Notre Dame Journal of Formal Logic Volume XV, Number 1, January 1974 NDJFAM

SOME RESULTS AND ALGEBRAIC APPLICATIONS IN THE THEORY OF HIGHER-ORDER ULTRAPRODUCTS

WILFRED G. MALCOLM

Introduction Perhaps the chief result of this paper is the higher-order extension, (Theorems 3.11, 3.12), via the ultraproduct construction, of a first-order embedding theorem of Robinson, cf. [7], p. 34, Theorem 2.4.1.

Section 1 summarises the higher-order ultraproduct construction and gives a partial answer to the question of necessary and sufficient conditions for the preservation of the 'fullness' property by that construction. Section 2 provides an extension of Łoś's theorem for a first-order ultraproduct and an associated formal language to a higher-order ultraproduct and an associated higher-order language involving a special class of formulae of infinite length. Section 3 develops a number of results involving subsystems of higher-order systems and leads to the embedding theorems. Section 4 illustrates some of these results in two algebraic situations. The first is Stone's representation theorem for non-finite boolean algebras and the second, properties of Sylow (maximal) p-subgroups of locally normal groups.

Terminology Let **T** be the class of finite types as described in Kreisel and Krivine [5], pp. 95-101. A (relational) system of order $\tau \in \mathbf{T}$, (hereafter called a τ -system), is a collection $M = \{\mathbf{E}^{\sigma} | \sigma \leq \tau\} \cup \{\epsilon^{\sigma} | \sigma \leq \tau, \sigma \neq 0\} \cup \{R_1, \ldots, R_p, \ldots\}$, where $\{\mathbf{E}^{\sigma} | \sigma \leq \tau\}$ is a collection of non-empty, mutually disjoint classes; for each $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, ϵ^{σ} is an n + 1-placed 'membership' relation defined on $(\mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}) \times \mathbf{E}^{\sigma}$; and each R_p is an *n*-placed relation on some $\mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}, \sigma_1, \ldots, \sigma_n \leq \tau$. Such an R_p is said to be of type $(\sigma_1, \ldots, \sigma_n)$. If $\sigma = (\sigma_1, \ldots, \sigma_n)$, $\sigma \leq \tau$ and R_p is a relation of type $(\sigma_1, \ldots, \sigma_n)$ then R_p may be regarded as a nominated member of \mathbf{E}^{σ_1} .¹ If $(a_1, \ldots, a_n) \in \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ and $a \in \mathbf{E}^{\sigma}$ then (a_1, \ldots, a_n, a) ; that is if, and only if, a_1, \ldots, a_n , a are related by ϵ^{σ} . \mathbf{E}° is the class of individuals of M. The

^{1.} If R_p is 0-placed of type 0 it will be regarded as a nominated member of \mathbf{E}^0 .

members of the classes \mathbf{E}^{σ} , $\sigma \leq \tau$, are the objects of M. The R_p 's are called the constant relations of M.

If $N = \{\mathbf{F}^{\sigma} | \sigma \leq \tau_1\} \cup \{\epsilon^{\sigma} | \sigma \leq \tau_1, \sigma \neq 0\} \cup \langle S_1, \ldots, S_p, \ldots \rangle$ is a τ_1 -system then M and N are said to be similar if $\tau = \tau_1$, and if, for every p, the corresponding relations R_p and S_p are both k-placed, for some integer k, and of type $(\sigma_1, \ldots, \sigma_k)$ for some $\sigma_1, \ldots, \sigma_k \leq \tau$. The class of all systems similar to M is called the similarity class of M.

M is called a *normal* structure if, for all $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, and for all $a, b \in \mathbf{E}^{\sigma}$, a = b if, and only if, $\hat{a} = \hat{b}$, where $\hat{a} = \{(a_1, \ldots, a_n) \mid (a_1, \ldots, a_n) \in \sigma^{\sigma}a\}$ and \hat{b} is defined similarly. Unless otherwise stated all systems later discussed will be assumed normal.

 $L^{\tau}(M)$ is a formalized logic associated with the similarity class of M, where $L^{\tau}(M)$ has, for each $\sigma \leq \tau$, a countable class of variable symbols of type σ , viz $\{x^{\sigma}, y^{\sigma}, \ldots x_{1}^{\sigma}, y_{1}^{\sigma}, \ldots\}$; for each $\sigma \leq \tau$, $\sigma \neq 0$, a 'membership' relation symbol ϵ^{σ} ; and $\langle R_{1}, \ldots, R_{p}, \ldots \rangle$ a sequence of constant relation symbols. (No confusion will be caused by using ' ϵ^{σ} , ' R_{p} ' to denote both elements of M and of $L^{\tau}(M)$.) For each $\sigma \leq \tau$, $L^{\tau}(M)$ will have an identity symbol, =.

A standard interpretation of $\mathbf{L}^{r}(M)$ with respect to any member, N, of the similarity class of M will be one in which each symbol ϵ^{σ} of $\mathbf{L}^{r}(M)$ denotes the 'membership' relation, ϵ^{σ} , of N; each symbol R_{p} denotes the relation R_{p} of N; and each identity symbol of type σ of $\mathbf{L}^{r}(M)$ denotes the identity relation on \mathbf{F}^{σ} of N.

Let $\mathbf{a} = \langle a_1, a_2, \ldots \rangle$ be a sequence of objects of M. If ϕ is a formula with free variables $x_{i_1}^{\sigma_1}, \ldots, x_{i_n}^{\sigma_n}$, then a is said to be ϕ -allowable if $a_{ik} \in \mathbf{E}^{\sigma_k}$, $1 \leq k \leq n$. A ϕ -allowable sequence a is said to satisfy ϕ in M, written $M \models \phi(\mathbf{a})$, (or if ϕ is written $\phi(x_{i_1}^{\sigma_1}, \ldots, x_{i_n}^{\sigma_n})$ then $M \models \phi(\mathbf{a})$ may be alternatively written as $M \models \phi(a_{i_1}, \ldots, a_{i_n})$), if the sequence $\langle a_{i_1}, \ldots, a_{i_n} \rangle$ satisifes ϕ in Munder the assignment of a_{i_k} to $x_{i_k}^{\sigma_k}$, $1 \leq k \leq n$. ϕ holds in $M, M \models \phi$, if for all ϕ -allowable sequences a, $M \models \phi(\mathbf{a})$.

1 Higher Order Ultraproducts Let $\{M_i | i \in I\}$ be a family of τ -systems belonging to the same similarity class. That is, for each $i \in I$, let $M_i = \{\mathbf{E}_i^{\sigma} | \sigma \leq \tau\} \cup \{\epsilon^{\sigma} | \sigma \leq \tau, \sigma \neq 0\} \cup \langle R_1, \ldots, R_p, \ldots \rangle$. If X is an ultrafilter over I then the ultraproduct of the family is the τ -system $\pi M_i/X = \{\pi \mathbf{E}_i^{\sigma}/X | \sigma \leq \tau\} \cup \{\epsilon^{\sigma} | \sigma \leq \tau, \sigma \neq 0\} \cup \langle R_1, \ldots, R_p, \ldots \rangle$. For each $\sigma \leq \tau, \pi \mathbf{E}_i^{\sigma}/X$ is the set of equivalence classes of the cartesian product $\pi_{i\in I} \mathbf{E}_i^{\sigma} = \{f | f: I \rightarrow \bigcup \{\mathbf{E}_i^{\sigma} | i \in I\}, f(i) \in \mathbf{E}_i^{\sigma}\}$ under the equivalence relation defined by: $f \sim g$ if, and only if, $\{i \mid f(i) = g(i)\} \in X$. The equivalence class of f is denoted by \overline{f} . For each $\sigma \leq \tau, \sigma = (\sigma_1, \ldots, \sigma_n), \epsilon^{\sigma}$ is defined in $\pi M_i/X$ by: $(\overline{f}_1, \ldots, \overline{f}_n) \epsilon^{\sigma} f$ if, and only if, $\{i \mid (f_1(i), \ldots, f_n(i)) \in \sigma(i)\} \in X$. Similarly each R_p , (where, for each M_i, R_p is k-placed and of type $(\sigma_1, \ldots, \sigma_k)$ say) is defined in $\pi M_i/X$ by, $R_p(\overline{f}_1, \ldots, \overline{f}_k)$ if, and only if, $\{i \mid R_p(f_1(i), \ldots, f_k(i))\} \in X$.

The necessary lemmas to support the above definitions are assumed. It is noted that $\pi M_i/X$ belongs to the same similarity class as the M_i . The requirement of similarity for the family $\{M_i | i \in I\}$ is not a necessary one for the definition of the ultra-product. A relaxation of the similarity condition in the case of the first-order ultraproduct construction is discussed in a paper by the author [6]. The method extends to higher order systems, if desired.

Theorem 1.1 If each member of $\{M_i | i \in I\}$ is a normal system then so is $\pi M_i/X$.

Proof: Take \overline{f} , $\overline{g} \in \mathbf{E}^{\sigma}$, $\sigma \leq \tau$. Let $F = \{i \mid f(i) = g(i)\}$. Assume $\overline{f} = \overline{g}$, that is $F \in X$. Now $(\overline{f_1}, \ldots, \overline{f_n}) \in^{\sigma} \overline{f}$ if, and only if, $G \in X$, where $G = \{i \mid (f_1(i), \ldots, f_n(i)) \in^{\sigma} f(i)\}$. But each M_i is normal and so $H \supseteq G \cap F$, where $H = \{i \mid (f_1(i), \ldots, f_n(i)) \in^{\sigma} g(i)\}$. Hence $H \in X$ and so $(\overline{f_1}, \ldots, \overline{f_n}) \in^{\sigma} \overline{g}$. Similarly $(\overline{f_1}, \ldots, \overline{f_n}) \in^{\sigma} \overline{f}$ if $(\overline{f_1}, \ldots, \overline{f_n}) \in^{\sigma} \overline{g}$ and so $\overline{f} = \overline{g}$.

