q contain identical axioms in identical order from left to right,
(ii) the endformulae of the principal parts of P and Q are identical, (iii) the
principal parts of P and Q differ at most in the order of application of
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permutable mutually passive antecedent inferences, and (iv) the endings of
P and Q differ at most in the order of application of permutable structural
inferences. The equivalence of P and Q will then follow from conditions
(iii) and (i) of E, respectively.

(i) is an easy consequence of the paucity of multimaps in arrow
multicategories and the fact that P and Q are canonical proofs of the same
formula, and that therefore each generalization of the principal part of P

must be a proof of the same formula in L\λji m* j as the corresponding
generalization of the principal part of Q.

(ii) and (iii) are seen as follows: By the definition of equi-general
proofs, P and Q involve the same number of contractions and these
contractions, if any, can occur only as the result of applications of rules
(R5) and (Rj. The subterm property of canonical proofs and the fact that
eigenaxioms contain only atomic terms, imply moreover, that P and Q
involve the same number of applications of rules (R4), (R5), and (R7). Since
the respective axioms and conclusions of P and Q contain the same terms
in the same order, the canonical nature of the two proofs ensures, in
addition, that the same 3 is not introduced by a thinning in one proof and by
an application of (Rj in the other. Hence the number of applications of (Rj
and that of thinnings in the principal parts of P and Q with terms of the
form A z> B coincide. By the definition of canonical proofs, the endformulae
of the principal parts of P and Q are therefore identical.

(iv) follows at once from (ii) and (iii) since P and Q prove the same
formula canonically. This establishes the theorem.

6 Applications.

1. The deductive system L can be considered as an extension by constants
and function symbols of the deductive system Lo whose terms are the
objects of 9JΪ, whose axioms are the eigenaxioms of L, and whose rules of
inference are the structural rules of L. By the subterm property of
cut-free proofs, condition (i) of E, and the generality theorem it follows
that L is a conservative extension of Lo. This answers question (ii) raised
at the beginning of this paper.

2. By taking the terms of L as objects, and the E-classes of proofs of L as
multimaps, we obtain a cartesian closed multicategory F(Wl) "free" on 9JΪ
(with a definition of "cartesian closed multicategory" based on the
definition of a "biclosed monoidal multicategory" in Lambek [4]).

3. By virtue of conditions (i) and (ii) of E, any arbitrary category is
isomorphic to a category generated by a deductive system whose terms are
the objects of the given category and whose only rule of inference is the
cut, specialized to formulae with non-empty single-term antecedents.
Frequently categories "with additional structure" such as distinguished
objects, endofunctors, etc., can be studied by considering extensions of the
generating system of the "underlying" categories and by lifting well-known
theorems of logic to the level of categories. The fact that E separates the
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structural and operational rules of L conservatively, for example, means
that any arbitrary (small) multicategory can be fully and faithfully
embedded in a free cartesian closed multicategory.

4. Professor Bernays once pointed out to the author that one reason for the
success of Gentzen's Hauptsatz is the fact that (RQ) comes almost trivially
close to being a cut rule if we identify A and B in the schema above. The
categorical interpretation of (Ro) as ' 'generalized composition'' and of (Rj
as "generalized evaluation" sheds new light on this remark since it shows
that in the case of cartesian closed multicategories, for example, the
cartesian closed structure is ''closed under substitution7' precisely be-
cause of the presence of "evaluation."

5. The non-equivalent canonical proofs of a formula Γ-^A in L form a
recursive set relative to the eigenaxioms of L. This fact follows from
Gentzen's decision procedure for the propositional fragment of LJ, together
with the generality theorem: If Γ -+A does not contain a subterm of the
form B =>C, then Γ -* A has only finitely many non-equivalent canonical
proof schemata. If Γ —* A does contain subterms of the form B ^ C and
admits contractions, then it follows from the generality theorem that Γ —» A
has countably many non-equivalent proof schemata. We can give a
recursive description of these schemata by indexing them by means of
recursively ordered ^-tuples of natural numbers, where k denotes the
number of places in a canonical proof of Γ -> A which admit contractions.
In view of the generality theorem, only finitely many non-equivalent
schemata exist at each stage, and these can be calculated by Gentzen's
decision procedure for the propositional fragment of LJ.

6. The generality theorem gives a recursive solution of the "coherence
problem" for cartesian closed categories via cartesian closed multi-
categories by showing that although coherence in the sense of MacLane-
Kelly, cf. [l], [2] and [8], does not hold in general for free cartesian closed
categories, it is possible to associate with each canonical map in such
categories a measure of complexity, which we shall call the "degree of
coherence" of that map, and which is defined as the pair (g, n), where "g"
denotes the generality of one of the canonical proofs P representing the
given map in the appropriate deductive system L, and "n" denotes the
number of contractions in P, such that a diagram of composite canonical
maps commutes iff the composite maps of the two sides of the diagram
have the same degree of coherence, i.e., iff their representing canonical
proofs in L are equi-general.
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