Notre Dame Journal of Formal Logic Volume XIV, Number 4, October 1973 NDJFAM

A NOTE ON "TRANSITIVITY, SUPERTRASITIVITY AND INDUCTION"

W. RUSSELL BELDING and RICHARD L. POSS

In the review of our paper "Transitivity, Supertransitivity and Induction," [1] that occurred in [2], the reviewer pointed out two apparent errors. We will here clarify the points in mention.

The reviewer first stated that Lemma 9 "seems to be in error." The difficulty, as we see it, is that the transition from step (1) to step (2) was unclear, so we will present a somewhat more complete proof. We will assume

(1)
$$(y)(y \in \mathsf{Fld}_{\epsilon_S} \land (x)(x \in y \multimap \varphi(x)) \multimap \varphi(y)) \multimap (y)(y \in \mathsf{Fld}_{\epsilon_S} \multimap \varphi(y))$$

for formulas $\varphi(x)$ not containing y or u and show that

(2) $(u)(u \in \operatorname{Fld} R \land (v)(vRu \to \varphi(v)) \to \varphi(u)) \to (u)(u \in \operatorname{Fld} R \to \varphi(u))$

for formulas $\varphi(x)$ not containing y or u. This would conclude the proof of the lemma. We now suppose the hypothesis of (2); i.e., we assume that

$$(3) \qquad (u)(u \in \mathsf{FId} R \land (v)(vRu \to \varphi(v)) \to \varphi(u))$$

where $\varphi(v)$ does not contain y or u. It remains to show that

(4) $(u)(u \in \operatorname{Fld} R \to \varphi(u)).$

We now define the formula ψ as follows:

(5) $\psi(x) \equiv x \in \operatorname{Fld} \epsilon_{\varsigma} \land \varphi(f'x).$

We will first show that ψ satisfies the hypothesis of (1). Suppose that

(6)
$$y \in \mathsf{Fld} \epsilon_S$$

and

(7) $(x)(x \in y \to \psi(x)).$

We must show that $\psi(y)$. It is clear from (6) that the first part of the definition of ψ is satisfied. It remains to show that $\varphi(f'y)$. Since f is an isomorphism, there exists u such that

Received April 24, 1973

```
(8) u \in \operatorname{Fld} R
```

and

(9) u = f'y.

Thus, we must show $\mathcal{O}(u)$. To do this, we need only show the hypothesis of (3). The first part of the hypothesis is clear from (8). Now suppose that

(10) vRu.

Therefore, $v \in \operatorname{Fld} R$, hence there exists x such that $x \in \operatorname{Fld} \epsilon_s$ and f'x = v. Since f is an isomorphism and by (10), we have that $x \in y$. Therefore, by (7), $\psi(x)$; in particular, $\varphi(f'x)$ and hence $\varphi(v)$. Therefore, we have

(11) $(v)(vRu \rightarrow \varphi(v)).$

By (8), (9), (11), and (3), we have that $\varphi(u)$. This shows that ψ satisfies the hypothesis for (1). Since (1) is assumed true, the conclusion must follow. Therefore, we have

(12) $(y)(y \in \mathsf{Fld}_{\delta} \to \psi(y)).$

We now return to the proof of (4). Suppose $u \in \operatorname{Fld} R$. Therefore, there is a $y \in \operatorname{Fld} \epsilon_x$ such that f'y = u. By (12), we have that $\psi(y)$. By (5), we have that $\varphi(f'y)$; therefore, we have $\varphi(u)$, which completes the proof of (4) and hence of (2), and so Lemma 9 is proved.

The second remark that the reviewer makes in [2] is that Theorem 19, part (ii) seems to be false. Actually it is vacuously true. Sets A_n^s are defined such that $A = \bigcup_{n=0}^{\infty} A_n^s \subset B^s$. However, $A_n^s = \phi$ for $n \ge 1$, easily seen from Lemma 17, making parts (ii) and (iii) of Theorem 19 redundant.

REFERENCES

- Belding, W. R., R. L. Poss, and P. J. Welsh, Jr., "Transitivity, supertransitivity and induction," *The Notre Dame Journal of Formal Logic*, vol. XIII (1972), pp. 177-190.
- [2] Mendelson, E., The review of [1] in Mathematical Reviews, vol. 45 (1973), pp. 587-588.

University of Wyoming Laramie, Wyoming

and

St. Norbert College West De Pere, Wisconsin

566