Conversely, assume $\overline{f} \neq \overline{g}$, that is $F \notin X$ and so $CF \in X$. Now as each M_i is normal there exists for each $i \in CF$, $(a_1^i, \ldots, a_n^i) \in \mathbf{E}_i^{\sigma_1} \times \ldots \times \mathbf{E}_i^{\sigma_n}$ such that (a_1^i, \ldots, a_n^i) 'belongs' to one, and only one, of f(i), g(i). For each $i \in CF$ define $f_j(i) = a_j^i$, $1 \leq j \leq n$. Thus \overline{f}_j , $1 \leq j \leq n$, are well defined as $CF \in X$. Let $F_0 = \{i \mid (f_1(i), \ldots, f_n(i)) \in^{\sigma} f(i)\}$ and $G_0 = \{i \mid (f_1(i), \ldots, f_n(i)) \in^{\sigma} g(i)\}$. Now $(CF \cap F_0) \cup (CF \cap G_0) = CF$ and $(CF \cap F_0) \cap (CF \cap G_0) = \emptyset$. Therefore one, and only one, of $\overline{f}, \overline{g}$. Thus $\overline{f} \neq \overline{g}$. Q.E.D.

A τ -system *M* is termed *full* if, for each $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, and for each subclass **K** of $\mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$, there exists an object $a \in \mathbf{E}^{\sigma}$ such that $\hat{a} = \mathbf{K}$. The next three theorems discuss the fullness of the ultraproduct of a family of full systems.

Theorem 1.2 Let $\{M_i | i \in I\}$ be a family of similar and full τ -systems. If X is a given ultrafilter over I and $\pi M_i/X$ the ultraproduct then for each $\sigma \leq \tau, \sigma = (\sigma_1, \ldots, \sigma_n)$, and for each subclass K of $\mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$, there exists some $\overline{f} \in \mathbf{E}^{\sigma}$ such that $\mathbf{K} \subseteq \overline{f}$.

Proof: For each $i \in I$, let $K_i = \{(f_1(i), \ldots, f_n(i)) \mid (\bar{f}_1, \ldots, \bar{f}_n) \in \mathbf{K}\}$. But each M_i is full and so there exists some object $a_i \in \mathbf{E}_i^\sigma$ such that $\hat{a}_i = K_i$. Define $\bar{f} \in \mathbf{E}^\sigma$ by $f(i) = a_i$, for each $i \in I$. Take any $(\bar{f}_1, \ldots, \bar{f}_n) \in \mathbf{K}$. Hence $\{i \mid (f_1(i), \ldots, f_n(i)) \in \sigma f(i)\} = I$. But $I \in X$ and so $(\bar{f}_1, \ldots, \bar{f}_n) \in \sigma \bar{f}$. Thus $\mathbf{K} \subseteq \hat{f}$. Q.E.D.

Theorem 1.3 Let $\{M_i | i \in I\}$ be a family of similar and full τ -systems. Let X be an ultrafilter over I and $\pi M_i/X$ is the resulting ultraproduct. If $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, and if **K** is a subclass of $\mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ such that $|\mathbf{K}| = \beta$, (that is the cardinality of **K** is β), then there exists no $\bar{f} \in \mathbf{E}^{\sigma}$ such that $f = \mathbf{K}$ only if X is β -incomplete.

Proof: Let the members of **K** be indexed by β , that is $\mathbf{K} = \{(\overline{g}_1, \ldots, \overline{g}_n)_j | j < \beta\}$. Further, for each $j < \beta$, let (g_1, \ldots, g_n) be an arbitary but fixed representation of $(\overline{g}_1, \ldots, \overline{g}_n)$. Let $K_i = \{(g_1(i), \ldots, g_n(i))_j | j < \beta\}$, each $i \in I$ and as in Theorem 1.2 let $\overline{f} \in \mathbf{E}^{\sigma}$ be defined such that $f(i) = K_i$, each $i \in I$. Thus $K \subseteq \widehat{f}$.

Assume there exists no $\overline{g} \in \mathbf{E}^{\sigma}$ such that $\hat{\overline{g}} = \mathbf{K}$ and so there exists some $(\overline{f}_1, \ldots, \overline{f}_n) \in \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ such that $(\overline{f}_1, \ldots, \overline{f}_n) \in \hat{\overline{f}}$ but is not a member of \mathbf{K} . Let $F = \{i \mid (f_1(i), \ldots, f_n(i)) \in \sigma(i)\}$ and so $F \in X$. Let $F_j = F \cap \{i \mid (f_1(i), \ldots, f_n(i)) =$ $(g_1(i), \ldots, g_n(i))_j$, for all $j < \beta$. Now $F_j \notin X$, $j < \beta$, as $(\bar{f}_1, \ldots, \bar{f}_n) \notin K$. Further, $\bigcup \{F_j \mid j < \beta\} = F$ as, for all $i \in I$, $f(i) = K_i$, and the K_i have been defined using only the fixed representations of the members of K. Therefore $\bigcap \{CF_j \mid j < \beta\} \cap F = \emptyset$ and hence X is β -incomplete. Q.E.D.

The question as to whether the incompleteness of the ultrafilter X guarantees the non-fullness of the ultraproduct does not seem to have an immediate answer. The next theorem is a possible step towards such an answer.

Theorem 1.4 Let $\{M_i | i \in I\}$ be a family of similar and full τ -systems. Let X be a β -incomplete ultrafilter over I. $\pi M_i / X$ is the resulting ultraproduct. If for $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, there exists some $\mathbf{K} \subseteq \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$, say $\mathbf{K} =$

 $\{ (\overline{g}_1, \ldots, \overline{g}_n)_j \mid j < \alpha \}, \ \beta \leq \alpha, \ such \ that \ G \in X, \ where \ G = \bigcap \{ CF_{m,n} \mid m, n < \beta, m \neq n \}, \ and \ F_{m,n} = \{ i \mid (g_1(i), \ldots, g_n(i))_m = (g_1(i), \ldots, g_n(i))_n \}, \ all \ m, n < \beta, m \neq n, then \ there \ exists \ no \ \overline{f} \in \mathbf{E}^{\sigma} \ such \ that \ \overline{f} = \mathbf{K}.$

Proof: As X is β -incomplete let $\{H_k | k \leq \beta\}$ be a family of members of X such that $\bigcap \{H_k | k \leq \beta\} = \emptyset$. Assume there exists $\overline{f} \in \mathbf{E}^{\sigma}$ such that $\hat{f} = \mathbf{K}$. Thus, for each $j \leq \alpha$, $(\overline{g}_1, \ldots, \overline{g}_n)_j \in^{\sigma} \overline{f}$ if, and only if, $(\overline{g}_1, \ldots, \overline{g}_n)_j \in \mathbf{K}$. For each $j \leq \beta$ put $G_j = \{i \mid (g_1(i), \ldots, g_n(i))_j \in^{\sigma} f(i)\}, G'_j = G_j \cap G$ and $H'_j = \{i \mid (g_1(i), \ldots, g_n(i))_j \in^{\sigma} f(i)\}$.

 $G'_i \cap H_j$. Thus G'_j , $H'_i \in X$ and $\bigcup \{C'H'_j | j < \beta\} = G$, where $C'H'_j = G \cap CH'_j$. Now define $(\bar{f}_1, \ldots, \bar{f}_n) \in \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ as follows: For all $i \in C'H'_0$ put $(f_1(i), \ldots, f_n(i)) = (g_1(i), \ldots, g_n(i))_0$. Assume $(f_1(i), \ldots, f_n(i))$ has been defined for all $i \in \bigcup \{C'H'_j | j < \delta\}$, for some $\delta < \beta$, and define $(f_1(i), \ldots, f_n(i)) = (g_1(i), \ldots, g_n(i))_\delta$, for all $i \in \bigcap \{H'_j | j < \delta\}$ - H'_δ . By transfinite induction $(f_1(i), \ldots, f_n(i))$ is defined for all $i \in G$, as $\bigcup \{C'H'_j | j < \beta\} = G$. Hence $(\bar{f}_1, \ldots, \bar{f}_n)$ is well defined as $G \in X$.

But $(\overline{g}_1, \ldots, \overline{g}_n)_j \neq (\overline{f}_1, \ldots, \overline{f}_n)$, for any $j \leq \beta$, as $\{i \mid (g_1(i), \ldots, g_n(i))_j = (f_1(i), \ldots, f_n(i))\} \cap G = \bigcap \{H'_k \mid k \leq j\} \cap CH'_j$, and $CH'_j \notin X$. Hence $(\overline{f}_1, \ldots, \overline{f}_n) \notin K$. But $(\overline{f}_1, \ldots, \overline{f}_n) \epsilon^{\sigma} \overline{f}$ as $\{i \mid (f_1(i), \ldots, f_n(i)) \epsilon^{\sigma} f(i)\} \supseteq G$. This contradicts the assumption that $\overline{f} = K$ and hence the theorem is established. Q.E.D.

2 Ultraproducts and an Associated Higher-Order Language. Let $\{M_i | i \in I\}$ be a family of τ -systems of the same similarity class. \mathcal{L}^{τ} is the formalized language associated with this similarity class, as described in the introduction. If $\mathfrak{a} = \langle \overline{f_1}, \overline{f_2}, ... \rangle$ is a sequence of elements where each member of the sequence is an object of $\pi M_i/X$, for some ultrafilter X, then $\mathfrak{a}(i) = \langle f_1(i), f_2(i), ... \rangle$ is the associated sequence of objects of M_i , each $i \in I$. The first theorem of this paragraph is the natural extension of Łoś's theorem for a first order ultraproduct and associated language.

Theorem 2.1 Let X be a given ultrafilter over I. If ϕ is any well formed formula (wff) of \mathcal{L}^{τ} and $\mathfrak{a} = \langle \overline{f}_1, \overline{f}_2, ... \rangle$ any ϕ -allowable sequence then $\pi M_i/X \models \phi(\mathfrak{a})$ if, and only if, $\{i \mid M_i \models \phi(\mathfrak{a}(i))\} \in X$.

Proof: The details of proof are straightforward extensions of those for the first order theorem-for which see Kochen [3], pp. 226-229, Theorem 5.1.

