SOME RESULTS AND ALGEBRAIC APPLICATIONS IN THE THEORY OF HIGHER-ORDER ULTRAPRODUCTS

WILFRED G. MALCOLM

Introduction Perhaps the chief result of this paper is the higher-order extension, (Theorems 3.11, 3.12), via the ultraproduct construction, of a first-order embedding theorem of Robinson, cf. [7], p. 34, Theorem 2.4.1.

Section 1 summarises the higher-order ultraproduct construction and gives a partial answer to the question of necessary and sufficient conditions for the preservation of the 'fullness' property by that construction. Section 2 provides an extension of Łos's theorem for a first-order ultraproduct and an associated formal language to a higher-order ultraproduct and an associated higher-order language involving a special class of formulae of infinite length. Section 3 develops a number of results involving subsystems of higher-order systems and leads to the embedding theorems. Section 4 illustrates some of these results in two algebraic situations. The first is Stone's representation theorem for non-finite boolean algebras and the second, properties of Sylow (maximal) p-subgroups of locally normal groups.

Terminology Let T be the class of finite types as described in Kreisel and Krivine [5], pp. 95-101. A (relational) system of order $\tau \in \mathrm{T}$, (hereafter called a τ-system), is a collection $M=\left\{\mathbf{E}^{\sigma} \mid \sigma \leqslant \tau\right\} \cup\left\{\epsilon^{\sigma} \mid \sigma \leqslant \tau, \sigma \neq 0\right\} \cup$ $\left\langle R_{1}, \ldots, R_{p}, ..\right\rangle$, where $\left\{\mathrm{E}^{\sigma} \mid \sigma \leqslant \tau\right\}$ is a collection of non-empty, mutually disjoint classes; for each $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right), \epsilon^{\sigma}$ is an $n+1$-placed 'membership' relation defined on ($\left.\mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma \eta}\right) \times \mathbf{E}^{\sigma}$; and each R_{p} is an n-placed relation on some $\mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}, \sigma_{1}, \ldots, \sigma_{n} \leqslant \tau$. Such an R_{p} is said to be of type $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. If $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma \leqslant \tau$ and R_{p} is a relation of type ($\sigma_{1}, \ldots, \sigma_{n}$) then R_{p} may be regarded as a nominated member of $\mathbf{E}^{\sigma} .{ }^{1}$ If $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma n}$ and $a \in \mathbf{E}^{\sigma}$ then (a_{1}, \ldots, a_{n}) is said to 'belong' to a, written $\left(a_{1}, \ldots, a_{n}\right) \epsilon^{\sigma} a$, if, and only if, $\epsilon^{\sigma}\left(a_{1}, \ldots, a_{n}, a\right)$; that is if, and only if, a_{1}, \ldots, a_{n}, a are related by ϵ^{σ}. E^{0} is the class of individuals of M. The

[^0]members of the classes $\mathbf{E}^{\sigma}, \sigma \leqslant \tau$, are the objects of M. The R_{p} 's are called the constant relations of M.

If $N=\left\{\mathbf{F}^{\sigma} \mid \sigma \leqslant \tau_{1}\right\} \cup\left\{\epsilon^{\sigma} \mid \sigma \leqslant \tau_{1}, \sigma \neq 0\right\} \cup\left\langle S_{1}, \ldots, S_{p}, \ldots\right\rangle$ is a τ_{1}-system then M and N are said to be similar if $\tau=\tau_{1}$, and if, for every p, the corresponding relations R_{p} and S_{p} are both k-placed, for some integer k, and of type $\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ for some $\sigma_{1}, \ldots, \sigma_{k} \leqslant \tau$. The class of all systems similar to M is called the similarity class of M.
M is called a normal structure if, for all $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, and for all $a, b \in \mathbf{E}^{\sigma}, a=b$ if, and only if, $\hat{a}=\hat{b}$, where $\hat{a}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid\left(a_{1}, \ldots, a_{n}\right) \epsilon^{\sigma} a\right\}$ and \hat{b} is defined similarly. Unless otherwise stated all systems later discussed will be assumed normal.
$\mathrm{L}^{\top}(M)$ is a formalized logic associated with the similarity class of M, where $\mathrm{L}^{\top}(M)$ has, for each $\sigma \leqslant \tau$, a countable class of variable symbols of type σ, viz $\left\{x^{\sigma}, y^{\sigma}, \ldots x_{1}^{\sigma}, y_{1}^{\sigma}, \ldots\right\}$; for each $\sigma \leqslant \tau, \sigma \neq 0$, a 'membership' relation symbol ϵ^{σ}; and $\left\langle R_{1}, \ldots, R_{p} ..\right\rangle$ a sequence of constant relation symbols. (No confusion will be caused by using ' ϵ ', ' R_{p} ' to denote both elements of M and of $\mathrm{L}^{\top}(M)$.) For each $\sigma \leqslant \tau, \mathrm{L}^{\top}(M)$ will have an identity symbol, $=$.

A standard interpretation of $\mathrm{L}^{\top}(M)$ with respect to any member, N, of the similarity class of M will be one in which each symbol ϵ^{σ} of $\mathrm{L}^{\top}(M)$ denotes the 'membership' relation, ϵ^{σ}, of N; each symbol R_{p} denotes the relation R_{p} of N; and each identity symbol of type σ of $L^{\tau}(M)$ denotes the identity relation on F^{σ} of N.

Let $\mathfrak{a}=\left\langle a_{1}, a_{2}, \ldots\right\rangle$ be a sequence of objects of M. If ϕ is a formula with free variables $x_{i_{1}}^{\sigma_{1}}, \ldots, x_{i n}^{\sigma n}$, then \mathfrak{a} is said to be ϕ-allowable if $a_{i k} \epsilon \mathrm{E}^{\sigma k}$, $1 \leqslant k \leqslant n$. A ϕ-allowable sequence \mathfrak{a} is said to satisfy ϕ in M, written $M \vDash \phi(\mathfrak{a})$, (or if ϕ is written $\phi\left(x_{i_{1}}^{\sigma_{1}}, \ldots, x_{i_{n}}^{\sigma_{n}}\right.$) then $M \neq \phi(\mathfrak{a})$ may be alternatively written as $\left.M \vDash \phi\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)\right)$, if the sequence $\left\langle a_{i_{1}}, \ldots, a_{i_{n}}\right\rangle$ satisifes ϕ in M under the assignment of $a_{i k}$ to $x_{i_{k}}^{\sigma k}, 1 \leqslant k \leqslant n$. ϕ holds in $M, M \vDash \phi$, if for all ϕ-allowable sequences $\mathfrak{a}, M \vDash \phi(\mathfrak{a})$.
1 Higher Order Ultraproducts Let $\left\{M_{i} \mid i \epsilon I\right\}$ be a family of τ-systems belonging to the same similarity class. That is, for each $i \in I$, let $M_{i}=$ $\left\{\mathbf{E}_{i}^{\sigma} \mid \sigma \leqslant \tau\right\} \cup\left\{\epsilon^{\sigma} \mid \sigma \leqslant \tau, \sigma \neq 0\right\} \cup\left\langle R_{1}, \ldots, R_{p}, \ldots\right\rangle$. If X is an ultrafilter over I then the ultraproduct of the family is the τ-system $\pi M_{i} / X=\left\{\pi \mathbf{E}_{i}^{\sigma} / X \mid \sigma \leqslant \tau\right\} \cup$ $\left\{\epsilon^{\sigma} \mid \sigma \leqslant \tau, \sigma \neq 0\right\} \cup\left\langle R_{1}, \ldots, R_{p}, \ldots\right\rangle$. For each $\sigma \leqslant \tau, \pi \mathrm{E}_{i}^{\sigma} / X$ is the set of equivalence classes of the cartesian product $\underset{i \in I}{ } \mathbf{E}_{i}^{\sigma}=\left\{f \mid f: I \rightarrow \bigcup\left\{\mathbf{E}_{i}^{\sigma} \mid i \in I\right\}\right.$, $\left.f(i) \epsilon \mathbf{E}_{i}^{\sigma}\right\}$ under the equivalence relation defined by: $f \sim g$ if, and only if, $\{i \mid f(i)=g(i)\} \in X$. The equivalence class of f is denoted by \bar{f}. For each $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right), \epsilon^{\sigma}$ is defined in $\pi M_{i} / X$ by: $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \epsilon^{\sigma} \bar{f}$ if, and only if, $\left\{i \mid\left(f_{1}(i), \ldots, f_{n}(i)\right) \epsilon^{\sigma} f(i)\right\} \in X$. Similarly each R_{p}, (where, for each M_{i}, R_{p} is k-placed and of type ($\sigma_{1}, \ldots, \sigma_{k}$) say) is defined in $\pi M_{i} / X$ by, $R_{p}\left(\bar{f}_{1}, \ldots, \bar{f}_{k}\right)$ if, and only if, $\left\{i \mid R_{p}\left(f_{1}(i), \ldots, f_{k}(i)\right)\right\} \in X$.

The necessary lemmas to support the above definitions are assumed. It is noted that $\pi M_{i} / X$ belongs to the same similarity class as the M_{i}. The requirement of similarity for the family $\left\{M_{i} \mid i \in I\right\}$ is not a necessary one
for the definition of the ultra-product. A relaxation of the similarity condition in the case of the first-order ultraproduct construction is discussed in a paper by the author [6]. The method extends to higher order systems, if desired.

Theorem 1.1 If each member of $\left\{M_{i} \mid i \in I\right\}$ is a normal system then so is $\pi M_{i} / X$.
Proof: Take $\bar{f}, \bar{g} \in \mathbf{E}^{\sigma}, \sigma \leqslant \tau$. Let $F=\{i \mid f(i)=g(i)\}$. Assume $\bar{f}=\bar{g}$, that is $F \in X$. Now $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \epsilon^{\sigma} \bar{f}$ if, and only if, $G \in X$, where $G=\left\{i \mid\left(f_{1}(i), \ldots\right.\right.$, $\left.\left.f_{n}(i)\right) \epsilon^{\sigma} f(i)\right\}$. But each M_{i} is normal and so $H \supseteq G \cap F$, where $H=\left\{i \mid\left(f_{1}(i), \ldots\right.\right.$, $\left.\left.f_{n}(i)\right) \epsilon^{\sigma} g(i)\right\}$. Hence $H_{\hat{\sigma}} \epsilon X$ and so $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \epsilon^{\sigma} \bar{g}$. Similarly $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \epsilon^{\sigma} \bar{f}$ if $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \epsilon^{\sigma} \bar{g}$ and so $\hat{\bar{f}}=\hat{\bar{g}}$.