Corollary If ϕ is a sentence of \mathcal{L}^{τ} then $\pi M_i/X \vDash \phi$ if, and only if, $\{i \mid M_i \vDash \phi\} \in X$.

Proof: Immediate from Theorem 2.1.

For the purpose of later application (see footnote on page 15), the language \mathcal{L}^{τ} is extended to include a wider class of formulae, developed relative to $\pi M_i/X$ as follows: Let $\{\phi_t \mid t \in \alpha\}$ be any class of wff's of \mathcal{L}^{τ} such that (i) only a finite number of distinct free variables occur in all of the ϕ_t , $t \in \alpha$; (ii) for any ϕ_t -allowable sequence, a, (because of (i) any sequence allowable for one ϕ_t will be allowable for all), and for all $k \in \alpha$, if there exists some $j \in I$ such that $M_j \models \phi_k(\mathfrak{a}(j))$ then $\{i \mid M_i \models \phi_k(\mathfrak{a}(i))\} \in X$. The infinite

disjunction $V_{t \in \alpha} \phi_t$ will be a $(\pi M_i / X)$ allowable formula.

Formulae generated by the rules of formation of \mathcal{L}^{τ} from the wffs of \mathcal{L}^{τ} together with the $(\pi M_i/X)$ allowable disjunctions will comprise the wider class of formulae of \mathcal{L}^{τ} . $\mathcal{L}^{\prime \tau}(\pi M_i/X)$, or in context just $\mathcal{L}^{\prime \tau}$, will denote \mathcal{L}^{τ} with this wider class of formulae.

Theorem 2.2 Let X be a given ultrafilter over I. If ϕ is any wff of $\mathcal{L}^{\prime \tau}$ and a any ϕ -allowable sequence of objects of $\pi M_i/X$ then $\pi M_i/X \models \phi(\mathfrak{a})$ if, and only if, $\{i \mid M_i \models \phi(\mathfrak{a}(i))\} \in X$.

Proof: In view of the inductive procedures of the proof of Theorem 2.1 it is necessary only to consider the case where ϕ is of the form $\bigvee_{t \in a} \phi_t$ as described above. First assume that $\pi M_i / X \models \bigvee_{t \in a} \phi_t(\mathfrak{a})$ and so by the semantical rules for a disjunction there exists some $k \in a$ such that $\pi M_i / X \models \phi_k(\mathfrak{a})$. Hence from Theorem 2.1, $\{i \mid M_i \models \phi_k(\mathfrak{a}(i))\} \in X$ and so $\{i \mid M_i \models \bigvee_{t \in a} \phi_t(\mathfrak{a}(i))\} \in X$.

Conversely, assume that $\{i \mid M_i \models \bigvee_{t \in \alpha} \phi_t(\mathfrak{a}(i))\} \in X$. Hence there exists some $j \in I$ such that $M_j \models \bigvee_{t \in \alpha} \phi_t(\mathfrak{a}(i))$ and thus some $k \in \alpha$ such that $M_j \models \phi_k(\mathfrak{a}(j))$. Therefore $\{i \mid M_i \models \phi_k(\mathfrak{a}(i))\} \in X$ and so $\pi M_i / X \models \phi_k(\mathfrak{a})$. Therefore $\pi M_i / X \models \bigvee_{t \in \alpha} \phi_t(\mathfrak{a})$. Q.E.D.

Corollary If ϕ is a sentence of \mathcal{L}'' then $\pi M_i/X \models \phi$ if, and only if, $\{i \mid M_i \models \phi\} \in X$.

Proof: Immediate from Theorem 2.2.

Theorem 2.3 Let X be a given ultrafilter over I. If K is a class of wffs of $\mathcal{L}^{\prime\prime}$ and a any sequence of objects of $\pi M_i/X$, (allowable for all members of K), then $\pi M_i/X \models \mathbf{K}(\mathfrak{a})$ if $\{i \mid M_i \models \mathbf{K}(\mathfrak{a}(i))\} \in X$.

Proof: Assume $\{i \mid M_i \models \mathbf{K}(\mathfrak{a}(i))\} \in X$. Thus for all $\phi \in \mathbf{K}$, $\{i \mid M_i \models \phi(\mathfrak{a}(i))\} \in X$ and hence $\pi M_i / X \models \phi(\mathfrak{a})$. That is $\pi M_i / X \models \mathbf{K}(\mathfrak{a})$. Q.E.D.

Corollary If K is a collection of sentences of $\mathcal{L}^{\prime \tau}$ then

 $\pi M_i / X \models \mathbf{K} \text{ if } \{i \mid M_i \models \mathbf{K}\} \in X.$

Proof: Immediate from Theorem 2.3.

The final theorem of this paragraph is a partial converse to Theorem 2.3.

Theorem 2.4 Let X be a given ultrafilter over I. If K is a set of wffs of \mathcal{L}'^{τ} such that $|K| = \beta$ and X is β -complete then, for any allowable sequence \mathfrak{a} , $\pi M_i / X \models K(\mathfrak{a})$ only if $\{i | M_i \models K(\mathfrak{a}(i))\} \in X$.

Proof: Assume $\pi M_i / X \vDash K(\mathfrak{a})$ and so, for all $\phi \in K$, $\pi M_i / X \vDash \phi(\mathfrak{a})$. Let $F_{\phi} = \{i \mid M_i \vDash \phi(\mathfrak{a}(i))\}$, for all $\phi \in K$. Now $\{i \mid M_i \vDash K(\mathfrak{a}(i))\} \supseteq \bigcap \{F_{\phi} \mid \phi \in K\}$. But each $F_{\phi} \in X$ and X is β -complete. Thus $\{i \mid M_i \vDash K(\mathfrak{a}(i))\} \in X$. Q.E.D.

Corollary If **K** is a class of sentences of $\mathcal{L}^{\prime \tau}$ such that $|\mathbf{K}| = \beta$ and X is β -complete then $\pi M_i / X \models \mathbf{K}$ only if $\{i | M_i \models \mathbf{K}(\mathfrak{a}(i))\} \in X$.

Proof: Immediate from Theorem 2.4.

3 Substructures and Embeddings Let $M = \{\mathbf{E}^{\sigma} | \sigma \leq \tau\} \cup \{\epsilon^{\sigma} | \sigma \leq \tau, \sigma \neq 0\} \cup \langle R_1, \ldots \rangle$, and $N = \{\mathbf{F}^{\sigma} | \sigma \leq \tau\} \cup \{\epsilon^{\sigma} | \sigma \leq \tau, \sigma \neq 0\} \cup \langle S_1, \ldots \rangle$ be two normal τ -systems. N is called a subsystem of M if (i) $\mathbf{F}^0 \subseteq \mathbf{E}^0$; (ii) for each $\sigma \leq \tau$, $\sigma \neq 0$, there exists a surjective map $p: \mathbf{E}^{\sigma} \to \mathbf{F}^{\sigma}$, and for $\sigma = 0$; $p: \mathbf{F}^0 \to \mathbf{F}^0$ is the identity map, such that for all $(p(a_1), \ldots, p(a_n)) \in \mathbf{F}^{\sigma_1} \times \ldots \times \mathbf{F}^{\sigma_n}$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, and all $p(a) \in \mathbf{F}^{\sigma}$, $(p(a_1), \ldots, p(a_n)) \in \sigma^{\sigma} p(a)$ if, and only if, there exists some $(a'_1, \ldots, a'_n) \in \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ such that $p(a_k) = p(a'_k), 1 \leq k \leq n$, and $(a'_1, \ldots, a'_n) \in \sigma^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$, $\sigma_1, \ldots, \sigma_n \in \tau$, then $p(R_t)$ is of the same type and for all $(p(a_1), \ldots, p(a_n)) \in \mathbf{F}^{\sigma_1} \times \ldots \times \mathbf{F}^{\sigma_n}$, $p(R_t)(p(a_1), \ldots, p(a_n))$ if, and only if, there exists $(a'_1, \ldots, a'_n) \in \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ such that $p(a_k) = p(a'_k), 1 \leq k \leq n$ and $(a'_k \in n, \text{ and only if, there exists } (a'_1, \ldots, a'_n) \in \mathbf{F}^{\sigma_1} \times \ldots \times \mathbf{F}^{\sigma_n}$, $p(R_t)(p(a_1), \ldots, p(a_n))$ if, and only if, there exists $(a'_1, \ldots, a'_n) \in \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ such that $p(a_k) = p(a'_k), 1 \leq k \leq n$, $a \in n$, $a \in$

Theorem 3.1 If N is a subsystem of the τ -system M then the canonical projection $\mathfrak{p}: M \to N$ is unique.

Proof: Let $p_1: M \to N$, $p_2: M \to N$ be two canonical projections. Now, for $\sigma = 0$, $p_1 = p_2$ as both are the identity map on \mathbf{F}^0 . Assume for all $\sigma_i < \sigma$, $\sigma \leq \tau$, that $p_1 = p_2$ on \mathbf{E}^{σ_i} , (on \mathbf{F}^0 if $\sigma_i = 0$). Now to show $p_1 = p_2$ on \mathbf{E}^{σ} .

For any $a \in \mathbf{E}^{\sigma}$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, consider $p_1(a)$, $p_2(a)$. Take $(p_1(a_1), \ldots, p_1(a_n)) \in^{\sigma} p_1(a)$. Therefore there exists some $(a'_1, \ldots, a'_n) \in \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ such that $(a'_1, \ldots, a'_n) \in^{\sigma_a} a$ and $p_1(a_k) = p_1(a'_k)$, $1 \leq k \leq n$. Hence $(p_2(a'_1), \ldots, p_2(a_n)) \in^{\sigma} p_2(a)$. But $p_1 = p_2$ on \mathbf{E}^{σ_i} , $\sigma_i < \sigma$. Hence $p_2(a'_k) = p_1(a'_k)$, $1 \leq k \leq n$. That is $(p_1(a_1), \ldots, p_1(a_n)) \in^{\sigma} p_2(a)$. Similarly if $(p_2(a_1), \ldots, p_2(a_n)) \in^{\sigma} p_2(a)$ then $(p_2(a_1), \ldots, p_2(a_n)) \in^{\sigma} p_1(a)$. Thus $p_1(a) = p_2(a)$ and as N is normal then $p_1(a) = p_2(a)$. By a similar argument it can be shown that for all constant relations R_t of M, $p_1(R_t) = p_2(R_t)$. Hence $\mathfrak{p}_1 = \mathfrak{p}_2 : M \to N$. Q.E.D.