Conversely, assume $\bar{f} \neq \bar{g}$, that is $F \notin X$ and so $C F \in X$. Now as each M_{i} is normal there exists for each $i \in \mathrm{C} F,\left(a_{1}^{i}, \ldots, a_{n}^{i}\right) \in \mathbf{E}_{i}^{\sigma_{1}} \times \ldots \times \mathbf{E}_{i}^{\sigma_{n}}$ such that ($a_{1}^{i}, \ldots, a_{n}^{i}$) 'belongs' to one, and only one, of $f(i), g(i)$. For each $i \in C F$ define $f_{j}(i)=a_{j}^{i}, 1 \leqslant j \leqslant n$. Thus $\bar{f}_{j}, 1 \leqslant j \leqslant n$, are well defined as $C F \in X$. Let $F_{0}=\left\{i \mid\left(f_{1}(i), \ldots, f_{n}(i)\right) \epsilon^{\sigma} f(i)\right\}$ and $G_{0}=\left\{i \mid\left(f_{1}(i), \ldots, f_{n}(i)\right) \epsilon^{\sigma} g(i)\right\}$. Now $\left(C F \cap F_{0}\right) \cup\left(C F \cap G_{0}\right)=C F$ and $\left(C F \cap F_{0}\right) \cap\left(C F \cap G_{0}\right)=\varnothing$. Therefore one, and only one, of F_{0}, G_{0} belongs to X; that is ($\bar{f}_{1}, \ldots, \bar{f}_{n}$) 'belongs' to one, and only one, of \bar{f}, \bar{g}. Thus $\hat{\bar{f}} \neq \hat{\bar{g}}$. Q.E.D.

A τ-system M is termed full if, for each $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, and for each subclass \mathbf{K} of $\mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$, there exists an object $a \in \mathbf{E}^{\sigma}$ such that $\hat{a}=K$. The next three theorems discuss the fullness of the ultraproduct of a family of full systems.

Theorem 1.2 Let $\left\{M_{i} \mid i \epsilon I\right\}$ be a family of similar and full τ-systems. If X is a given ultrafilter over I and $\pi M_{i} / X$ the ultraproduct then for each $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, and for each subclass K of $\mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$, there exists some $\bar{f}_{\in} \mathbf{E}^{\sigma}$ such that $\mathbf{K} \subseteq \hat{\bar{f}}$.

Proof: For each $i \in I$, let $K_{i}=\left\{\left(f_{1}(i), \ldots, f_{n}(i)\right) \mid\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \in \mathbf{K}\right\}$. But each M_{i} is full and so there exists some object $a_{i} \in \mathbf{E}_{i}^{\sigma}$ such that $\hat{a}_{i}=K_{i}$. Define $\bar{f} \epsilon \mathbf{E}^{\sigma}$ by $f(i)=a_{i}$, for each $i \in I$. Take any $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \in \mathbb{K}$. Hence $\left\{i \mid\left(f_{1}(i), \ldots\right.\right.$, $\left.\left.f_{n}(i)\right) \epsilon^{\sigma} f(i)\right\}=I$. But $I \epsilon X$ and so $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \epsilon^{\sigma} \bar{f}$. Thus $\mathrm{K} \subseteq \hat{\bar{f}}$. Q.E.D.

Theorem 1.3 Let $\left\{M_{i} \mid i \epsilon I\right\}$ be a family of similar and full τ-systems. Let X be an ultrafilter over I and $\pi M_{i} / X$ is the resulting ultraproduct. If $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, and if \mathbf{K} is a subclass of $\mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$ such that $|\mathbf{K}|=\beta$, (that is the cardinality of \mathbf{K} is β), then there exists no $\bar{f} \epsilon \mathbf{E}^{\sigma}$ such that $\hat{f}=\mathbf{K}$ only if X is β-incomplete.

Proof: Let the members of \boldsymbol{K} be indexed by β, that is $\boldsymbol{K}=\left\{\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)_{j} \mid j<\beta\right\}$. Further, for each $j<\beta$, let $\left(g_{1}, \ldots, g_{n}\right)$ be an arbitary but fixed representation of $\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)$. Let $K_{i}=\left\{\left(g_{1}(i), \ldots, g_{n}(i)\right)_{j} \mid j<\beta\right\}$, each $i \in I$ and as in Theorem 1.2 let $\bar{f} \in \mathbf{E}^{\sigma}$ be defined such that $f(i)=K_{i}$, each $i \in I$. Thus $K \subseteq \hat{\bar{f}}$.

Assume there exists no $\bar{g} \in \mathbf{E}^{\sigma}$ such that $\hat{\bar{g}}=\mathbf{K}$ and so there exists some $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \in \mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$ such that $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \in \hat{\bar{f}}$ but is not a member of \mathbf{K}. Let $F=\left\{i \mid\left(f_{1}(i), \ldots, f_{n}(i)\right) \epsilon^{\sigma} f(i)\right\}$ and so $F \epsilon X$. Let $F_{j}=F \cap\left\{i \mid\left(f_{1}(i), \ldots, f_{n}(i)\right)=\right.$
$\left.\left(g_{1}(i), \ldots, g_{n}(i)\right)_{j}\right\}$, for all $j<\beta$. Now $F_{j} \notin X, j<\beta$, as $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \notin$ K. Further, $\bigcup\left\{F_{j} \mid j<\beta\right\}=F$ as, for all $i \in I, f(i)=K_{i}$, and the K_{i} have been defined using only the fixed representations of the members of K. Therefore $\bigcap\left\{C F_{j} \mid j<\right.$ $\beta\} \cap F=\varnothing$ and hence X is β-incomplete. Q.E.D.

The question as to whether the incompleteness of the ultrafilter X guarantees the non-fullness of the ultraproduct does not seem to have an immediate answer. The next theorem is a possible step towards such an answer.
Theorem 1.4 Let $\left\{M_{i} \mid i \in I\right\}$ be a family of similar and full τ-systems. Let X be a β-incomplete ultrafilter over $I . \pi M_{i} / X$ is the resulting ultraproduct. If for $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, there exists some $\mathbf{K} \subseteq \mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$, say $\mathbf{K}=$ $\left\{\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)_{j} \mid j<\alpha\right\}, \beta \leqslant \alpha$, such that $G \in X$, where $G=\bigcap\left\{C F_{m, n} \mid m, n<\beta\right.$, $m \neq n\}$, and $F_{m, n}=\left\{i \mid\left(g_{1}(i), \ldots, g_{n}(i)\right)_{m}=\left(g_{1}(i), \ldots, g_{n}(i)\right)_{n}\right\}$, all $m, n<\beta, m \neq n$, then there exists no $\bar{f} \in \mathbf{E}^{\sigma}$ such that $\hat{f}=\mathbf{K}$.
Proof: As X is β-incomplete let $\left\{H_{k} \mid k<\beta\right\}$ be a family of members of X such that $\bigcap\left\{H_{k} \mid k<\beta\right\}=\varnothing$. Assume there exists $\bar{f} \in \mathbf{E}^{\sigma}$ such that $\hat{\bar{f}}=\mathbf{K}$. Thus, for each $j<\alpha$, $\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)_{j} \epsilon^{\sigma} \bar{f}$ if, and only if, $\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)_{j} \in \mathbf{K}$.

For each $j<\beta$ put $G_{i}=\left\{i \mid\left(g_{1}(i), \ldots, g_{n}(i)\right)_{i} \epsilon^{\sigma} f(i)\right\}, G_{j}^{\prime}=G_{j} \cap G$ and $H_{j}^{\prime}=$ $G_{j}^{\prime} \cap H_{j}$. Thus $G_{j}^{\prime}, H_{j}^{\prime} \in X$ and $\bigcup\left\{\mathrm{C}^{\prime} H_{j}^{\prime} \mid j<\beta\right\}=G$, where $C^{\prime} H_{j}^{\prime}=G \cap C H_{j}^{\prime}$. Now define $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \in \mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$ as follows: For all $i \in \mathrm{C}^{\prime} H_{o}^{\prime}$ put $\left(f_{1}(i), \ldots\right.$, $\left.f_{n}(i)\right)=\left(g_{1}(i), \ldots, g_{n}(i)\right)_{0}$. Assume $\left(f_{1}(i), \ldots, f_{n}(i)\right)$ has been defined for all $i \epsilon \bigcup\left\{\mathrm{C}^{\prime} H_{j}^{\prime} \mid j<\delta\right\}$, for some $\delta<\beta$, and define $\left(f_{1}(i), \ldots, f_{n}(i)\right)=\left(g_{1}(i), \ldots\right.$, $\left.g_{n}(i)\right)_{\delta}$, for all $i \epsilon \bigcap\left\{H_{j}^{\prime} \mid j<\delta\right\}-H_{\delta}^{\prime}$. By transfinite induction $\left(f_{1}(i), \ldots, f_{n}(i)\right)$ is defined for all $i \in G$, as $\bigcup\left\{\mathrm{C}^{\prime} H_{j}^{\prime} \mid j<\beta\right\}=G$. Hence $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)$ is well defined as $G \epsilon X$.

But $\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)_{j} \neq\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right)$, for any $j<\beta$, as $\left\{i \mid\left(g_{1}(i), \ldots, g_{n}(i)\right)_{j}=\right.$ $\left.\left(f_{1}(i), \ldots, f_{n}(i)\right)\right\} \cap G=\bigcap\left\{H_{k}^{\prime} \mid k<j\right\} \cap C H_{j}^{\prime}$, and $\subset H_{j}^{\prime} \notin X$. Hence $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \notin \mathbb{K}$. But $\left(\bar{f}_{1}, \ldots, \bar{f}_{n}\right) \epsilon^{\sigma} \bar{f}$ as $\left\{i \mid\left(f_{1}(i), \ldots, f_{n}(i)\right) \epsilon^{\sigma} f(i)\right\} \supseteq G$. This contradicts the assumption that $\hat{\hat{f}}=\mathbf{K}$ and hence the theorem is established. Q.E.D.
2 Ultraproducts and an Associated Higher-Order Language. Let $\left\{M_{i} \mid i \in I\right\}$ be a family of τ-systems of the same similarity class. \mathcal{L}^{τ} is the formalized language associated with this similarity class, as described in the introduction. If $\mathfrak{a}=\left\langle\bar{f}_{1}, \bar{f}_{2}, \ldots\right\rangle$ is a sequence of elements where each member of the sequence is an object of $\pi M_{i} / X$, for some ultrafilter X, then $\mathfrak{a}(i)=\left\langle f_{1}(i), f_{2}(i),.\right\rangle$ is the associated sequence of objects of M_{i}, each $i \in I$. The first theorem of this paragraph is the natural extension of Łos's theorem for a first order ultraproduct and associated language.
Theorem 2.1 Let X be a given ultrafilter over I. If ϕ is any well formed formula (wff) of \mathcal{L}^{τ} and $\mathfrak{a}=\left\langle\bar{f}_{1}, \bar{f}_{2}, ..\right\rangle$ any ϕ-allowable sequence then $\pi M_{i} / X \vDash \phi(\mathfrak{a})$ if, and only if, $\left\{i \mid M_{i} \vDash \phi(\mathfrak{a}(i))\right\} \in X$.

Proof: The details of proof are straightforward extensions of those for the first order theorem-for which see Kochen [3], pp. 226-229, Theorem 5.1. Corollary If ϕ is a sentence of \mathcal{L}^{τ} then $\pi M_{i} / X \vDash \phi$ if, and only if, $\left\{i \mid M_{i} \vDash \phi\right\} \in X$.

Proof: Immediate from Theorem 2.1.
For the purpose of later application (see footnote on page 15), the language \mathcal{L}^{τ} is extended to include a wider class of formulae, developed relative to $\pi M_{i} / X$ as follows: Let $\left\{\phi_{t} \mid t \epsilon \alpha\right\}$ be any class of wff's of \mathcal{L}^{T} such that (i) only a finite number of distinct free variables occur in all of the $\phi_{t}, t \in \alpha$; (ii) for any ϕ_{t}-allowable sequence, a, (because of (i) any sequence allowable for one ϕ_{t} will be allowable for all), and for all $k \in \alpha$, if there exists some $j \in I$ such that $M_{j} \vDash \phi_{k}(\mathfrak{a}(j))$ then $\left\{i \mid M_{i} \vDash \phi_{k}(\mathfrak{a}(i))\right\} \in X$. The infinite disjunction $\mathrm{V}_{t \in \alpha} \phi_{t}$ will be a ($\pi M_{i} / X$) allowable formula.