If N is a subsystem of M then N can be regarded as being in the same

similarity class as M. For if $\langle R_1, \ldots \rangle$ is the sequence of constant relations of M then $\langle p(R_1), \ldots \rangle$ can be taken as the corresponding sequence of relations of N. As p is surjective all of the relations of N will be included in this sequence, although there may be repetitions. This will not matter.

Canonical subsystems M is a τ -system and F^{0} a given, non-empty, subset of E^{0} . A τ -system, N, can be built inductively on F^{0} as follows (*cf.* Kreisel and Krivine, [5], p. 98, Theorem 16):

(i) \mathbf{F}^{0} comprises the individuals of N.

(ii) Take $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, and assume \mathbf{F}^{σ_i} is defined for all $\sigma_i \leq \sigma$, together with surjective maps $p: \mathbf{E}^{\sigma_i} \to \mathbf{F}^{\sigma_i}$, $\sigma_i \neq 0$, and $p: \mathbf{F}^0 \to \mathbf{F}^0$ the identity map. For each $a \in \mathbf{E}^{\sigma}$, define $p(a) = \{(p(a_1), \ldots, p(a_n)) \mid \text{ there exists } a_1', \ldots, a_n', \text{ such that } p(a_i) = p(a_i'), 1 \leq j \leq n, \text{ and } (a_1', \ldots, a_n') \in^{\sigma} a\}$. Let $\mathbf{F}^{\sigma} = \{p(a) \mid a \in \mathbf{E}^{\sigma}\}$ and $p: \mathbf{E}^{\sigma} \to \mathbf{F}^{\sigma}$ is thus defined. Now for all $(p(a_1), \ldots, p(a_n)) \in \mathbf{F}^{\sigma_1} \times \ldots \times \mathbf{F}^{\sigma_n}$, and all $p(a) \in \mathbf{F}^{\sigma}$, define $(p(a_1), \ldots, p(a_n)) \in^{\sigma} p(a)$ if $(p(a_1), \ldots, p(a_n)) \in p(a)$. That is ϵ^{σ} in N is the ordinary membership relation. (iii) For each relation R_t of M of type $(\sigma_1, \ldots, \sigma_n), \sigma_1, \ldots, \sigma_n \leq \tau$, define $p(R_t)$ by: $p(R_t)(p(a_1), \ldots, p(a_n))$ if there exists (a_1', \ldots, a_n') such that $p(a_k') = p(a_k)$, $1 \leq k \leq n$, and $R_t(a_1', \ldots, a_n')$.

Theorem 3.2 N as constructed above is a normal τ -system.

Proof: Immediate from a direct checking of the definitions.

Theorem 3.3 If M is a τ -system and N is constructed as above on a subset F° of E° then N is a substructure of M. (N is termed a canonical substructure.)

Proof: Immediate from the details of the construction and where the maps p form the canonical projection of M to the subsystem N.

If M, N, are two similar τ -systems then M and N are said to be isomorphic if there exists, for each $\sigma \leq \tau$, a bijective map $\psi : \mathbf{E}^{\sigma} \to \mathbf{F}^{\sigma}$ such that (i) if $\sigma = (\sigma_1, \ldots, \sigma_n)$ then for all $(a_1, \ldots, a_n) \in \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ and all $a \in \mathbf{E}^{\sigma}$, $(a_1, \ldots, a_n) \in^{\sigma} a$ if, and only if, $(\psi(a_1), \ldots, \psi(a_n)) \in^{\sigma} \psi(a)$; (ii) for all R_t of type $(\sigma_1, \ldots, \sigma_n)$ and all $(a_1, \ldots, a_n) \in \mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$, $R_t(a_1, \ldots, a_n)$ if, and only if, $S_t(\psi(a_1), \ldots, \psi(a_n))$. (Note: The correspondence between the R_t 's and the S_t 's could be varied by permutations of either the relations of M or the relations of N, but compatible with the similarity requirements.)

Theorem 3.4 If M is a τ -system and N_1 , N_2 are two subsystems of M such that $\mathbf{F}_1^0 = \mathbf{F}_2^0$ then N_1 and N_2 are isomorphic.

Proof: Let $\mathfrak{p}_1: M \to N_1$, $\mathfrak{p}_2: M \to N_2$ be the canonical projections of M to N_1 , and N_2 respectively.

It is first established by induction that for all $\sigma \leq \tau$ and all $p_1(a)$, $p_1(b) \in \mathbf{F}_1$, that $p_1(a) = p_1(b)$ if, and only if, $p_2(a) = p_2(b)$. If $\sigma = 0$ then the result is immediate as p_1 , p_2 are identity maps on $\mathbf{F}_1^0 = \mathbf{F}_2^0$. For $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, assume that the result is true for all $\sigma_i < \sigma$. Take $p_1(a)$, $p_1(b) \in \mathbf{F}_1^{\sigma}$ and assume $p_1(a) = p_1(b)$. Take any $(p_2(a_1), \ldots, p_2(a_n)) \in^{\sigma} p_2(a)$. Hence there exists some $(a'_1, \ldots, a'_n) \epsilon^{\sigma} a$ such that $p_2(a'_k) = p_2(a_k)$, $1 \le k \le n$. Therefore $(p_1(a'_1), \ldots, p_1(a'_n) \epsilon^{\sigma} p_1(b)$, as $p_1(a) = p_1(b)$, and so there exists $(a''_1, \ldots, a''_n) \epsilon^{\sigma} b$, where $p_1(a'_k) = p_1(a''_k)$, $1 \le k \le n$. Thus $(p_2(a''_1), \ldots, p_2(a''_n)) \epsilon^{\sigma} p_2(b)$. But from the induction assumption $p_2(a''_k) = p_2(a_k)$, $1 \le k \le n$, and so $(p_2(a_1), \ldots, p_2(a_n)) \epsilon^{\sigma} p_2(b)$. Similarly if $(p_2(a_1), \ldots, p_2(a_n)) \epsilon^{\sigma} p_2(b)$ then $(p_2(a_1), \ldots, p_2(a_n)) \epsilon^{\sigma} p_2(a)$. Therefore $p_2(a) = p_2(b)$ and so $p_2(a) = p_2(b)$. Conversely if $p_2(a) = p_2(b)$ then $p_1(a) = p_1(b)$. Hence this first result is established.

Now define $\psi(p_1(a) = p_2(a))$. ψ is thus well defined, for if $p_1(a) = p_1(b)$ then $p_2(a) = p_2(b)$. It is now necessary to show that ψ is an isomorphism between N_1 and N_2 . First to show that for each $\sigma \leq \tau$, $\psi: \mathbf{F}_1^{\sigma} \to \mathbf{F}_2^{\sigma}$ is bijective. If $\sigma = 0$ then $\psi: \mathbf{F}_1^0 \to \mathbf{F}_2^0$ is the identity map as $\mathbf{F}_1^0 = \mathbf{F}_2^0$ and p_1, p_2 are the identity maps on $\mathbf{F}_1^0, \mathbf{F}_2^0$ respectively. Let $\sigma = (\sigma_1, \ldots, \sigma_n)$, and assume that for all $\sigma_i \leq \sigma$, $\psi: \mathbf{F}_1^{\sigma_i} \to \mathbf{F}_2^{\sigma_i}$ is bijective. For any $p_1(a), p_1(b) \in \mathbf{F}_1^{\sigma}$, if $\psi(p_1(a)) = \psi(p_1(b))$ then $p_2(a) = p_2(b)$ and so $p_1(a) \in \mathbf{F}_1^{\sigma}$ and $\psi(p_1(a)) = p_2(a)$. That is $\psi: \mathbf{F}_1 \to \mathbf{F}_2$ is surjective. Hence by induction $\psi: \mathbf{F}_1^{\sigma} \to \mathbf{F}_2^{\sigma}$ is bijective for each $\sigma \leq \tau$.

Take $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$ and any $(p_1(a_n), \ldots, p_1(a_n) \epsilon^{\sigma} p_1(a)$. Therefore there exists $(a'_1, \ldots, a'_n) \epsilon^{\sigma} a$ such that $p_1(a'_k) = p_1(a_n)$, $1 \leq k \leq n$. Hence $(p_2(a'_1), \ldots, p_2(a'_n)) \epsilon^{\sigma} p_2(a)$. But as $p_1(a'_k) = p_1(a_k)$, $1 \leq k \leq n$, then $p_2(a'_k) = p_2(a_k)$. Hence $(p_2(a_1), \ldots, p_2(a_n)) \epsilon^{\sigma} p_2(a)$. That is $(\psi(p_1(a_1)), \ldots, \psi(p_1(a_n))) \epsilon^{\sigma} \psi(p_1(a))$. Conversely, take $(\psi(p_1(a_1)), \ldots, \psi(p_1(a_n))) \epsilon^{\sigma} \psi(p_1(a))$. That is $(p_2(a_1), \ldots, p_2(a_n)) \epsilon^{\sigma} p_2(a)$ and so, by a similar argument to that above, $(p_1(a_1), \ldots, p_1(a_n)) \epsilon^{\sigma} p_1(a)$.

Finally, by a similar argument as above, it can be shown that if $p_1(R_t)$ is any *n*-placed relation on $\mathbf{F}_1^{\sigma_1} \times \ldots \times \mathbf{F}_n^{\sigma_n}$, $\sigma_1, \ldots, \sigma_n \leq \tau$, then for all $(p_1(a_1), \ldots, p_1(a_n))$, $p_1(R_t)(p_1(a_1), \ldots, p_1(a_n))$ if, and only if, $p_2(R_t)(\psi(p_1(a_1)), \ldots, \psi(p_1(a_n)))$. Hence $\boldsymbol{\psi} : N_1 \to N_2$ is an isomorphism between N_1 and N_2 . Q.E.D.

Corollary If M is a τ -system then every subsystem of M is isomorphic to a canonical subsystem of M.

Proof: Let N_1 be any substructure of M. Let N_2 be the canonical substructure of M constructed on $\mathbf{F}_1^0 \subseteq \mathbf{E}^0$. Hence from Theorem 3.4 N_1 is isomorphic to N_2 .

Theorem 3.5 N_1 , N_2 are two subsystems of a τ -system M. If $\mathbf{F}_1^0 \subseteq \mathbf{F}_2^0$ then N_1 is a subsystem of N_2 and if $\mathbf{p}_3: N_2 \to N_1$ is the canonical projection of N_2 to N_1 , then for $\sigma \leq \tau$, and all $p_2(a) \in \mathbf{F}_2^\sigma$, $p_3 p_2(a) = p_1(a)$, where \mathbf{p}_1 , \mathbf{p}_2 are the canonical projections from M to N_1 , N_2 respectively.

Proof: By an argument similar to that in the proof of Theorem 3.4 it can be shown (i) that for any $\sigma \leq \tau$, and all $p_1(a)$, $p_1(b) \in \mathbf{F}_1^{\sigma}$, if $p_2(a) = p_2(b)$ then $p_1(a) = p_1(b)$; (ii) that if for each $\sigma \leq \tau$, $p_3: \mathbf{F}_2^{\sigma} \to \mathbf{F}_1^{\sigma}$ is defined by putting $p_3(p_2(a)) = p_1(a)$, for all $p_2(a) \in \mathbf{F}_2^{\sigma}$, and if for each constant relation $p_2(R_t)$ of N_2 , $p_3(p_2(R_t))$ is defined as $p_1(R_t)$, then $\mathbf{p}_3: N_2 \to N_1$ is the canonical projection defining N_1 as a subsystem of N_2 . Further, by definition $p_3p_2 = p_1: \mathbf{E}^{\sigma} \to \mathbf{F}_1^{\sigma}$, for each $\sigma \leq \tau$, $\sigma \neq 0$. Q.E.D.

Theorem 3.6 If N_1 is a subsystem of a τ -system M such that $(p_1(a_1), \ldots, a_n)$

 $p_1(a_n) \notin {}^{\sigma} p_1(a), \sigma \leq \tau, \sigma = (\sigma_1, \ldots, \sigma_n)$ then in any subsystem N_2 of M, which contains $N_1, (p_2(a_1), \ldots, p_2(a_n)) \notin {}^{\sigma} p_2(a)$. Similarly if $p_1(R_1)(p_1(a_1), \ldots, p_1(a_n))$ does not hold in N_1 then $p_2(R_1)(p_2(a_1), \ldots, p_2(a_n))$ does not hold in N_2 .

Proof: Let $\mathfrak{p}_3: N_2 \to N_1$ be the canonical projection as in Theorem 3.5. Assume $(p_2(a_1), \ldots, p_2(a_n)) \epsilon^{\sigma} p_2(a)$ and so $(p_3(p_2(a_1)), \ldots, p_3(p_2(a_n))) \epsilon^{\sigma} p_3(p_2(a))$. Hence $(p_1(a_1), \ldots, p_1(a_n)) \epsilon^{\sigma} p_1(a)$, as $p_3 p_2 = p_1$. That is if $(p_1(a_1), \ldots, p_1(a_n)) \epsilon^{\sigma} p_1(a)$ then $(p_2(a_1), \ldots, p_2(a_n)) \epsilon^{\sigma} p_2(a)$. The second part follows likewise.Q.E.D.

Theorem 3.7 Any subsystem, N, of a full τ -system M is itself full.

Proof: Take $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$ and **K** any subclass of $\mathbf{F}^{\sigma_1} \times \ldots \times \mathbf{F}^{\sigma_n}$. It is required to find some $p(a) \in \mathbf{F}^{\sigma}$ such that $\mathbf{K} = \widehat{p(a)}$, where $\mathfrak{p}: M \to N$ is the canonical projection associated with N. Let $K' = \{(a_1, \ldots, a_n) \mid (p(a_1), \ldots, p(a_n)) \in \mathbf{K}\}$. Now M is full and K' is a subclass of $\mathbf{E}^{\sigma_1} \times \ldots \times \mathbf{E}^{\sigma_n}$ and so there exists $a \in E^{\sigma}$ such that $\hat{a} = K'$.

Now to show that $K = \widehat{p}(a)$. Take $(p(a_1), \ldots, p(a_n)) \in K$. Hence $(a_1, \ldots, a_n) \in K'$ and so $(a_1, \ldots, a_n) \in^{\sigma} a$. Therefore $(p(a_1), \ldots, p(a_n)) \in^{\sigma} p(a)$. That is $K \subseteq \widehat{p}(a)$. Now take $(p(a_1), \ldots, p(a_n)) \in^{\sigma} p(a)$. Therefore there exists $(a'_1, \ldots, a'_n) \in^{\sigma} a$, where $p(a'_k) = p(a_k)$, $1 \le k \le n$. Hence $(a'_1, \ldots, a'_n) \in K'$, as $\widehat{a} = K'$, and so $(p(a'_1), \ldots, p(a'_n) \in K$. That is $(p(a_1), \ldots, p(a_n)) \in K$. Thus $\widehat{p(a)} \subseteq K$ and so $\widehat{p(a)} = K$. Q.E.D.

Theorem 3.8 Let $\{M_i | i \in I\}$ be a family of similar τ -systems. For each $i \in I$, let N_i be a subsystem of M_i . If X is any ultrafilter over I then $\pi N_i / X$ is a subsystem of $\pi M_i / X$.

Proof: For each $i \in I$ let $\mathfrak{p}_i : M_i \to N_i$ be the canonical projection associated with each N_i . Define $\mathfrak{p} : \pi M_i / X \to \pi N_i / X$ as follows: For $\sigma = 0$ and for all $\overline{g} \in \mathbf{F}^0$ define $p(\overline{g}) = \overline{p(g)}$, where $p(g): I \to \pi_{i \in I} \mathbf{F}_i^0$ is defined by p(g)(i) = g(i), all $i \in I$. Hence $p: \mathbf{F}^0 \to \mathbf{F}^0$ is the identity map.

For $\sigma \neq 0$, $\sigma \leq \tau$, for all $\overline{f} \in \mathbf{E}^{\sigma}$ put $p(\overline{f}) = \overline{p(f)}$, where $p(f): I \to \pi_{i \in I} \mathbf{F}_i^{\sigma}$ is defined by $p(f)(i) = p_i(f(i))$, all $i \in I$. If $f_1 \sim f$ then $p(f_1) \sim p(f)$, as $\{i \mid f_1(i) = f(i)\} \in X$; and so $p: \mathbf{E}^{\sigma} \to \mathbf{F}^{\sigma}$ is well defined. Further p is surjective as each $p_i: \mathbf{E}_i^{\sigma} \to \mathbf{F}_i^{\sigma}$ is surjective.

Take $\sigma = (\sigma_i, \ldots, \sigma_n)$, $\sigma \leq \tau$ and consider $(p(\overline{f}_1), \ldots, p(\overline{f}_n)) \epsilon^{\sigma} p(\overline{f})$. Hence $G \in X$, where $G = \{i \mid (p(f_1)(i), \ldots, p(f_n)(i)) \epsilon^{\sigma} p(f)(i)\}$. That is, for each $i \in G$, $(p_i(f_1(i)), \ldots, p_i(f_n(i))) \epsilon^{\sigma} p_i(f(i))$ and so there exists $(a_1^i, \ldots, a_n^i) \epsilon^{\sigma} f(i)$, where $p_i(a_k^i) = p_i(f_k(i))$, $1 \leq k \leq n$. Now define $\overline{g}_k \in \mathbf{F}^{\sigma k}$, $1 \leq k \leq n$, by putting $g_k(i) = a_k^i$, all $i \in G$. Thus \overline{g}_k , $1 \leq k \leq n$, are well defined as $G \in X$. Now $\{i \mid (g_1(i), \ldots, g_n(i)) \epsilon^{\sigma} f(i)\} \supseteq G$ and so $(\overline{g}_1, \ldots, \overline{g}_n) \epsilon^{\sigma} \overline{f}$. And further, $p(\overline{g}_k) = p(\overline{f}_k)$, $1 \leq k \leq n$, as $\{i \mid p_i(g_k(i)) = p_i(f_k(i))\} \supseteq G$. Conversely, take $(\overline{g}_1, \ldots, \overline{g}_n) \epsilon^{\sigma} \overline{f}$ such that $p(\overline{g}_k) = p(\overline{f}_k)$, $1 \leq k \leq n$. Let $G_k = \{i \mid p_i(g_k(i)) = p_i(f(i))\}$, $1 \leq k \leq n$, and $G_0 = \{i \mid (g_1(i), \ldots, g_n(i)) \epsilon^{\sigma} f(i)\}$. Thus $G \in X$, where $G = \bigcap \{G_k \mid 0 \leq k \leq n\}$. Hence $(p(\overline{f}_1), \ldots, p(\overline{f}_n)) \epsilon^{\sigma} p(\overline{f})$ as $\{i \mid (p_i(f_1(i)), \ldots, p_i(f_n(i)))\} \in \sigma p_i(f(i))\} \supseteq G$.

By a similar argument it can be shown that $p(R_t)$ can be defined in $\pi N_i/X$ by reference to $p_i(R_t)$ for each M_i and that $p(R_t)(p(\bar{f}_1), \ldots, p(\bar{f}_n))$ if, and only if, there exists $(\bar{g}_1, \ldots, \bar{g}_n)$ such that $R_t(\bar{g}_1, \ldots, \bar{g}_n)$, where $p(\bar{g}_k) = p(\bar{f}_k)$, $1 \le k \le n$. Hence $\pi N_i/X$ is a subsystem of $\pi M_i/X$ with canonical projection $\mathfrak{p}: \pi M_i/X \to \pi N_i/X$ as defined. Q.E.D.