Formulae generated by the rules of formation of \mathcal{L}^{T} from the wffs of \mathcal{L}^{τ} together with the $\left(\pi M_{i} / X\right)$ allowable disjunctions will comprise the wider class of formulae of \mathcal{L}^{τ}. $\mathcal{L}^{\prime \top}\left(\pi M_{i} / X\right)$, or in context just $\mathcal{L}^{\prime \tau}$, will denote \mathcal{L}^{τ} with this wider class of formulae.
Theorem 2.2 Let X be a given ultrafilter over I. If ϕ is any wff of $\mathfrak{L}^{\prime \tau}$ and \mathfrak{a} any ϕ-allowable sequence of objects of $\pi M_{i} / X$ then $\pi M_{i} / X \vDash \phi(\mathfrak{a})$ if, and only if, $\left\{i \mid M_{i} \vDash \phi(\mathfrak{a}(i))\right\} \in X$.

Proof: In view of the inductive procedures of the proof of Theorem 2.1 it is necessary only to consider the case where ϕ is of the form $V_{t \in \alpha} \phi_{t}$ as described above. First assume that $\pi M_{i} / X \vDash \bigvee_{t \in \alpha} \phi_{t}(\mathfrak{a})$ and so by the semantical rules for a disjunction there exists some $k \in \alpha$ such that $\pi M_{i} / X \vDash \phi_{k}(\mathfrak{a})$. Hence from Theorem 2.1, $\left\{i \mid M_{i} \vDash \phi_{k}(\mathfrak{a}(i))\right\} \epsilon X$ and so $\left\{i \mid M_{i} \vDash \mathrm{~V}_{t \in \alpha} \phi_{t}(\mathfrak{a}(i))\right\} \in X$.

Conversely, assume that $\left\{i \mid M_{i} \vDash \mathrm{~V}_{t \in \alpha} \phi_{t}(\mathfrak{a}(i))\right\} \in X$. Hence there exists some $j \epsilon I$ such that $M_{j} \vDash \bigvee_{t \in \alpha} \phi_{t}(\mathfrak{a}(i))$ and thus some $k \in \alpha$ such that $M_{j} \vDash \phi_{k}(\mathfrak{a}(j))$. Therefore $\left\{i \mid M_{i} \vDash \phi_{k}(\mathfrak{a}(i))\right\} \in X$ and so $\pi M_{i} / X \vDash \phi_{k}(\mathfrak{a})$. Therefore $\pi M_{i} / X \vDash \mathrm{~V}_{t \in \alpha} \phi_{t}(\mathfrak{a})$. Q.E.D.
Corollary If ϕ is a sentence of $\mathcal{L}^{\prime \tau}$ then $\pi M_{i} / X \vDash \phi$ if, and only if, $\left\{i \mid M_{i} \vDash \phi\right\} \in X$.

Proof: Immediate from Theorem 2.2.
Theorem 2.3 Let X be a given ultrafilter over I. If \mathbf{K} is a class of wffs of $\mathcal{L}^{\prime \tau}$ and \mathfrak{a} any sequence of objects of $\pi M_{i} / X$, (allowable for all members of $\mathbf{K})$, then $\pi M_{i} / X \vDash \mathbf{K}(\mathfrak{a})$ if $\left\{i \mid M_{i} \vDash \mathbf{K}(\mathfrak{a}(i))\right\} \in X$.
Proof: Assume $\left\{i \mid M_{i} \vDash \mathbf{K}(\mathfrak{a}(i))\right\} \in X$. Thus for all $\phi \in \mathbf{K},\left\{i \mid M_{i} \vDash \phi(\mathfrak{a}(i))\right\} \in X$ and hence $\pi M_{i} / X \vDash \phi(\mathfrak{a})$. That is $\pi M_{i} / X \vDash \mathbf{K}(\mathfrak{a})$. Q.E.D.

Corollary If \mathbf{K} is a collection of sentences of $\mathfrak{\swarrow}^{\prime \top}$ then

$$
\pi M_{i} / X \vDash \mathbf{K} \text { if }\left\{i \mid M_{i} \vDash \mathbf{K}\right\} \in X .
$$

Proof: Immediate from Theorem 2.3.
The final theorem of this paragraph is a partial converse to Theorem 2.3 .

Theorem 2.4 Let X be a given ultrafilter over I. If K is a set of wffs of $\mathfrak{K}^{\prime T}$ such that $|K|=\beta$ and X is β-complete then, for any allowable sequence \mathfrak{a}, $\pi M_{i} / X \vDash K(\mathfrak{a})$ only if $\left\{i \mid M_{i} \vDash K(\mathfrak{a}(i))\right\} \in X$.

Proof: Assume $\pi M_{i} / X \vDash K(\mathfrak{a})$ and so, for all $\phi \in K, \pi M_{i} / X \vDash \phi(\mathfrak{a})$. Let $F_{\phi}=$ $\left\{i \mid M_{i} \vDash \phi(\mathfrak{a}(i))\right\}$, for all $\phi \in K$. Now $\left\{i \mid M_{i} \vDash K(\mathfrak{a}(i))\right\} \supseteq \bigcap\left\{F_{\phi} \mid \phi \in K\right\}$. But each $F_{\phi} \in X$ and X is β-complete. Thus $\left\{i \mid M_{i} \vDash K(\mathfrak{a}(i))\right\} \in X$. Q.E.D.

Corollary If \mathbf{K} is a class of sentences of $\left\{^{\prime \tau}\right.$ such that $|\mathbf{K}|=\beta$ and X is β-complete then $\pi M_{i} / X \vDash \mathbf{K}$ only if $\left\{i \mid M_{i} \vDash \mathbf{K}(\mathfrak{a}(i))\right\} \in X$.

Proof: Immediate from Theorem 2.4.
3 Substructures and Embeddings Let $M=\left\{\mathbf{E}^{\sigma} \mid \sigma \leqslant \tau\right\} \cup\left\{\epsilon^{\sigma} \mid \sigma \leqslant \tau, \sigma \neq 0\right\} \cup$ $\left\langle R_{1}, \ldots\right\rangle$, and $N=\left\{\mathbf{F}^{\sigma} \mid \sigma \leqslant \tau\right\} \cup\left\{\epsilon^{\sigma} \mid \sigma \leqslant \tau, \sigma \neq 0\right\} \cup\left\langle S_{1}, \ldots\right\rangle$ be two normal τ systems. N is called a subsystem of M if (i) $\mathbf{F}^{0} \subseteq \mathbf{E}^{0}$; (ii) for each $\sigma \leqslant \tau$, $\sigma \neq 0$, there exists a surjective map $p: \mathbf{E}^{\sigma} \rightarrow \mathbf{F}^{\sigma}$, and for $\sigma=0 ; p: \mathbf{F}^{0} \rightarrow \mathbf{F}^{0}$ is the identity map, such that for all $\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \in \mathbf{F}^{\sigma_{1}} \times \ldots \times \mathbf{F}^{\sigma_{n}}, \sigma=$ $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, and all $p(a) \in \mathbf{F}^{\sigma},\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \epsilon^{\sigma} p(a)$ if, and only if, there exists some $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \in \mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$ such that $p\left(a_{k}\right)=p\left(a_{k}^{\prime}\right), 1 \leqslant k \leqslant n$, and $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \epsilon^{\sigma} a$; (iii) there exists a surjective map $p:\left\langle R_{1}, \ldots\right\rangle \rightarrow\left\langle S_{1}, \ldots\right\rangle$ such that if R_{t} is a relation of type $\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{1}, \ldots, \sigma_{n} \leqslant \tau$, then $p\left(R_{t}\right)$ is of the same type and for all $\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \in \mathbf{F}^{\sigma_{1}} \times \ldots \times \mathbf{F}^{\sigma_{n}}, p\left(R_{t}\right)\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right)$ if, and only if, there exists $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \in \mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$ such that $p\left(a_{k}\right)=p\left(a_{k}^{\prime}\right)$, $1 \leqslant k \leqslant n$, and $R_{t}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$. The family of maps is denoted by $\mathfrak{p}: M \rightarrow N$ and called the canonical projection of M to the subsystem N.

Theorem 3.1 If N is a subsystem of the τ-system M then the canonical projection $\mathfrak{p}: M \rightarrow N$ is unique.
Proof: Let $\mathfrak{p}_{1}: M \rightarrow N, \mathfrak{p}_{2}: M \rightarrow N$ be two canonical projections. Now, for $\sigma=0, p_{1}=p_{2}$ as both are the identity map on \mathbf{F}^{0}. Assume for all $\sigma_{i}<\sigma$, $\sigma \leqslant \tau$, that $p_{1}=p_{2}$ on $\mathbf{E}^{\sigma_{i}}$, (on \mathbf{F}^{0} if $\sigma_{i}=0$). Now to show $p_{1}=p_{2}$ on \mathbf{E}^{σ}.

For any $a \epsilon \mathbf{E}^{\sigma}, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, consider $p_{1}(a), p_{2}(a)$. Take $\left(p_{1}\left(a_{1}\right), \ldots\right.$, $\left.p_{1}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{1}(a)$. Therefore there exists some ($\left.a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \in \mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma}$ such that $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \epsilon^{\sigma} a$ and $p_{1}\left(a_{k}\right)=p_{1}\left(a_{k}^{\prime}\right), 1 \leqslant k \leqslant n$. Hence $\left(p_{2}\left(a_{1}^{\prime}\right), \ldots, p_{2}\left(a_{n}^{\prime}\right)\right) \epsilon^{\sigma}$ $p_{2}(a)$. But $p_{1}=p_{2}$ on $\mathbf{E}^{\sigma i}, \sigma_{i}<\sigma$. Hence $p_{2}\left(a_{k}^{\prime}\right)=p_{1}\left(a_{k}^{\prime}\right)=p_{1}\left(a_{k}\right), 1 \leqslant k \leqslant n$. That is $\left(p_{1}\left(a_{1}\right), \ldots, p_{1}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{2}(a)$. Similarly if $\left(p_{2}\left(a_{1}\right), \ldots, p_{2}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{2}(a)$ then $\left(p_{2}\left(a_{1}\right), \ldots, p_{2}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{1}(a)$. Thus $\widehat{p_{1}(a)}=\widehat{p_{2}(a)}$ and as N is normal then $p_{1}(a)=$ $p_{2}(a)$. By a similar argument it can be shown that for all constant relations R_{t} of $M, p_{1}\left(R_{t}\right)=p_{2}\left(R_{t}\right)$. Hence $\mathfrak{p}_{1}=\mathfrak{p}_{2}: M \rightarrow N$. Q.E.D.

If N is a subsystem of M then N can be regarded as being in the same
similarity class as M. For if $\left\langle R_{1}, \ldots\right\rangle$ is the sequence of constant relations of M then $\left\langle p\left(R_{1}\right), \ldots\right\rangle$ can be taken as the corresponding sequence of relations of N. As p is surjective all of the relations of N will be included in this sequence, although there may be repetitions. This will not matter.