 α -embeddings A τ_1 -system M_1 is said to be α -embedded in a τ_2 -system M_2 , where $\tau_1 \leq \tau_2$, by an α -embedding map ψ^{α} , if (i) α is an injective map from $|\tau_1|$ to $|\tau_2| (|\tau_1| = \{\sigma | \sigma \leq \tau_1\})$ such that for each $\sigma \leq \tau_1$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, $\alpha(\sigma) = (\alpha(\sigma_1), \ldots, \alpha(\sigma_n))$; (ii) for each $\sigma \leq \tau_1$, ψ^{α} is an injective map from \mathbf{E}_1^{σ} to $\mathbf{E}_2^{\alpha(\sigma)}$ such that for all $(a_1, \ldots, a_n) \in \mathbf{E}_1^{\sigma_1} \times \ldots \times \mathbf{E}_n^{\sigma_n}$, $a \in \mathbf{E}_1^{\sigma}$, $(a_1, \ldots, a_n) \epsilon^{\sigma} a$ if, and only if, $(\psi^{\alpha}(a_1), \ldots, \psi^{\alpha}(a_n)) \epsilon^{\alpha(\sigma)} \psi^{\alpha}(a)$; (iii) for each R_t , *n*-placed and of type $(\sigma_1, \ldots, \sigma_n)$, $\psi^{\alpha}(R_t)$ is an *n*-placed relation of M_2 of type $(\alpha(\sigma_1), \ldots, \alpha(\sigma_n))$, such that $R_t(a_1, \ldots, a_n)$ if, and only if, $\psi^{\alpha}(R_t)(\psi^{\alpha}(a_1), \ldots, \psi^{\alpha}(a_n))$. If $\alpha : |\tau_1| \rightarrow$ $|\tau_2|$ is such that $\alpha(0) = 0$ then the α -embedding is referred to simply as an embedding and the α is omitted from the ψ^{α} 's.

Local family of subsystems (cf. Kurosh [4], vol. II, §55, p. 166.) A family of subsystems $\{N_i | i \in I\}$, of a τ -system M, is called a *local family* of M if (i) every member of \mathbf{E}^0 belongs to at least one N_i , $i \in I$; and (ii) for every $i, j \in I$ (and hence for any finite number of elements of I) there exists $k \in I$ such that N_i and N_j are subsystems of N_k .

Theorem 3.9 If L is the class of all finite subsystems of a τ -system M then L is a local family of M.

Proof: Immediate.

L-finitary systems A τ -system M, with a given local family $\mathfrak{L} = \{N_i \mid i \in I\}$, is said to be L-finitary if (i) for each $\sigma \leq \tau$, $\sigma = (\sigma_1, \ldots, \sigma_n)$, if $(a_1, \ldots, a_n) \notin^{\sigma} a$ then there exists some member, N, of \mathfrak{L} such that $(p(a_1), \ldots, p(a_n)) \notin^{\sigma} p(a)$, where $\mathfrak{p}: M \to N$ is the canonical projection; (ii) similarly if $R_1(a_1, \ldots, a_n)$ does not hold in M then for some $N \in \mathfrak{L}$, $p(R_1)(p(a_1), \ldots, p(a_n))$ does not hold in N. If \mathfrak{L} is the family of all finite subsystems of M and if M is L-finitary then M will be simply termed finitary.

Theorem 3.10 If M is any first order system and \mathfrak{L} any local family of M then M is L-finitary.

Proof: Let R_t be a *n*-placed constant relation of type (0, ..., 0). Take $a_1, ..., a_n \in \mathbf{E}^0$ such that $R_t(a_1, ..., a_n)$ does not hold in M. Let N be some member of $\mathbf{\mathfrak{e}}$ which contains $a_1, ..., a_n$. Hence $p(R_t)(p(a_1), ..., p(a_n))$ does not hold in N, where $\mathbf{p}: M \to N$ is the canonical projection. Q.E.D.

L-associated ultrafilter Let $\mathfrak{L} = \{N_i | i \in I\}$ be a local family of a τ -system M. For each $N \in \mathfrak{L}$ let $F_N = \{i \mid N_i \supseteq N\}$. Now $\{F_N \mid N \in \mathfrak{L}\} = B$ is such that the intersection of any finite set of members of B is non-empty. The ultrafilter X formed on B as sub-basis is called the L-associated ultrafilter.

Theorem 3.11 $\mathfrak{L} = \{N_i | i \in I\}$ is a local family of a \bot -finitary τ_1 -system M such that, for each $i \in I$, N_i can be α -embedded in a τ_2 -system, N'_i , $\tau_1 \leq \tau_2$, where each such N'_i is a model of a class of sentences, K, of $\mathcal{L}'^{\tau_2}(\pi N'_i/X)$, X being the \bot -associated ultrafilter. Then M can be α -embedded in a model of K.

Proof: For each $i \in I$, let $\psi_i^{\alpha}: N_i \to N_i'$ be an α -embedding. Define $\psi^{\alpha}: M \to \pi N_i'/X$ by (i) if $a \in \mathbf{E}^\circ$ put $\psi^{\alpha}(a) = \overline{f}_a$, where $f_a(i) = \psi_i^{\alpha}(a)$, for all $i \in F_N$, where

N is a member of **2** containing a; (ii) for each $\sigma \leq \tau_1$, $\sigma \neq 0$, and each $a \in \mathbf{E}^{\sigma}$, put $\psi^{\alpha}(a) = \bar{f}_a$, where $f_a(i) = \psi^{\alpha}_i(p_i(a))$, for all $i \in I$, and where $\mathfrak{p}_i: M \to N_i$ is the canonical projection. The N'_i , $i \in I$, can be regarded as belonging to the same similarity class as M by ignoring all constant relations in N'_i other than those connected to N_i by ψ_i^{α} . It is now required to show that $\psi^{\alpha}: M \to$ $\pi N'_i/X$ is an α -embedding. Take $\sigma \leq \tau_1$, $\sigma = (\sigma_1, \ldots, \sigma_n)$ and $(a_1, \ldots, a_n) \epsilon^{\sigma} a$. Let J be the subset of $\{1, 2, ..., n\}$ such that if $j \in J$ then $\sigma_j = 0$. Now for all $i \in F_N$, where N is some member of **2** which contains each $a_i, j \in J$, $(p_i(a_1), \ldots, p_i(a_n)) \epsilon^{\sigma} p_i(a)$. Hence $\{i \mid (\psi_i^{\alpha}(p_i(a_1)), \ldots, \psi_i^{\alpha}(p_i(a_n))) \epsilon^{\sigma} \psi_i^{\alpha}(p_i(a))\} \epsilon X$. That is $\{i \mid (f_{a_1}(i), \ldots, f_{a_n}(i)) \in^{\sigma} f_a(i)\} \in X$ and so $(\bar{f}_{a_1}, \ldots, \bar{f}_{a_n}) \in^{\sigma} \bar{f}_a$. That is $(\psi^{\alpha}(a_1), \ldots, \psi^{\alpha}(a_n)) \in^{\sigma} \psi^{\alpha}(a)$. Conversely, assume that $(a_1, \ldots, a_n) \notin^{\sigma} a$. Now Mis L-finitary and so there exists some member N of \mathfrak{L} such that $(p(a_1), \ldots, p(a_n))$ $p(a_n) \notin p(a)$, where $\mathfrak{p}: M \to N$ is the canonical projection. Let $F_N = \{i \mid N_i \supseteq N\}$ and $N_i \in \mathfrak{L}$ and so $F_N \in X$. Now from Theorem 3.6, $\{i \mid (p_i(a_1), \ldots, p_i(a_n)) \notin \sigma\}$ $p_i(a)$ $\supseteq F_N$ and so $\{i \mid (\psi_i^{\alpha}(p_i(a_1)), \ldots, \psi_i^{\alpha}(p_i(a_n))) \notin^{\sigma} \psi_i^{\alpha}(p_i(a))\} \in X$. Hence $(\psi^{\alpha}(a_1), \ldots, \psi_i^{\alpha}(p_i(a_n))) \notin^{\sigma} \psi_i^{\alpha}(p_i(a))\} \in X$, $\psi^{\alpha}(a_n) \not\in {}^{\sigma} \psi^{\alpha}(a)$. Similarly, if R_t is a constant relation of type $(\sigma_1, \ldots, \sigma_n)$, $\sigma_1, \ldots, \sigma_n \leq \tau_1$, then $R_t(a_1, \ldots, a_n)$ if, and only if, $\psi^{\alpha}(R_t)(\psi^{\alpha}(a_1), \ldots, \psi^{\alpha}(a_n))$.

Further, it needs to be shown that ψ^{α} is injective at each level $\sigma \leq \tau_1$. Let $\sigma = 0$ and take $a, b \in \mathbf{E}^0$ such that $\psi^{\alpha}(a) = \psi^{\alpha}(b)$. Thus $\tilde{f}_a = \tilde{f}_b$. Let N_1 , $N_2 \in \mathbf{R}$ such that $f_a(i) = \psi_i^{\alpha}(a)$, for all $i \in F_{N_1}, f_b(i) = \psi_i^{\alpha}(b)$, for all $i \in F_{N_2}$. If $G = \{i \mid f_a(i) = f_b(i)\}$ then $G \cap F_{N_1} \cap F_{N_2}$ is non-empty and so there exists an $i \in I$ such that $\psi_i^{\alpha}(a) = \psi_i^{\alpha}(b)$. Hence a = b, as ψ_i^{α} is injective. Now take $\sigma \leq \tau_1, \sigma = (\sigma_1, \ldots, \sigma_n)$ and $a, b \in \mathbf{E}^{\sigma}$ such that $a \neq b$. Hence there exists (a_1, \ldots, a_n) which 'belongs' to one, and only one, of a and $\psi^{\alpha}(b)$. That is $\psi^{\alpha}(a) \neq \psi^{\alpha}(b)$. Thus $\boldsymbol{\psi}^{\alpha} : M \to \pi N_i / X$ is an α -embedding.