Canonical subsystems M is a τ-system and F^{0} a given, non-empty, subset of \mathbf{E}^{0}. A τ-system, N, can be built inductively on \mathbf{F}^{0} as follows (cf. Kreisel and Krivine, [5], p. 98, Theorem 16):
(i) F^{0} comprises the individuals of N.
(ii) Take $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, and assume $\mathbf{F}^{\sigma_{i}}$ is defined for all $\sigma_{i}<\sigma$, together with surjective maps $p: \mathbf{E}^{\sigma i} \rightarrow \mathbf{F}^{\sigma i}, \sigma_{i} \neq 0$, and $p: \mathbf{F}^{0} \rightarrow \mathbf{F}^{0}$ the identity map. For each $a \in \mathbf{E}^{\sigma}$, define $p(a)=\left\{\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \mid\right.$ there exists $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$, such that $p\left(a_{j}\right)=p\left(a_{j}^{\prime}\right), 1 \leqslant j \leqslant n$, and $\left.\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \epsilon^{\sigma} a\right\}$. Let $\mathbf{F}^{\sigma}=$ $\left\{p(a\} \mid a \in \mathbf{E}^{\sigma}\right\}$ and $p: \mathbf{E}^{\sigma} \rightarrow \mathbf{F}^{\sigma}$ is thus defined. Now for all $\left(p\left(a_{1}\right), \ldots\right.$, $\left.p\left(a_{n}\right)\right) \in \mathbf{F}^{\sigma_{1}} \times \ldots \times \mathbf{F}^{\sigma_{n}}$, and all $p(a) \in \mathbf{F}^{\sigma}$, define $\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \epsilon^{\sigma} p(a)$ if $\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \in p(a)$. That is ϵ^{σ} in N is the ordinary membership relation. (iii) For each relation R_{t} of M of type ($\sigma_{1}, \ldots, \sigma_{n}$), $\sigma_{1}, \ldots, \sigma_{n} \leqslant \tau$, define $p\left(R_{t}\right)$ by: $p\left(R_{t}\right)\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right)$ if there exists ($\left.a_{1}^{\prime}, ., a_{n}^{\prime}\right)$ such that $p\left(a_{k}^{\prime}\right)=p\left(a_{k}\right)$, $1 \leqslant k \leqslant n$, and $R_{t}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$.
Theorem 3.2 N as constructed above is a normal τ-system.
Proof: Immediate from a direct checking of the definitions.
Theorem 3.3 If M is a τ-system and N is constructed as above on a subset \mathbf{F}^{0} of \mathbf{E}^{0} then N is a substructure of M. (N is termed a canonical substructure.)

Proof: Immediate from the details of the construction and where the maps \mathfrak{p} form the canonical projection of M to the subsystem N.

If M, N, are two similar τ-systems then M and N are said to be isomorphic if there exists, for each $\sigma \leqslant \tau$, a bijective map $\psi: \mathbf{E}^{\sigma} \rightarrow \mathbf{F}^{\sigma}$ such that (i) if $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ then for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$ and all $a \epsilon \mathbf{E}^{\sigma}$, $\left(a_{1}, \ldots, a_{n}\right) \epsilon^{\sigma} a$ if, and only if, $\left(\psi\left(a_{1}\right), \ldots, \psi\left(a_{n}\right)\right) \epsilon^{\sigma} \psi(a)$; (ii) for all R_{t} of type $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and all ($\left.a_{1}, \ldots, a_{n}\right) \in \mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}, R_{t}\left(a_{1}, \ldots, a_{n}\right)$ if, and only if, $S_{t}\left(\psi\left(a_{1}\right), \ldots, \psi\left(a_{n}\right)\right)$. (Note: The correspondence between the R_{t} 's and the S_{t} 's could be varied by permutations of either the relations of M or the relations of N, but compatible with the similarity requirements.)
Theorem 3.4 If M is a τ-system and N_{1}, N_{2} are two subsystems of M such that $\mathbf{F}_{1}^{0}=\mathbf{F}_{2}^{0}$ then N_{1} and N_{2} are isomorphic.
Proof: Let $\mathfrak{p}_{1}: M \rightarrow N_{1}, \mathfrak{p}_{2}: M \rightarrow N_{2}$ be the canonical projections of M to N_{1}, and N_{2} respectively.

It is first established by induction that for all $\sigma \leqslant \tau$ and all $p_{1}(a)$, $p_{1}(b) \in \mathbf{F}_{1}$, that $p_{1}(a)=p_{1}(b)$ if, and only if, $p_{2}(a)=p_{2}(b)$. If $\sigma=0$ then the result is immediate as p_{1}, p_{2} are identity maps on $F_{1}^{0}=F_{2 .,}^{0}$ For $\sigma \leqslant \tau$, $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, assume that the result is true for all $\sigma_{i}<\sigma$. Take $p_{1}(a)$, $p_{1}(b) \in \mathbf{F}_{1}^{\sigma}$ and assume $p_{1}(a)=p_{1}(b)$. Take any $\left(p_{2}\left(a_{1}\right), \ldots, p_{2}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{2}(a)$.

Hence there exists some $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \epsilon^{\sigma} a$ such that $p_{2}\left(a_{k}^{\prime}\right)=p_{2}\left(a_{k}\right), 1 \leqslant k \leqslant n$. Therefore $\left(p_{1}\left(a_{1}^{\prime}\right), \ldots, p_{1}\left(a_{n}^{\prime}\right) \epsilon^{\sigma} p_{1}(b)\right.$, as $p_{1}(a)=p_{1}(b)$, and so there exists $\left(a_{1}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}\right) \epsilon^{\sigma} b$, where $p_{1}\left(a_{k}^{\prime}\right)=p_{1}\left(a_{k}^{\prime \prime}\right), 1 \leqslant k \leqslant n$. Thus $\left(p_{2}\left(a_{1}^{\prime \prime}\right), \ldots, p_{2}\left(a_{n}^{\prime \prime}\right)\right) \epsilon^{\sigma}$ $p_{2}(b)$. But from the induction assumption $p_{2}\left(a_{k}^{\prime \prime}\right)=p_{2}\left(a_{k}\right), 1 \leqslant k \leqslant n$, and so $\left(p_{2}\left(a_{1}\right), \ldots, p_{2}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{2}(b)$. Similarly if $\left(p_{2}\left(a_{1}\right), \ldots, p_{2}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{2}(b)$ then $\left(p_{2}\left(a_{1}\right), \ldots\right.$, $\left.p_{2}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{2}(a)$. Therefore $\widehat{p_{2}(a)}=\widehat{p_{2}(b)}$ and so $p_{2}(a)=p_{2}(b)$. Conversely if $p_{2}(a)=p_{2}(b)$ then $p_{1}(a)=p_{1}(b)$. Hence this first result is established.

Now define $\psi\left(p_{1}(a)=p_{2}(a) . \psi\right.$ is thus well defined, for if $p_{1}(a)=p_{1}(b)$ then $p_{2}(a)=p_{2}(b)$. It is now necessary to show that ψ is an isomorphism between N_{1} and N_{2}. First to show that for each $\sigma \leqslant \tau, \psi: \mathbf{F}_{1}^{\sigma} \rightarrow \mathbf{F}_{2}^{\sigma}$ is bijective. If $\sigma=0$ then $\psi: F_{1}^{0} \rightarrow F_{2}^{0}$ is the identity map as $F_{1}^{0}=F_{2}^{0}$ and p_{1}, p_{2} are the identity maps on $\mathbf{F}_{1}^{0}, \mathbf{F}_{2}^{0}$ respectively. Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, and assume that for all $\sigma_{i}<\sigma, \psi: \mathbf{F}_{1}^{\sigma i} \rightarrow \mathbf{F}_{2}^{\sigma i}$ is bijective. For any $p_{1}(a), p_{1}(b) \epsilon \mathbf{F}_{1}^{\sigma}$, if $\psi\left(p_{1}(a)\right)=\psi\left(p_{1}(b)\right)$ then $p_{2}(a)=p_{2}(b)$ and so $p_{1}(a)=p_{1}(b)$. That is ψ is injective. If $p_{2}(a) \in \mathbf{F}_{2}^{\sigma}$ then $a \in \mathbf{E}^{\sigma}$ and so $p_{1}(a) \in \mathbf{F}_{1}^{\sigma}$ and $\psi\left(p_{1}(a)\right)=p_{2}(a)$. That is $\psi: F_{1} \rightarrow F_{2}$ is surjective. Hence by induction $\psi: F_{1}^{\sigma} \rightarrow F_{2}^{\sigma}$ is bijective for each $\sigma \leqslant \tau$.

Take $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and any ($p_{1}\left(a_{n}\right), ., p_{1}\left(a_{n}\right) \epsilon^{\sigma} p_{1}(a)$. Therefore there exists $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \epsilon^{\sigma} a$ such that $p_{1}\left(a_{k}^{\prime}\right)=p_{1}\left(a_{n}\right), 1 \leqslant k \leqslant n$. Hence $\left(p_{2}\left(a_{1}^{\prime}\right), \ldots, p_{2}\left(a_{n}^{\prime}\right)\right) \epsilon^{\sigma} p_{2}(a)$. But as $p_{1}\left(a_{k}^{\prime}\right)=p_{1}\left(a_{k}\right), 1 \leqslant k \leqslant n$, then $p_{2}\left(a_{k}^{\prime}\right)=p_{2}\left(a_{k}\right)$. Hence $\left(p_{2}\left(a_{1}\right), \ldots, p_{2}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{2}(a)$. That is $\left(\psi\left(p_{1}\left(a_{1}\right)\right), \ldots, \psi\left(p_{1}\left(a_{n}\right)\right)\right) \epsilon^{\sigma} \psi\left(p_{1}(a)\right)$. Conversely, take $\left(\psi\left(p_{1}\left(a_{1}\right)\right), \ldots \psi\left(p_{1}\left(a_{n}\right)\right)\right) \epsilon^{\sigma} \psi\left(p_{1}(a)\right)$. That is $\left(p_{2}\left(a_{1}\right), \ldots\right.$, $\left.p_{2}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{2}(a)$ and so, by a similar argument to that above, $\left(p_{1}\left(a_{1}\right), \ldots\right.$, $\left.p_{1}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{1}(a)$.

Finally, by a similar argument as above, it can be shown that if $p_{1}\left(R_{t}\right)$ is any n-placed relation on $\mathbf{F}_{1}^{\sigma_{1}} \times \ldots \times \mathbf{F}_{n}^{\sigma_{n}}, \sigma_{1}, \ldots, \sigma_{n} \leqslant \tau$, then for all $\left(p_{1}\left(a_{1}\right), \ldots, p_{1}\left(a_{n}\right)\right), p_{1}\left(R_{t}\right)\left(p_{1}\left(a_{1}\right), \ldots, p_{1}\left(a_{n}\right)\right)$ if, and only if, $p_{2}\left(R_{t}\right)\left(\psi\left(p_{1}\left(a_{1}\right)\right), \ldots\right.$, $\psi\left(p_{1}\left(a_{n}\right)\right)$). Hence $\psi: N_{1} \rightarrow N_{2}$ is an isomorphism between N_{1} and N_{2}. Q.E.D.

Corollary If M is a τ-system then every subsystem of M is isomorphic to a canonical subsystem of M.

Proof: Let N_{1} be any substructure of M. Let N_{2} be the canonical substructure of M constructed on $\mathbf{F}_{1}^{0} \subseteq \mathbf{E}^{0}$. Hence from Theorem $3.4 N_{1}$ is isomorphic to N_{2}.