Finally it remains to comment that $\pi N'_i/X$ is a model of K as each N'_i , $i \in I$, is a model of K (Theorem 2.3). The theorem is therefore established. Q.E.D.

Corollary If every finite subsystem of a finitary system M can be α -embedded in a model of K then M can be so embedded.

Proof: Immediate from Theorems 3.10 and 3.11.

The first order case of the above corollary, (with $\alpha(0) = 0$), is proved by Robinson, *cf.* [7], p. 34, Theorem 2.4.1, by the method of diagrams. Grätzer, *cf.* [2], p. 243, Theorem 4, and p. 261, Theorem 7, gives a proof of this first order result using ultraproducts.

Theorem 3.12 If $\mathfrak{g} = \{N_i | i \in I\}$ is a local family of a \bot -finitary τ -system M then M can be embedded in $\pi N_i / X$ where X is the \bot -associated ultrafilter.

Proof: In Theorem 3.11, put $\alpha(0) = 0$, $K = \emptyset$ and, for each $i \in I$, put $N'_i = N_i$ and ψ^{α}_i as the identity map on N_i .

4 Some algebraic applications of higher order ultraproducts This final paragraph illustrates the presence and application of the higher order ultraproduct construction in two known algebraic situations.

Non-finite Boolean algebras

Theorem 4.1 Any infinite Boolean algebra is isomorphic to a subset subalgebra of a second order ultraproduct (cf. Stone's representation theorem).

Proof: Let \mathfrak{M} be the infinite Boolean algebra regarded as a first order system. E^0 is the set of elements of the algebra. $\langle ', \vee, \wedge \rangle$ is the sequence of constant relations, where ' is the complement operator regarded as a two-place relation of type (0, 0); \vee, \wedge are the wedge and join operators of the algebra regarded as three-place relations of type (0, 0, 0). Now let $\tau_2 = (0)$ and $\langle C, \cup, \cap \rangle$ be a sequence of constant relation symbols, C being of type ((0), (0)), and \cup, \cap each of type ((0), (0)). $(C(x^{(0)}, y^{(0)})$ will be written $Cx^{(0)} = y^{(0)}$ and similarly for \cap and \cup .)

Let *K* be the set of sentences of \mathcal{L}^{τ_2} as follows:

(i) $\forall x^{(0)} \forall y^{(0)} (Cx^{(0)} = y^{(0)} \iff \forall x^0 (x^0 e^{(0)} x^{(0)} \iff x^0 e^{(0)} y^{(0)})).$ (ii) $\forall x^{(0)} \forall y^{(0)} \forall z^{(0)} (x^{(0)} \cup y^{(0)} = z^{(0)} \iff \forall x^0 (x^0 e^{(0)} z^{(0)} \iff (x^0 e^{(0)} x^{(0)} \vee x^0 e^{(0)} y^{(0)}))).$ (iii) $\forall x^{(0)} \forall y^{(0)} \forall z^{(0)} (x^{(0)} \cap y^{(0)} = z^{(0)} \iff \forall x^0 (x^0 e^{(0)} z^{(0)} \iff (x^0 e^{(0)} x^{(0)} \wedge x^0 e^{(0)} y^{(0)}))).$

Now $\mathfrak{L} = \{N_i \mid N_i \text{ is a finitely generated subalgebra of } M\}$ forms a local family of subsystems of \mathfrak{M} . Moreover each such N_i is finite and so can be α -embedded in N'_i , a model of K, where $\alpha(0) = (0)$. Thus, by Theorem 3.11, \mathfrak{M} can be α -embedded in $\pi N'_i/X$, where X is the L-associated ultrafilter. (Note: \mathfrak{M} is L-finitary.) As K consists only of universal sentences, the image of \mathfrak{M} in $\pi N'_i/X$ under the embedding is also a model of K. Finally, as in general $\pi N'_i/X$ is not a full system, the universal quantifiers of K of type (0) will not include all possible subsets of the individuals of the ultraproduct, and so the image of \mathfrak{M} will not be a full subset algebra. Q.E.D.

Locally normal groups The following results from the theory of finite groups are assumed:

(a) For every two Sylow *p*-subgroups, *P*, *Q*, of a finite group **G** there exists an inner automorphism of **G** which when restricted to *P* is an isomorphism between *P* and *Q*.

(β) If H is a normal subgroup of a finite group G, P a Sylow p-subgroup of **G**, then $P \cap H$ is a Sylow p-subgroup of H.

 (γ) If P is a p-subgroup of a finite group **G**, N a normal subgroup of **G**, such that $N \supseteq P$, and Q a Sylow p-subgroup of N containing P, then there exists a Sylow p-subgroup, Q', of **G** which contains P and such that $Q' \cap N = Q$.

Let \mathfrak{M} be a locally normal group. Regard M as a τ -system, where $\tau = ((0, 0), (0))$. E^0 is the individuals of the group \mathfrak{M}^2 . $E^{(0,0)}$ is the set of

^{2.} $E^{(0)}$ is the set of all subsets of E^{0} .

all subsets of $E^0 \times E^0$ and $E^\tau = \{\emptyset\}$. The 'membership' relations are the ones of ordinary set membership, and will be written without the type prefixes. $\langle S, e, \subset \rangle$ is the sequence of constant relations, where S is of type (0, 0, 0), representing the binary operation of \mathfrak{M} , e is the 0-placed relation, of type 0, denoting the identity element of the group. \subset is of type ((0), (0)), and denotes the strict inclusion relation.

Let $\mathfrak{L} = \{N_i | i \in I\}$ be the family of finite normal subgroups of \mathfrak{M} . Hence \mathfrak{L} can be regarded as a local family of subsystems of M, as \mathfrak{M} is locally normal. Further, M is L-finitary. Let X be the L-associated ultrafilter on I.

Take the following sentences and formulae of $\mathcal{L}''(\pi N_i/X)$. K_0 is the conjunction of sentences characterising group structure with respect to a binary operation S and identity e. (We adopt the usual shorthand that $x \circ y = z$ stands for S(x, y, z), $y = x^{-1}$ stands for S(x, y, e) and so on.) $G_s(x^{(0)})$, $(x^{(0)})$ is a subgroup), is the formula

$$\forall x^0 \forall y^0 (x^0 \epsilon \ x^{(0)} \land y^0 \epsilon \ x^{(0)} \Longrightarrow x^0 \circ y^{0^{-1}} \epsilon \ x^{(0)}) \land K_0.$$

 $S_1(y^0)$ is the formula $y^0 = e$.

 $S_n(y^0)$, $(y^0$ is of order *n*, *n* an integer), is the formula

$$y^{0''} = e \land \exists S_{n-1}(y^{0}) \lor . . \lor S_{1}(y^{0})).$$

 $S_{op}(y^0)$, $(y^0$ has order some power of p, p a prime integer), is the formula $\bigvee_{k \in N} S_p k(y^0)$, where N is the set of integers. $G_{ps}(x^{(0)})$, $(x^{(0)}$ is a p-subgroup), is the formula

$$\mathsf{G}_{\mathsf{s}}(x^{(0)}) \land \forall y^{\mathsf{0}}(y^{\mathsf{0}} \epsilon x^{(0)} \Longrightarrow \mathsf{S}_{\mathsf{o}p}(y^{\mathsf{0}})).$$

 $x^{(0)} \cong y^{(0)}(w^{(0,0)})$, $(w^{(0,0)}$ is an isomorphism between subgroups $x^{(0)}$ and $y^{(0)}$), denotes the conjunction of the following formulae:

(i) $G_{s}(x^{(0)}) \wedge G_{s}(y^{(0)})$, (ii) $\forall z^{0}(z^{0} \in x^{(0)} \Rightarrow \exists ' u^{0}(u^{0} \in y^{(0)} \wedge (z^{0}, u^{0}) \in w^{(0,0)}))$, (iii) $\forall x^{0} \forall y^{0} \forall z^{0}(x^{0} \in x^{(0)} \wedge y^{0} \in x^{(0)} \wedge z^{0} \in y^{(0)} \wedge (x^{0}, z^{0}) \in w^{(0,0)} \wedge (y^{0}, z^{0}) \in w^{(0,0)}) \Rightarrow x^{0} = y^{0}$, (iv) $\forall z^{0}(z^{0} \in y^{(0)} \Rightarrow \exists x^{0}(x^{0} \in x^{(0)} \wedge (x^{0}, z^{0}) \in w^{(0,0)}))$, (v) $\forall x^{0} \forall y^{0} \forall u^{0} \forall v^{0}(x^{0} \in x^{(0)} \wedge y^{0} \in x^{(0)} \wedge u^{0} \in y^{(0)} \wedge v^{0} \in y^{(0)} \wedge \langle x^{0}, u^{0} \rangle \in w^{(0,0)} \wedge \langle y^{0}, v^{0} \rangle \in w^{(0,0)} \wedge \langle x^{0}, u^{0} \rangle \in w^{(0,0)} \wedge \langle y^{0}, v^{0} \rangle \in w^{(0,0)} \wedge \langle x^{0}, u^{0} \rangle \in w^{(0,0)} \wedge \langle y^{0}, v^{0} \rangle \in w^{(0,0)} \wedge \langle y^{0}, v^{0} \rangle \in w^{(0,0)} \wedge \langle y^{0}, v^{0} \rangle \in w^{(0,0)} \wedge \langle x^{0}, u^{0} \rangle \in w^{(0,0)} \wedge \langle y^{0}, v^{0} \rangle \in w^{(0,0)} \wedge \langle y^{0} \rangle \otimes \langle y^{0} \rangle \otimes \langle y^{0} \rangle \in w^{(0,0)} \wedge \langle y^{0} \rangle \otimes \langle y$

Theorem 4.2 If \mathfrak{M} is a locally normal group as described above then a) $\pi N_i/X$ is a group; b) P is a subgroup of \mathfrak{M} if, and only if, $\psi(P)$ is a subgroup of $\pi N_i/X$; c) P is a p-subgroup of \mathfrak{M} if, and only if, $\psi(P)$ is a p-subgroup of $\pi N_i/X$, (where $\boldsymbol{\psi} : M \to \pi N_i/X$ is the embedding of Theorem 3.12), (see footnote on page 15.)