Theorem 3.5 N_{1}, N_{2} are two subsystems of a τ-system M. If $\mathbf{F}_{1}^{0} \subseteq \mathbf{F}_{2}^{0}$ then N_{1} is a subsystem of N_{2} and if $\mathfrak{p}_{3}: N_{2} \rightarrow N_{1}$ is the canonical projection of N_{2} to N_{1}, then for $\sigma \leqslant \tau$, and all $p_{2}(a) \in \mathbf{F}_{2}^{\sigma}, p_{3} p_{2}(a)=p_{1}(a)$, where p_{1}, p_{2} are the canonical projections from M to N_{1}, N_{2} respectively.

Proof: By an argument similar to that in the proof of Theorem 3.4 it can be shown (i) that for any $\sigma \leqslant \tau$, and all $p_{1}(a), p_{1}(b) \in \mathbf{F}_{1}^{\sigma}$, if $p_{2}(a)=p_{2}(b)$ then $p_{1}(a)=p_{1}(b)$; (ii) that if for each $\sigma \leqslant \tau, p_{3}: \mathbf{F}_{2}^{\sigma} \rightarrow \mathbf{F}_{1}^{\sigma}$ is defined by putting $p_{3}\left(p_{2}(a)\right)=p_{1}(a)$, for all $p_{2}(a) \in \mathbf{F}_{2}^{\sigma}$, and if for each constant relation $p_{2}\left(R_{t}\right)$ of $N_{2}, p_{3}\left(p_{2}\left(R_{t}\right)\right)$ is defined as $p_{1}\left(R_{t}\right)$, then $p_{3}: N_{2}-N_{1}$ is the canonical projection defining N_{1} as a subsystem of N_{2}. Further, by definition $p_{3} p_{2}=$ $p_{1}: \mathbf{E}^{\sigma} \rightarrow \mathbf{F}_{1}^{\sigma}$, for each $\sigma \leqslant \tau, \sigma \neq 0$. Q.E.D.

Theorem 3.6 If N_{1} is a subsystem of a τ-system M such that $\left(p_{1}\left(a_{1}\right), \ldots\right.$,
$\left.p_{1}\left(a_{n}\right)\right) \not \ell^{\sigma} p_{1}(a), \sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ then in any subsystem N_{2} of M, which contains $N_{1},\left(p_{2}\left(a_{1}\right), \ldots, p_{2}\left(a_{n}\right)\right) \notin p_{2}(a)$. Similarly if $p_{1}\left(R_{t}\right)\left(p_{1}\left(a_{1}\right), \ldots, p_{1}\left(a_{n}\right)\right)$ does not hold in N_{1} then $p_{2}\left(R_{t}\right)\left(p_{2}\left(a_{1}\right)\right.$, .., $\left.p_{2}\left(a_{n}\right)\right)$ does not hold in N_{2}.
Proof: Let $\mathfrak{p}_{3}: N_{2} \rightarrow N_{1}$ be the canonical projection as in Theorem 3.5. Assume $\left(p_{2}\left(a_{1}\right), \ldots, p_{2}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{2}(a)$ and so $\left(p_{3}\left(p_{2}\left(a_{1}\right)\right), \ldots, p_{3}\left(p_{2}\left(a_{n}\right)\right)\right) \epsilon^{\sigma} p_{3}\left(p_{2}(a)\right)$. Hence ($\left.p_{1}\left(a_{1}\right), \ldots, p_{1}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{1}(a)$, as $p_{3} p_{2}=p_{1}$. That is if $\left(p_{1}\left(a_{1}\right), \ldots, p_{1}\left(a_{n}\right)\right) \epsilon^{\sigma}$ $p_{1}(a)$ then $\left(p_{2}\left(a_{1}\right), \ldots, p_{2}\left(a_{n}\right)\right) \ell^{\sigma} p_{2}(a)$. The second part follows likewise.Q.E.D.

Theorem 3.7 Any subsystem, N, of a full τ-system M is itself full.
Proof: Take $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and K any subclass of $\mathbf{F}^{\sigma_{1}} \times \ldots \times \mathbf{F}^{\sigma_{n}}$. It is required to find some $p(a) \in \mathbf{F}^{\sigma}$ such that $\mathrm{K}=\widehat{p(a)}$, where $\mathfrak{p}: M \rightarrow N$ is the canonical projection associated with N. Let $K^{\prime}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid\left(p\left(a_{1}\right), \ldots\right.\right.$, $\left.\left.p\left(a_{n}\right)\right) \in \mathbf{K}\right\}$. Now M is full and K^{\prime} is a subclass of $\mathbf{E}^{\sigma_{1}} \times \ldots \times \mathbf{E}^{\sigma_{n}}$ and so there exists $a \in E^{\sigma}$ such that $\hat{a}=K^{\prime}$.

Now to show that $K=\widehat{p(a)}$. Take $\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \in K$. Hence $\left(a_{1}, \ldots\right.$, $\left.a_{n}\right) \in K^{\prime}$ and so $\left(a_{1}, \ldots, a_{n}\right) \epsilon^{\sigma} a$. Therefore $\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \epsilon^{\sigma} p(a)$. That is $\mathrm{K} \subseteq \widehat{p(a)}$. Now take $\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \epsilon^{\sigma} p(a)$. Therefore there exists (a_{1}^{\prime}, \ldots, $\left.a_{n}^{\prime}\right) \epsilon^{\sigma} a$, where $p\left(a_{k}^{\prime}\right)=p\left(a_{k}\right), 1 \leqslant k \leqslant n$. Hence $\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \in K^{\prime}$, as $\hat{a}=K^{\prime}$, and so $\left(p\left(a_{1}^{\prime}\right), \ldots, p\left(a_{n}^{\prime}\right) \in \mathbf{K}\right.$. That is $\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \in \mathbf{K}$. Thus $\widehat{p(a)} \subseteq \mathbf{K}$ and so $\widehat{p(a)}=$ K. Q.E.D.
Theorem 3.8 Let $\left\{M_{i} \mid i \in I\right\}$ be a family of similar τ-systems. For each $i \in I$, let N_{i} be a subsystem of M_{i}. If X is any ultrafilter over I then $\pi N_{i} / X$ is a subsystem of $\pi M_{i} / X$.

Proof: For each $i \in I$ let $\mathfrak{p}_{i}: M_{i} \rightarrow N_{i}$ be the canonical projection associated with each N_{i}. Define $\mathfrak{p}: \pi M_{i} / X \rightarrow \pi N_{i} / X$ as follows: For $\sigma=0$ and for all $\bar{g} \in \mathbf{F}^{0}$ define $p(\bar{g})=\overline{p(g)}$, where $p(g): I \rightarrow \pi_{i \epsilon l} \mathbf{F}_{i}^{0}$ is defined by $p(g)(i)=g(i)$, all $i \in I$. Hence $p: F^{0} \rightarrow F^{0}$ is the identity map.

For $\sigma \neq 0, \sigma \leqslant \tau$, for all $\bar{f} \in \mathbf{E}^{\sigma}$ put $p(\bar{f})=\overline{p(f)}$, where $p(f): I \rightarrow \pi_{i \epsilon l} \mathbf{F}_{i}^{\sigma}$ is defined by $p(f)(i)=p_{i}(f(i))$, all $i \in I$. If $f_{1} \sim f$ then $p\left(f_{1}\right) \sim p(f)$, as $\left\{i \mid f_{1}(i)=\right.$ $f(i)\} \in X$; and so $p: \mathbf{E}^{\sigma} \rightarrow \mathbf{F}^{\sigma}$ is well defined. Further p is surjective as each $p_{i}: \mathrm{E}_{i}^{\sigma} \rightarrow \mathrm{F}_{i}^{\sigma}$ is surjective.

Take $\sigma=\left(\sigma_{i}, \ldots, \sigma_{n}\right), \sigma \leqslant \tau$ and consider $\left(p\left(\bar{f}_{1}\right), \ldots, p\left(\bar{f}_{n}\right)\right) \epsilon^{\sigma} p(\bar{f})$. Hence $G \in X$, where $G=\left\{i \mid\left(p\left(f_{1}\right)(i), \ldots, p\left(f_{n}\right)(i)\right) \epsilon^{\sigma} p(f)(i)\right\}$. That is, for each $i \epsilon G$, ($\left.p_{i}\left(f_{1}(i)\right), \ldots, p_{i}\left(f_{n}(i)\right)\right) \epsilon^{\sigma} p_{i}(f(i))$ and so there exists $\left(a_{1}^{i}, \ldots, a_{n}^{i}\right) \epsilon^{\sigma} f(i)$, where $p_{i}\left(a_{k}^{i}\right)=p_{i}\left(f_{k}(i)\right), 1 \leqslant k \leqslant n$. Now define $\bar{g}_{k} \in \mathbf{F}^{\sigma k}, 1 \leqslant k \leqslant n$, by putting $g_{k}(i)=a_{k}^{i}$, all $i \in G$. Thus $\bar{g}_{k}, 1 \leqslant k \leqslant n$, are well defined as $G \in X$. Now $\left\{i \mid\left(g_{1}(i), \ldots\right.\right.$, $\left.\left.g_{n}(i)\right) \epsilon^{\sigma} f(i)\right\} \supseteq G$ and so $\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right) \epsilon^{\sigma} \bar{f}$. And further, $p\left(\bar{g}_{k}\right)=p\left(\bar{f}_{k}\right), 1 \leqslant k \leqslant n$, as $\left\{i \mid p_{i}\left(g_{k}(i)\right)=p_{i}\left(f_{k}(i)\right)\right\} \supseteq G$. Conversely, take $\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right) \epsilon^{\sigma} \bar{f}$ such that $p\left(\bar{g}_{k}\right)=p\left(\bar{f}_{k}\right), 1 \leqslant k \leqslant n$. Let $G_{k}=\left\{i \mid p_{i}\left(g_{k}(i)\right)=p_{i}(f(i))\right\}, 1 \leqslant k \leqslant n$, and $G_{0}=$ $\left\{i \mid\left(g_{1}(i), \ldots, g_{n}(i)\right) \epsilon^{\sigma} f(i)\right\}$. Thus $G \in X$, where $G=\bigcap\left\{G_{k} \mid 0 \leqslant k \leqslant n\right\}$. Hence $\left(p\left(\bar{f}_{1}\right), \ldots, p\left(\bar{f}_{n}\right)\right) \epsilon^{\sigma} p(\bar{f})$ as $\left\{i \mid\left(p_{i}\left(f_{1}(i)\right), \ldots, p_{i}\left(f_{n}(i)\right)\right) \epsilon^{\sigma} p_{i}(f(i))\right\} \supseteq G$.