Proof: a) $\pi N_i / X \models K_0$, as $\{i \mid N_i \models K_0\} = I$, and so $\pi N_i / X$ is a group with respect to the binary operation $\psi(S)$.

b) Let P be a subgroup of \mathfrak{M} and so for each i, $P_i = N_i \cap P$ is a subgroup of N_i . But $P_i = p_i(P)$, where $\mathfrak{p}_i: M \to N_i$ is the canonical projection associated with the subgroup N_i , regarded as a subsystem of M. Now

 $\{i \mid N_i \models \mathsf{G}_{\mathsf{s}}(P_i)\} = I$ and therefore $\pi N_i/X \models \mathsf{G}_{\mathsf{s}}(\psi(P))$. That is $\psi(P)$ is a subgroup of $\pi N_i/X$. Conversely, assume $\psi(P)$ is a subgroup of $\pi N_i/X$. Let $\psi(\hat{M}) = \{\bar{f}_a \mid a \in M\}$ and $\psi(\hat{P}) = \{\bar{f}_a \mid a \in P\}$, where \bar{f}_a is defined as in Theorem 3.12. Therefore $\psi(\hat{P}) = \psi(P) \cap \psi(\hat{M}), \psi(\hat{M})$ is isomorphic to M and $\psi(\hat{P})$ is isomorphic to P. But $\psi(\hat{P}) = \psi(P) \cap \psi(\hat{M})$ and so $\psi(\hat{P})$ is a subgroup of $\psi(\hat{M})$; that is P is a subgroup of \mathfrak{M} .

c) Let P be a p-subgroup of \mathfrak{M} . Hence $\{i \mid N_i \models \mathsf{G}_{ps}(P_i)\} = I$ and so $\pi N_i/X \models \mathsf{G}_{ps}(\psi(P))$; that is $\psi(P)$ is a p-subgroup of $\pi N_i/X$. Conversely, assume $\psi(P)$ is p-subgroup of $\pi N_i/X$. Hence $\psi(\hat{P})$ is a p-subgroup, and so P is a p-subgroup. Q.E.D.

The final two theorems are results first proved by Baer in [1], p. 604, Theorem 4.1 and p. 608, Theorem 4.4. Alternative proofs, via an ultraproduct construction, are here provided. Kurosh, *cf.* [4], vol. II, pp. 167-170, §55, records a proof of these results by the method of projection sets, (inverse limits). Gräzter, *cf.* [2], p. 160, Exercise 100, details the relationship between an ultraproduct of a family of algebras and the inverse limit of an associated family of algebras.

Theorem 4.3 If \mathfrak{M} is a locally normal group and P a given Sylow p-subgroup of \mathfrak{M} then the intersection of P with an arbitrary finite normal subgroup H of \mathfrak{M} is a Sylow p-subgroup of H.

Proof: Assume that $P \cap H$ is not a Sylow *p*-subgroup of *H*. Let Q' be a Sylow *p*-subgroup of *H* containing $P \cap H$. Put $G = \{i \mid N_i \supseteq H\}$. Hence $G \in X$, where \mathfrak{Q} is the local family of *M* as described above and *X* is the L-associated ultrafilter. But from property (β) above, for each $i \in G$, $P_i = N_i \cap P$ is not a Sylow *p*-subgroup of N_i . Hence for each $i \in G$ a Sylow *p*-subgroup, Q_i , of N_i can be chosen so that $P_i \subseteq Q_i$ and $Q_i \cap H = Q'$. (Property (γ).) Take $\overline{g} \in \pi N_i/X$, such that $g(i) = Q_i$, all $i \in G$. Hence \overline{g} is a subgroup of $\pi N_i/X$ and $\psi(P) \subseteq \overline{g}$. But $\psi(\widehat{P})$ is a Sylow *p*-subgroup of $\psi(\widehat{M})$ as *P* is a Sylow *p*-subgroup of \mathfrak{M} . Also $\overline{g} \cap \psi(\widehat{M})$ is a *p*-subgroup of $\psi(\widehat{M})$ and so $\psi(\widehat{P}) = \overline{g} \cap \psi(\widehat{M})$. But there exists some $a \in Q'$ such that $a \notin P$. Therefore, for all $i \in G$. But $\overline{f_a} \in \psi(\widehat{M})$, and so $\psi(\widehat{P}) \neq \overline{g} \cap \psi(\widehat{M})$. From the contradiction it is established that $P \cap H$ is a Sylow *p*-subgroup of \mathfrak{M} . Q.E.D.

Theorem 4.4 Any two Sylow p-subgroups of a locally normal group \mathfrak{M} are isomorphic and locally conjugate.

Proof: Let M be the τ -system as above with $\mathbf{\mathfrak{l}} = \{N_i \mid i \in I\}$ the local family of normal, finite subgroups. Let P, Q be two given Sylow p-subgroups of \mathfrak{M} . By Theorem 4.3, for each $i \in I$, $P_i = P \cap N_i$, $Q_i = Q \cap N_i$, are Sylow p-subgroups of N_i . Hence, by property (α), for each $i \in I$, there exists an inner automorphism, w_i , of N_i taking P_i to Q_i . Let $\overline{w} \in \pi N_i / X$ be defined by $w(i) = w_i$, all $i \in I$. Now $\{i \mid N_i \models P_i \cong Q_i(w_i)\} = I$ and so $\pi N_i / X \models \psi(P) \cong$ $\psi(Q)(\overline{w})$. That is \overline{w} is an isomorphism between $\psi(P)$ and $\psi(Q)$. It is now required to show that \overline{w} restricted to $\psi(\hat{P})$ is an isomorphism between $\psi(\hat{P})$ and $\psi(\hat{Q})$. For this it is sufficient to show that if $\overline{w}(\overline{f}) = \overline{g}$, (as $\langle \overline{f}, \overline{g} \rangle \in \overline{w}$ will be now written), and $\overline{f} \in \psi(\hat{P})$ then $\overline{g} \in \psi(\hat{Q})$. Take \overline{f}_a , such that $a \in P$. Let $F = \{i \mid f_a(i) = a\}$ and so $F \in X$. Let k be some member of F and put $F' = \{i \mid N_i \supseteq N_k \text{ and } i \in F\}$. Thus $F' \in X$. Now, for all $i \in F'$, if $w_i(a) = b_i$ then $b_i \in Q_k$, as N_k is normal in N_i and w_i is an inner automorphism of N_i . Let the individuals of Q_k be b_1, \ldots, b_n , and let $F_j = \{i \mid w_i(a) = b_j \text{ and } i \in F'\}$, $1 \le j \le n$. Now $F_1 \cup \ldots \cup F_n = F'$ and so one, and only one, of the F_j 's, say F_m , belongs to X. Therefore $\overline{g} = \overline{f}_{b_m}$ and so $\overline{g} \in \psi(\widehat{Q})$.

Finally, it is required to show that \overline{w} restricted to an isomorphism between $\psi(P)$ and $\psi(\hat{Q})$ is locally an inner automorphism. Take $\overline{f}_{a_1}, \ldots, \overline{f}_{a_n} \epsilon \psi(\hat{P})$, that is $a_1, \ldots, a_n \epsilon P$. Let $\overline{w}(\overline{f}_{a_j}) = \overline{f}_{b_j}$, $b_j \epsilon Q$, $1 \leq j \leq n$. It is required to find some $\overline{f}_a \epsilon \psi(\hat{M})$ such that $\overline{f}_a^{-1} \circ \overline{f}_{a_j} \circ \overline{f}_a = \overline{f}_{b_j}$, $1 \leq j \leq n$. Let $G_j = \{i \mid f_{a_j}(i) = a_j\}$, $1 \leq j \leq n$, and $H_j = \{i \mid g_{b_j} = b_j\}$, $1 \leq j \leq n$. Let $D_j = \{i \mid w_i(a_j) = b_j\}$, $1 \leq j \leq n$. Thus $G \epsilon X$, where $G = \bigcap \{G_j \cap H_j \cap D_j \mid 1 \leq j \leq n\}$. Take some $m \epsilon G$ and let $D = \{i \mid N_i \supseteq N_m\}$. Therefore $D \cap G \epsilon X$. Now w_m is an inner automorphism of N_m taking P_m to Q_m . Therefore there exists some $a \epsilon N_m$ such that $w_m(a_j) = a^{-1} \circ a_j \circ a$, all $1 \leq j \leq n$. But for all $i \epsilon D \cap G$, $w_i(a_j) = b_j = w_m(a_j)$, $1 \leq j \leq n$. That is $\{i \mid w_i(a_j) = a^{-1} \circ a_j \circ a\} \epsilon X$, $1 \leq j \leq n$. Therefore $\overline{f}_a^{-1} \circ \overline{f}_{a_j} \circ \overline{f}_a = \overline{f}_{b_j}$, all $1 \leq j \leq n$. Hence the required result. Q.E.D.

Footnote added at proof stage: It was initially thought by the author that the formula $S_{op}(y^0)$ was $(\pi N_i/X)$ allowable. This is not so. Thus Theorem 4.2, part c) must be restricted to the 'if' statement alone. Counter-examples exist for the 'only if' portion.

REFERENCES

- Baer, R., "Sylow theorems for infinite groups," Duke Mathematical Journal, vol. 6 (1940), pp. 598-614.
- [2] Grätzer, G., Universal Algebra, Van Nostrand Publishers (1968).
- [3] Kochen, S., "Ultraproducts in the theory of models," Annals of Mathematics, vol. 74 (1961), pp. 221-261.
- [4] Kurosh, A. G., *The Theory of Groups*, Chelsea Publishing Company, 2nd English edition (1960). Translator, K. A. Hirsch.
- [5] Kreisel, G., and J. L. Krivine, *Elements of Mathematical Logic*, North Holland Publishing Company (1967).
- [6] Malcolm, W. G., "Variations in definition of first order ultraproducts," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 394-398.
- [7] Robinson, A., Model Theory, North Holland Publishing Company (1965).

Victoria University of Wellington Wellington, New Zealand