By a similar argument it can be shown that $p\left(R_{t}\right)$ can be defined in $\pi N_{i} / X$ by reference to $p_{i}\left(R_{t}\right)$ for each M_{i} and that $p\left(R_{t}\right)\left(p\left(\bar{f}_{1}\right), \ldots, p\left(\bar{f}_{n}\right)\right)$ if, and only if, there exists $\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)$ such that $R_{t}\left(\bar{g}_{1}, \ldots, \bar{g}_{n}\right)$, where $p\left(\bar{g}_{k}\right)=$ $p\left(\bar{f}_{k}\right), 1 \leqslant k \leqslant n$. Hence $\pi N_{i} / X$ is a subsystem of $\pi M_{i} / X$ with canonical projection $p: \pi M_{i} / X \rightarrow \pi N_{i} / X$ as defined. Q.E.D.
α-embeddings A τ_{1}-system M_{1} is said to be α-embedded in a τ_{2}-system M_{2}, where $\tau_{1} \leqslant \tau_{2}$, by an α-embedding map ψ^{α}, if (i) α is an injective map from $\left|\tau_{1}\right|$ to $\left|\tau_{2}\right|\left(\left|\tau_{1}\right|=\left\{\sigma \mid \sigma \leqslant \tau_{1}\right\}\right)$ such that for each $\sigma \leqslant \tau_{1}, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, $\alpha(\sigma)=\left(\alpha\left(\sigma_{1}\right), \ldots, \alpha\left(\sigma_{n}\right)\right)$; (ii) for each $\sigma \leqslant \tau_{1}, \psi^{\alpha}$ is an injective map from \mathbf{E}_{1}^{σ} to $\mathbf{E}_{2}^{\alpha(\sigma)}$ such that for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{E}_{1}^{\sigma_{1}} \times \ldots \times \mathbf{E}_{n}^{\sigma_{n}}, a \in \mathbf{E}_{1}^{\sigma},\left(a_{1}, \ldots, a_{n}\right) \epsilon^{\sigma} a$ if, and only if, $\left(\psi^{\alpha}\left(a_{1}\right), \ldots, \psi^{\alpha}\left(a_{n}\right)\right) \epsilon^{\alpha(\sigma)} \psi^{\alpha}(a)$; (iii) for each R_{t}, n-placed and of type ($\sigma_{1}, \ldots, \sigma_{n}$), $\psi^{\alpha}\left(R_{t}\right)$ is an n-placed relation of M_{2} of type $\left(\alpha\left(\sigma_{1}\right), \ldots, \alpha\left(\sigma_{n}\right)\right.$), such that $R_{t}\left(a_{1}, \ldots, a_{n}\right)$ if, and only if, $\psi^{\alpha}\left(R_{t}\right)\left(\psi^{\alpha}\left(a_{1}\right), \ldots, \psi^{\alpha}\left(a_{n}\right)\right)$. If $\alpha:\left|\tau_{1}\right| \rightarrow$ $\left|\tau_{2}\right|$ is such that $\alpha(0)=0$ then the α-embedding is referred to simply as an embedding and the α is omitted from the ψ^{α} s.

Local family of subsystems (cf. Kurosh [4], vol. II, §55, p. 166.) A family of subsystems $\left\{N_{i} \mid i \in I\right\}$, of a τ-system M, is called a local family of M if (i) every member of E^{0} belongs to at least one $N_{i}, i \in I$; and (ii) for every $i, j \in I$ (and hence for any finite number of elements of I) there exists $k \in I$ such that N_{i} and N_{j} are subsystems of N_{k}.

Theorem 3.9 If L is the class of all finite subsystems of a τ-system M then L is a local family of M.

Proof: Immediate.
L-finitary systems A τ-system M, with a given local family $\mathfrak{Q}=\left\{N_{i} \mid i \epsilon I\right\}$, is said to be L-finitary if (i) for each $\sigma \leqslant \tau, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, if (a_{1}, \ldots, a_{n}) $\xi^{\sigma} a$ then there exists some member, N, of \mathfrak{a} such that $\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right) \not \ell^{\sigma} p(a)$, where $\mathfrak{p}: M \rightarrow N$ is the canonical projection; (ii) similarly if $R_{t}\left(a_{1}, \ldots, a_{n}\right)$ does not hold in M then for some $N \epsilon \mathfrak{E}, p\left(R_{t}\right)\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right)$ does not hold in N. If \mathfrak{E} is the family of all finite subsystems of M and if M is L-finitary then M will be simply termed finitary.

Theorem 3.10 If M is any first order system and $\mathfrak{\Sigma}$ any local family of M then M is L-finitary.

Proof: Let R_{t} be a n-placed constant relation of type ($0, \ldots, 0$). Take $a_{1}, \ldots, a_{n} \in \mathbf{E}^{0}$ such that $R_{t}\left(a_{1}, \ldots, a_{n}\right)$ does not hold in M. Let N be some member of \mathfrak{E} which contains a_{1}, \ldots, a_{n}. Hence $p\left(R_{t}\right)\left(p\left(a_{1}\right), \ldots, p\left(a_{n}\right)\right)$ does not hold in N, where $\mathcal{p}: M \rightarrow N$ is the canonical projection. Q.E.D.

L -associated ultrafilter Let $\mathfrak{E}=\left\{N_{i} \mid i \in I\right\}$ be a local family of a τ-system M. For each $N \in \mathfrak{Z}$ let $F_{N}=\left\{i \mid N_{i} \supseteq N\right\}$. Now $\left\{F_{N} \mid N \in \mathfrak{I}\right\}=B$ is such that the intersection of any finite set of members of B is non-empty. The ultrafilter X formed on B as sub-basis is called the L-associated ultrafilter.

Theorem $3.11 \mathfrak{E}=\left\{N_{i} \mid i \epsilon I\right\}$ is a local family of a L-finitary τ_{1}-system M such that, for each $i \in I, N_{i}$ can be α-embedded in a τ_{2}-system, $N_{i}^{\prime}, \tau_{1} \leqslant \tau_{2}$, where each such N_{i}^{\prime} is a model of a class of sentences, K, of $\propto^{\prime \tau_{2}}\left(\pi N_{i}^{\prime} / X\right), X$ being the L-associated ultrafilter. Then M can be α-embedded in a model of K .

Proof: For each $i \in I$, let $\psi_{i}^{\alpha}: N_{i} \rightarrow N_{i}^{\prime}$ be an α-embedding. Define $\psi^{\alpha}: M \rightarrow$ $\pi N_{i}^{\prime} / X$ by (i) if $a \in \mathbf{E}^{0}$ put $\psi^{\alpha}(a)=\bar{f}_{a}$, where $f_{a}(i)=\psi_{i}^{\alpha}(a)$, for all $i \in F_{N}$, where
N is a member of \mathfrak{z} containing a; (ii) for each $\sigma \leqslant \tau_{1}, \sigma \neq 0$, and each $a \in \mathbf{E}^{\sigma}$, put $\psi^{\alpha}(a)=\bar{f}_{a}$, where $f_{a}(i)=\psi_{i}^{\alpha}\left(p_{i}(a)\right)$, for all $i \epsilon I$, and where $p_{i}: M \rightarrow N_{i}$ is the canonical projection. The $N_{i}^{\prime}, i \in I$, can be regarded as belonging to the same similarity class as M by ignoring all constant relations in N_{i}^{\prime} other than those connected to N_{i} by ψ_{i}^{α}. It is now required to show that $\psi^{\alpha}: M \rightarrow$ $\pi N_{i}^{\prime} / X$ is an α-embedding. Take $\sigma \leqslant \tau_{1}, \sigma=\left(\sigma_{1}, . ., \sigma_{n}\right)$ and $\left(a_{1}, \ldots, a_{n}\right) \epsilon^{\sigma} a$. Let J be the subset of $\{1,2, \ldots, n\}$ such that if $j \in J$ then $\sigma_{j}=0$. Now for all $i \in F_{N}$, where N is some member of \mathfrak{a} which contains each $a_{j}, j \in J$, $\left(p_{i}\left(a_{1}\right), \ldots, p_{i}\left(a_{n}\right)\right) \epsilon^{\sigma} p_{i}(a)$. Hence $\left\{i \mid\left(\psi_{i}^{\alpha}\left(p_{i}\left(a_{1}\right)\right), \ldots, \psi_{i}^{\alpha}\left(p_{i}\left(a_{n}\right)\right)\right) \epsilon^{\sigma} \psi_{i}^{\alpha}\left(p_{i}(a)\right)\right\} \in X$. That is $\left\{i \mid\left(f_{a_{1}}(i), \ldots, f_{a_{n}}(i)\right) \epsilon^{\sigma} f_{a}(i)\right\} \epsilon X$ and so $\left(\bar{f}_{a_{1}}, \ldots, \bar{f}_{a_{n}}\right) \epsilon^{\sigma} \bar{f}_{a}$. That is $\left(\psi^{\alpha}\left(a_{1}\right), \ldots, \psi^{\alpha}\left(a_{n}\right)\right) \epsilon^{\sigma} \psi^{\alpha}(a)$. Conversely, assume that $\left(a_{1}, \ldots, a_{n}\right) \not \ell^{\sigma} a$. Now M is L -finitary and so there exists some member N of $\mathfrak{\mathfrak { L }}$ such that ($p\left(a_{1}\right)$, ., $\left.p\left(a_{n}\right)\right) \not \ell^{\sigma} p(a)$, where $\mathfrak{p}: M \rightarrow N$ is the canonical projection. Let $F_{N}=\left\{i \mid N_{i} \supseteq N\right.$ and $\left.N_{i} \in \mathfrak{I}\right\}$ and so $F_{N} \in X$. Now from Theorem 3.6, $\left\{i \mid\left(p_{i}\left(a_{1}\right), \ldots, p_{i}\left(a_{n}\right)\right) \not \ell^{\sigma}\right.$ $\left.p_{i}(a)\right\} \supseteq F_{N}$ and so $\left\{i \mid\left(\psi_{i}^{\alpha}\left(p_{i}\left(a_{1}\right)\right), \ldots, \psi_{i}^{\alpha}\left(p_{i}\left(a_{n}\right)\right)\right) \not \ell^{\sigma} \psi_{i}^{\alpha}\left(p_{i}(a)\right)\right\} \in X$. Hence $\left(\psi^{\alpha}\left(a_{1}\right)\right.$, . ., $\left.\psi^{\alpha}\left(a_{n}\right)\right) \not \ell^{\sigma} \psi^{\alpha}(a)$. Similarly, if R_{t} is a constant relation of type ($\sigma_{1}, \ldots, \sigma_{n}$), $\sigma_{1}, \ldots, \sigma_{n} \leqslant \tau_{1}$, then $R_{t}\left(a_{1}, \ldots, a_{n}\right)$ if, and only if, $\psi^{\alpha}\left(R_{t}\right)\left(\psi^{\alpha}\left(a_{1}\right), \ldots, \psi^{\alpha}\left(a_{n}\right)\right)$.

Further, it needs to be shown that ψ^{α} is injective at each level $\sigma \leqslant \tau_{1}$. Let $\sigma=0$ and take $a, b \in \mathbf{E}^{0}$ such that $\psi^{\alpha}(a)=\psi^{\alpha}(b)$. Thus $\bar{f}_{a}=\bar{f}_{b}$. Let N_{1}, $N_{2} \in \mathfrak{R}$ such that $f_{a}(i)=\psi_{i}^{\alpha}(a)$, for all $i \in F_{N_{1}}, f_{b}(i)=\psi_{i}^{\alpha}(b)$, for all $i \in F_{N_{2}}$. If $G=\left\{i \mid f_{a}(i)=f_{b}(i)\right\}$ then $G \cap F_{N_{1}} \cap F_{N_{2}}$ is non-empty and so there exists an $i \in I$ such that $\psi_{i}^{\alpha}(a)=\psi_{i}^{\alpha}(b)$. Hence $a=b$, as ψ_{i}^{α} is injective. Now take $\sigma \leqslant \tau_{1}, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $a, b \in \mathbf{E}^{\sigma}$ such that $a \neq b$. Hence there exists (a_{1}, \ldots, a_{n}) which 'belongs' to one, and only one, of a and b. Therefore ($\psi^{\alpha}\left(a_{1}\right), \ldots, \psi^{\alpha}\left(a_{n}\right)$) 'belongs' to one, and only one, of $\psi^{\alpha}(a)$ and $\psi^{\alpha}(b)$. That is $\psi^{\alpha}(a) \neq \psi^{\alpha}(b)$. Thus $\psi^{\alpha}: M \rightarrow \pi N_{i} / X$ is an α-embedding.

Finally it remains to comment that $\pi N_{i}^{\prime} / X$ is a model of K as each N_{i}^{\prime}, $i \in I$, is a model of K (Theorem 2.3). The theorem is therefore established. Q.E.D.

Corollary If every finite subsystem of a finitary system M can be α-embedded in a model of \mathbf{K} then M can be so embedded.

Proof: Immediate from Theorems 3.10 and 3.11.
The first order case of the above corollary, (with $\alpha(0)=0$), is proved by Robinson, cf. [7], p. 34, Theorem 2.4.1, by the method of diagrams. Grätzer, cf. [2], p. 243, Theorem 4, and p. 261, Theorem 7, gives a proof of this first order result using ultraproducts.
Theorem 3.12 If $\mathfrak{a}=\left\{N_{i} \mid i \epsilon I\right\}$ is a local family of a L-finitary τ-system M then M can be embedded in $\pi N_{i} / X$ where X is the L-associated ultrafilter.

Proof: In Theorem 3.11, put $\alpha(0)=0, K=\varnothing$ and, for each $i \in I$, put $N_{i}^{\prime}=N_{i}$ and ψ_{i}^{α} as the identity map on N_{i}.

4 Some algebraic applications of higher order ultraproducts This final paragraph illustrates the presence and application of the higher order ultraproduct construction in two known algebraic situations.

Non-finite Boolean algebras

Theorem 4.1 Any infinite Boolean algebra is isomorphic to a subset subalgebra of a second order ultraproduct (cf. Stone's representation theorem).

Proof: Let \mathfrak{M} be the infinite Boolean algebra regarded as a first order system. E^{0} is the set of elements of the algebra. 〈', $\left.v, \wedge\right\rangle$ is the sequence of constant relations, where ' is the complement operator regarded as a two-place relation of type $(0,0)$; v, \wedge are the wedge and join operators of the algebra regarded as three-place relations of type ($0,0,0$). Now let $\tau_{2}=(0)$ and $\langle C, \cup, \cap\rangle$ be a sequence of constant relation symbols, C being of type ($(0),(0))$, and \cup, \cap each of type ($(0),(0),(0))$. ($\left(x^{(0)}, y^{(0)}\right)$ will be written $\mathrm{C} x^{(0)}=y^{(0)}$ and similarly for \cap and \cup.)

Let K be the set of sentences of $\mathcal{L}^{\tau_{2}}$ as follows:
(i) $\forall x^{(0)} \forall y^{(0)}\left(\mathrm{C} x^{(0)}=y^{(0)} \Leftrightarrow \forall x^{0}\left(x^{0} \epsilon^{(0)} x^{(0)} \Leftrightarrow x^{0} \not^{(0)} y^{(0)}\right)\right)$.
(ii) $\forall x^{(0)} \forall y^{(0)} \forall z^{(0)}\left(x^{(0)} \cup y^{(0)}=z^{(0)} \Longleftrightarrow \forall x^{0}\left(x^{0} \epsilon^{(0)} z^{(0)} \Longleftrightarrow\left(x^{0} \epsilon^{(0)} x^{(0)} \vee\right.\right.\right.$ $\left.x^{0} \epsilon^{(0)} y^{(0)}\right)$).
(iii) $\forall x^{(0)} \forall y^{(0)} \forall z^{(0)}\left(x^{(0)} \cap y^{(0)}=z^{(0)} \Longleftrightarrow \forall x^{0}\left(x^{0} \epsilon^{(0)} z^{(0)} \Longleftrightarrow\left(x^{0} \epsilon^{(0)} x^{(0)} \wedge\right.\right.\right.$ $\left.\left.x^{0} \epsilon^{(0)} y^{(0)}\right)\right)$).

Now $\mathfrak{E}=\left\{N_{i} \mid N_{i}\right.$ is a finitely generated subalgebra of $\left.M\right\}$ forms a local family of subsystems of \mathfrak{M}. Moreover each such N_{i} is finite and so can be α-embedded in N_{i}^{\prime}, a model of K, where $\alpha(0)=(0)$. Thus, by Theorem 3.11, \mathfrak{M} can be α-embedded in $\pi N_{i}^{\prime} / X$, where X is the L-associated ultrafilter. (Note: \mathfrak{M} is L-finitary.) As K consists only of universal sentences, the image of \mathfrak{M} in $\pi N_{i}^{\prime} / X$ under the embedding is also a model of K. Finally, as in general $\pi N_{i}^{\prime} / X$ is not a full system, the universal quantifiers of K of type (0) will not include all possible subsets of the individuals of the ultraproduct, and so the image of \mathfrak{M} will not be a full subset algebra. Q.E.D.

Locally normal groups The following results from the theory of finite groups are assumed:
(α) For every two Sylow p-subgroups, P, Q, of a finite group \mathfrak{G} there exists an inner automorphism of \mathfrak{G} which when restricted to P is an isomorphism between P and Q.
(β) If H is a normal subgroup of a finite group G, P a Sylow p-subgroup of \mathfrak{G}, then $P \cap H$ is a Sylow p-subgroup of H.
(γ) If P is a p-subgroup of a finite group \mathfrak{G}, N a normal subgroup of \mathfrak{G}, such that $N \supseteq P$, and Q a Sylow p-subgroup of N containing P, then there exists a Sylow p-subgroup, Q^{\prime}, of \mathfrak{G} which contains P and such that $Q^{\prime} \cap N=Q$.

Let \mathfrak{M} be a locally normal group. Regard M as a τ-system, where $\tau=((0,0),(0)) . E^{0}$ is the individuals of the group $\mathfrak{M} .^{2} E^{(0,0)}$ is the set of
2. $E^{(0)}$ is the set of all subsets of E^{0}.
all subsets of $E^{0} \times E^{0}$ and $E^{\tau}=\{\varnothing\}$. The 'membership' relations are the ones of ordinary set membership, and will be written without the type prefixes. $\langle S, e, C\rangle$ is the sequence of constant relations, where S is of type ($0,0,0$), representing the binary operation of \mathfrak{M}, e is the 0 -placed relation, of type 0 , denoting the identity element of the group. \subset is of type ($(0),(0))$, and denotes the strict inclusion relation.

Let $\mathfrak{R}=\left\{N_{i} \mid i \in I\right\}$ be the family of finite normal subgroups of \mathfrak{M}. Hence \mathfrak{E} can be regarded as a local family of subsystems of M, as \mathfrak{M} is locally normal. Further, M is L-finitary. Let X be the L-associated ultrafilter on I.

Take the following sentences and formulae of $\mathcal{R}^{\prime 7}\left(\pi N_{i} / X\right) . K_{0}$ is the conjunction of sentences characterising group structure with respect to a binary operation S and identity e. (We adopt the usual shorthand that $x \circ y=z$ stands for $\mathrm{S}(x, y, z), y=x^{-1}$ stands for $\mathrm{S}(x, y, \mathrm{e})$ and so on.) $\mathrm{G}_{\mathrm{s}}\left(x^{(0)}\right),\left(x^{(0)}\right.$ is a subgroup), is the formula

$$
\forall x^{0} \forall y^{0}\left(x^{0} \in x^{(0)} \wedge y^{0} \in x^{(0)} \Longrightarrow x^{0} \circ y^{0^{-1}} \in x^{(0)}\right) \wedge K_{0} .
$$

$\mathrm{S}_{1}\left(y^{0}\right)$ is the formula $y^{0}=\mathrm{e}$.
$\mathrm{S}_{n}\left(y^{0}\right),\left(y^{0}\right.$ is of order n, n an integer $)$, is the formula

$$
\left.y^{0^{n}}=\mathrm{e} \wedge \neg S_{n-1}\left(y^{0}\right) \vee \ldots \vee S_{1}\left(y^{0}\right)\right) .
$$

$\mathrm{S}_{\mathrm{op}}\left(y^{0}\right)$, (y^{0} has order some power of p, p a prime integer), is the formula $\mathrm{V}_{k \in N} S_{p} k\left(y^{0}\right)$, where N is the set of integers. $\mathrm{G}_{p \mathrm{~s}}\left(x^{(0)}\right),\left(x^{(0)}\right.$ is a p-subgroup), is the formula

$$
\mathrm{G}_{\mathrm{s}}\left(x^{(0)}\right) \wedge \forall y^{0}\left(y^{0} \in x^{(0)} \Longrightarrow \mathrm{S}_{\circ p}\left(y^{0}\right)\right) .
$$

$x^{(0)} \cong y^{(0)}\left(w^{(0,0)}\right),\left(w^{(0,0)}\right.$ is an isomorphism between subgroups $x^{(0)}$ and $\left.y^{(0)}\right)$, denotes the conjunction of the following formulae:
(i) $\mathrm{G}_{\mathrm{s}}\left(x^{(0)}\right) \wedge \mathrm{G}_{\mathrm{s}}\left(y^{(0)}\right)$,
(ii) $\forall z^{0}\left(z^{0} \in x^{(0)} \Longrightarrow \exists^{\prime} u^{0}\left(u^{0} \in y^{(0)} \wedge\left(z^{0}, u^{0}\right) \in w^{(0,0)}\right)\right)$,
(iii) $\forall x^{0} \forall y^{0} \forall z^{0}\left(x^{0} \in x^{(0)} \wedge y^{0} \in x^{(0)} \wedge z^{0} \in y^{(0)} \wedge\left(x^{0}, z^{0}\right) \in w^{(0,0)} \wedge\right.$
$\left(y^{0}, z^{0}\right) \in w^{(0,0)} \Longrightarrow x^{0}=y^{0}$),
(iv) $\forall z^{0}\left(z^{0} \in y^{(0)} \Rightarrow \exists x^{0}\left(x^{0} \in x^{(0)} \wedge\left(x^{0}, z^{0}\right) \in w^{(0,0)}\right)\right)$,
(v) $\forall x^{0} \forall y^{0} \forall u^{0} \forall v^{0}\left(x^{0} \in x^{(0)} \wedge y^{0} \in x^{(0)} \wedge u^{0} \in y^{(0)} \wedge v^{0} \in y^{(0)} \wedge\left\langle x^{0}, u^{0}\right\rangle \in w^{(0,0)} \wedge\right.$ $\left.\left\langle y^{0}, v^{0}\right\rangle \in w^{(0,0)} \Longrightarrow\left\langle x^{0} \circ y^{0}, u^{0} \circ v^{0}\right\rangle \in w^{(0,0)}\right)$.
Theorem 4.2 If \mathfrak{M} is a locally normal group as described above then a) $\pi N_{i} / X$ is a group; b) P is a subgroup of \mathfrak{M} if, and only if, $\psi(P)$ is a subgroup of $\pi N_{i} / X$; c) P is a p-subgroup of \mathfrak{M} if, and only if, $\psi(P)$ is a p-subgroup of $\pi N_{i} / X$, (where $\psi: M \rightarrow \pi N_{i} / X$ is the embedding of Theorem 3.12), (see footnote on page 15.)

Proof: a) $\pi N_{i} / X \vDash K_{0}$, as $\left\{i \mid N_{i} \vDash K_{0}\right\}=I$, and so $\pi N_{i} / X$ is a group with respect to the binary operation $\psi(S)$.
b) Let P be a subgroup of \mathfrak{M} and so for each $i, P_{i}=N_{i} \cap P$ is a subgroup of N_{i}. But $P_{i}=p_{i}(P)$, where $\mathfrak{p}_{i}: M \rightarrow N_{i}$ is the canonical projection associated with the subgroup N_{i}, regarded as a subsystem of M. Now
$\left\{i \mid N_{i} \vDash \mathrm{G}_{\mathrm{s}}\left(P_{i}\right)\right\}=I$ and therefore $\pi N_{i} / X \neq \mathrm{G}_{\mathrm{s}}(\psi(P))$. That is $\psi(P)$ is a subgroup of $\pi N_{i} / X$. Conversely, assume $\psi(P)$ is a subgroup of $\pi N_{i} / X$. Let $\psi(\hat{M})=\left\{\bar{f}_{a} \mid a \in M\right\}$ and $\psi(\hat{P})=\left\{\bar{f}_{a} \mid a \in P\right\}$, where \bar{f}_{a} is defined as in Theorem 3.12. Therefore $\psi(\hat{P})=\psi(P) \cap \psi(\hat{M}), \psi(\hat{M})$ is isomorphic to M and $\psi(\hat{P})$ is isomorphic to P. But $\psi(\hat{P})=\psi(P) \cap \psi(\hat{M})$ and so $\psi(\hat{P})$ is a subgroup of $\psi(\hat{M})$; that is P is a subgroup of \mathfrak{M}.
c) Let P be a p-subgroup of \mathfrak{M}. Hence $\left\{i \mid N_{i} \vDash \mathcal{G}_{p \mathrm{~s}}\left(P_{i}\right)\right\}=I$ and so $\pi N_{i} / X \vDash \mathrm{G}_{p \mathrm{~s}}(\psi(P))$; that is $\psi(P)$ is a p-subgroup of $\pi N_{i} / X$. Conversely, assume $\psi(P)$ is p-subgroup of $\pi N_{i} / X$. Hence $\psi(\hat{P})$ is a p-subgroup, and so P is a p-subgroup. Q.E.D.

The final two theorems are results first proved by Baer in [1], p. 604, Theorem 4.1 and p. 608, Theorem 4.4. Alternative proofs, via an ultraproduct construction, are here provided. Kurosh, $c f$. [4], vol. II, pp. 167-170, $\S 55$, records a proof of these results by the method of projection sets, (inverse limits). Gräzter, cf. [2], p. 160, Exercise 100, details the relationship between an ultraproduct of a family of algebras and the inverse limit of an associated family of algebras.

Theorem 4.3 If \mathfrak{M} is a locally normal group and P a given Sylow p-subgroup of \mathfrak{M} then the intersection of P with an arbitary finite normal subgroup H of \mathfrak{M} is a Sylow p-subgroup of H.

Proof: Assume that $P \cap H$ is not a Sylow p-subgroup of H. Let Q^{\prime} be a Sylow p-subgroup of H containing $P \cap H$. Put $G=\left\{i \mid N_{i} \supseteq H\right\}$. Hence $G \in X$, where $\mathfrak{\Sigma}$ is the local family of M as described above and X is the L -associated ultrafilter. But from property (β) above, for each $i \epsilon G$, $P_{i}=N_{i} \cap P$ is not a Sylow p-subgroup of N_{i}. Hence for each $i \in G$ a Sylow p-subgroup, Q_{i}, of N_{i} can be chosen so that $P_{i} \subset Q_{i}$ and $Q_{i} \cap H=Q^{\prime}$. (Property (γ).) Take $\bar{g} \in \pi N_{i} / X$, such that $g(i)=Q_{i}$, all $i \in G$. Hence \bar{g} is a subgroup of $\pi N_{i} / X$ and $\psi(P) \subset \bar{g}$. But $\psi(\hat{P})$ is a Sylow p-subgroup of $\psi(\hat{M})$ as P is a Sylow p-subgroup of \mathfrak{m}. Also $\bar{g} \cap \psi(\hat{M})$ is a p-subgroup of $\psi(\hat{M})$ and so $\psi(\hat{P})=\bar{g} \cap \psi(\hat{M})$. But there exists some $a \in Q^{\prime}$ such that $a \notin P$. Therefore, for all $i \in G, a \in Q_{i}$ but $a \notin P_{i}$. Hence $\bar{f}_{a} \in \bar{g}$, but $\bar{f}_{a} \notin \psi(\hat{P})$, where $f_{a}(i)=a$, all $i \in G$. But $\bar{f}_{a} \in \psi(\hat{M})$, and so $\psi(\hat{P}) \neq \bar{g} \cap \psi(\hat{M})$. From the contradiction it is established that $P \cap H$ is a Sylow p-subgroup of \mathfrak{M}. Q.E.D.

Theorem 4.4 Any two Sylow p-subgroups of a locally normal group \mathfrak{M} are isomorphic and locally conjugate.

Proof: Let M be the τ-system as above with $\mathfrak{R}=\left\{N_{i} \mid i \in I\right\}$ the local family of normal, finite subgroups. Let P, Q be two given Sylow p-subgroups of \mathfrak{M}. By Theorem 4.3, for each $i \in I, P_{i}=P \cap N_{i}, Q_{i}=Q \cap N_{i}$, are Sylow p-subgroups of N_{i}. Hence, by property (α), for each $i \in I$, there exists an inner automorphism, w_{i}, of N_{i} taking P_{i} to Q_{i}. Let $\bar{w} \epsilon \pi N_{i} / X$ be defined by $w(i)=w_{i}$, all $i \in I$. Now $\left\{i \mid N_{i} \vDash P_{i} \cong Q_{i}\left(w_{i}\right)\right\}=I$ and so $\pi N_{i} / X \vDash \psi(P) \cong$ $\psi(Q)(\bar{w})$. That is \bar{w} is an isomorphism between $\psi(P)$ and $\psi(Q)$. It is now required to show that \bar{w} restricted to $\psi(\hat{P})$ is an isomorphism between $\psi(\hat{P})$ and $\psi(\hat{Q})$. For this it is sufficient to show that if $\bar{w}(\bar{f})=\bar{g}$, (as $\langle\bar{f}, \bar{g}\rangle \in \bar{w}$ will be now written), and $\bar{f} \epsilon \psi(\hat{P})$ then $\bar{g} \epsilon \psi(\hat{Q})$.

Take \bar{f}_{a}, such that $a \in P$. Let $F=\left\{i \mid f_{a}(i)=a\right\}$ and so $F \in X$. Let k be some member of F and put $F^{\prime}=\left\{i \mid N_{i} \supseteq N_{k}\right.$ and $\left.i \in F\right\}$. Thus $F^{\prime} \in X$. Now, for all $i \in F^{\prime}$, if $w_{i}(a)=b_{i}$ then $b_{i} \in Q_{k}$, as N_{k} is normal in N_{i} and w_{i} is an inner automorphism of N_{i}. Let the individuals of Q_{k} be b_{1}, \ldots, b_{n}, and let $F_{j}=\left\{i \mid w_{i}(a)=b_{j}\right.$ and $\left.i \in F^{\prime}\right\}, 1 \leqslant j \leqslant n$. Now $F_{1} \cup \ldots \cup F_{n}=F^{\prime}$ and so one, and only one, of the F_{j} 's, say F_{m}, belongs to X. Therefore $\bar{g}=\bar{f}_{b_{m}}$ and so $\bar{g} \in \psi(\hat{Q})$.

Finally, it is required to show that \bar{w} restricted to an isomorphism between $\psi(P)$ and $\psi(\hat{Q})$ is locally an inner automorphism. Take $\bar{f}_{a_{1}}, \ldots$, $\bar{f}_{a_{n}} \in \psi(\hat{P})$, that is $a_{1}, \ldots, a_{n} \in P$. Let $\bar{w}\left(\bar{f}_{a_{j}}\right)=\bar{f}_{b_{j}}, b_{j} \in Q, 1 \leqslant j \leqslant n$. It is required to find some $\bar{f}_{a} \in \psi(\hat{M})$ such that $\bar{f}_{a}^{-1} \circ \bar{f}_{a_{j}} \circ \bar{f}_{a}=\bar{f}_{b_{j}}, 1 \leqslant j \leqslant n$. Let $G_{j}=\left\{i \mid f_{a_{j}}(i)=a_{j}\right\}, 1 \leqslant j \leqslant n$, and $H_{j}=\left\{i \mid g_{b_{j}}=b_{j}\right\}, 1 \leqslant j \leqslant n$. Let $D_{j}=$ $\left\{i \mid w_{i}\left(a_{j}\right)=b_{j}\right\}, 1 \leqslant j \leqslant n$. Thus $G \in X$, where $G=\bigcap\left\{G_{j} \cap H_{j} \cap D_{j} \mid 1 \leqslant j \leqslant n\right\}$. Take some $m \in G$ and let $D=\left\{i \mid N_{i} \supseteq N_{m}\right\}$. Therefore $D \cap G \epsilon X$. Now w_{m} is an inner automorphism of N_{m} taking P_{m} to Q_{m}. Therefore there exists some $a \in N_{m}$ such that $w_{m}\left(a_{j}\right)=a^{-1} \mathrm{o} a_{j} \circ a$, all $1 \leqslant j \leqslant n$. But for all $i \in D \cap G$, $w_{i}\left(a_{j}\right)=b_{j}=w_{m}\left(a_{j}\right), 1 \leqslant j \leqslant n$. That is $\left\{i \mid u_{i}^{\prime}\left(a_{j}\right)=a^{-1} \circ a_{j} \circ a\right\} \in X, 1 \leqslant j \leqslant n$. Therefore $\bar{f}_{a}^{-1} \circ \bar{f}_{a_{j}} \circ \bar{f}_{a}=\bar{f}_{b_{j}}$, all $1 \leqslant j \leqslant n$. Hence the required result. Q.E.D.
Footnote added at proof stage: It was initially thought by the author that the formula $\mathrm{S}_{\mathrm{op}}\left(y^{0}\right)$ was $\left(\pi N_{i} / X\right)$ allowable. This is not so. Thus Theorem 4.2, part c) must be restricted to the 'if' statement alone. Counter-examples exist for the 'only if' portion.

REFERENCES

[1] Baer, R., "Sylow theorems for infinite groups," Duke Mathematical Journal, vol. 6 (1940), pp. 598-614.
[2] Grätzer, G., Universal Algebra, Van Nostrand Publishers (1968).
[3] Kochen, S., "Ultraproducts in the theory of models," Annals of Mathematics, vol. 74 (1961), pp. 221-261.
[4] Kurosh, A. G., The Theory of Groups, Chelsea Publishing Company, 2nd English edition (1960). Translator, K. A. Hirsch.
[5] Kreisel, G., and J. L. Krivine, Elements of Mathematical Logic, North Holland Publishing Company (1967).
[6] Malcolm, W. G., '"Variations in definition of first order ultraproducts," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 394-398.
[7] Robinson, A., Model Theory, North Holland Publishing Company (1965).

[^0]: 1. If R_{p} is 0 -placed of type 0 it will be regarded as a nominated member of E^{0}.
