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INFINITE SERIES OF T-REGRESSIVE ISOLS

JUDITH L. GERSTING

1 Introduction.* Let E denote the collection of all non-negative integers
(numbers), Λ the collection of all isols, ΛR the collection of all regressive
isols, and ΛZR the collection of all cosimple regressive isols. Infinite
series of regressive isols were defined by J. C. E. Dekker in [4];
A. Nerode in [14] associated with every recursive function f(x) an extension
of f(χ) to a mapping Dj(X) on Λ. In [l], J. Barback showed that D({X) for/
an increasing recursive function and XeAR can be represented as an
infinite series. Universal isols were introduced by E. Ellentuck in [6].

The collection ΛTR of T-regressive isols was introduced in [8J. There
a result was proved concerning an equality between infinite series of
T-regressive isols; viewing the extension of a recursive combinatorial
function to AR in terms of infinite series, this result led to a proof that
T-regressive isols are universal. In the present paper, three further
results are obtained concerning equalities and inequalities between infinite
series of isols when T-regressive isols are involved. As applications of
Theorem 1 below, we obtain new proofs of several previously known results
concerning extensions of recursive functions to ΛR. Theorem 3 below is
used by M. Hassett in obtaining his main result of [10].

2 Preliminaries. We recall from [4] the definition of an infinite series of
isols, Lι^an^ where T denotes an infinite regressive isol and an denotes a
function from E into E:

OO

Σ τ « » = ReqΣ j(tn, u{an))

where j(x, y) is a recursive function mapping E2 one-to-one onto E, tn is
any regressive function ranging over a set in T, and for any number n,
v(n) = {x\x < )i). By results in [4], LJj(in is an isol and is independent of the
choice of the regressive function whose range is in T. In [2], J. Barback
studied infinite series of the form ^jctn where T <?*<7,/_1. The relation

*The author wishes to express appreciation to Professor J. Barback for some
very helpful suggestions concerning some of the topics presented here.
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T ^* (ln-ι for T an infinite regressive isol and cin a function from E into E
implies that for every regressive function tn ranging over a set in T,
tn <* (IULU that is, the mapping tN —* anLl has a partial recursive extension.
It was established in [2] that

(1) if T ^*atl, then T <*«„_!

and

(2) //* T «?* an.lf then Ljjcιn is a regressive isol, where

j(t0, 0), . . ., j(t0, a0 - 1), j(tu 0), . . ., j{tu ax - 1), j(i2, 0), . . .,

represents a regressive enumeration of a set belonging to Yjτan.

For / an increasing recursive function, the e-difference function of/,
ef9 is defined by

e,(0) =/(0)
e,(n + 1) =/(« + 1) -/(»).

Since / is increasing and recursive, ef is a recursive function, and it
follows that for T an infinite regressive isol, T + 1 ^ * ef{n). The following
result is Proposition 2 of [ l] :

Lemma 1. Let f(x) be an increasi)ig recursive function. Then for any

infinite regressive isol T,

D/CΓ) =Σ τ + 1 e/(w).

A property of numbers is said to hold eventually if there is an n e E
such that x has the property for every Λ' > n. In [8] a retraceable function
(in is called λ-re traceable if it has the property that for each partial
recursive function p(x), p{an) < α W 4 1 eventually. An infinite regressive isol
is T-regressive if it contains a set which is the range of a T-retraceable
function. ATR denotes the collection of all T-regressive isols. It is known
that cosimple T-regressive isols exist and that if T e ΛTR, then T + le ATR

3 An Inequality Between Infinite Series. We use the following two lemmas,
stated here without proof, in the proof of Theorem 1 below.

Lemma 2 (Corollary 1 of [8]). Let T e ATR and let an and bn be any functions

such that both T ^ * an and T <* b71. Then

LJΛ an = LjΊbn=$> an = bn eventually.

Lemma 3 (Theorem 1 of [9]). Let T e AR - E and bn be a function such that
T <* bn. Let A be an isol such that A ^Έ/Ίbn.

( s i n c e YjΊbfίe A R , i t fo l lows f r o m r e s u l t s in [5] t h a t Ae AR.) Then there

exists a function cn such that

cn ^ bn for all n,

A = Σ/Ίcn.
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Theorem 1. Let Te ΛTR and let an and bn be functions such that both T ̂ * an

and T ̂ * btί. Let

Σ SΓΛ

Ίatl ^Z-Jjbtl.

Then an < bn eventually.

Proof: Denote I/ T « B by A. Now using Lemma 3 there exists a function cn

such that T ̂ * cn, cn ^bt! for all n, and A =YjΊcrι. Thus ΣT<7W = Σ τ c w . By

Lemma 2, we have

an = cn eventually

and thus

an <:- 6,, eventually.

Corollary 1. Le/ Ϊ6 ΛTR and let f and g be increasing recursive functions.
Let Df(Ί) <Dg(T). 77/e/z / <# eventually.

Proof: Letting Cf and <̂  denote the ^-difference functions of / and g
respectively, we have from Lemma 1 that

D,(T) = Σ T i l ef(n) D,(T) = Σ T i l e,(n)

and thus

(3) ΣTίlef(n) < Σ T l l ^ ( « ) .

Since T + 1 e ΛTR and T + 1 ^* cj (//), T + 1 *;* cR(n)9 it follows from the
t h e o r e m that

(4) ej{n) ^ eg(n) eventually.

It is then easy to see, using (3) and (4), that f ^g eventually.

We remark here that Corollary 1 has been shown by J. Barback to be

true for T any universal regressive isol; however, it is the stronger result

of Theorem 1 that is needed for the four applications below.

Theorem A (Barback, [lj). Let f be a recursive function such that Dy(Λ")

maps ΛR into ΛR. Then f is eventually increasing.

Proof: L e t / a n d / " denote r e c u r s i v e combinatorial functions such that

f(x) = f'{x) -f~(x) for all xeE. Then /" 'and/"" a r e increas ing r e c u r s i v e

functions; let e^ and cf- denote thei r respect ive <?-difference functions.

Let T e ΛTR By Corol lary 3 of [ l j ,

D,(T) = Σ T l l er(n) - Σ τ ι l ef.(n).

Since D|(T) is a m e m b e r of ΛR, it follows that

Σ T ι l er{n) < Σ T ι l er(n).

Now by Theorem 1 we have

Cr-(n) < Cf>(n) eventually



522 JUDITH L. GERSTING

which implies

e<+{n) - e^-{n) ^ 0 eventually, ef(n) ^ 0 eventually, f is eventually increasing.

The proof of Theorem B will be omitted; it follows that of Theorem A,
with T taken to be a cosimple T-regressive isol.

Theorem B (Catlin, [3]). Let f be a recursive function such Dial Df(X) maps

ΛZR into ΛZR. Then f is eventually increasing.

Theorem C (Sansone [15]). Let f be an increasing recursive function such
that Df(X) is ultimately order-preserving on ΛR. Then ej is eventually in-
creasing.

Proof: Let Te ΛTR. Then T - 1 < T, so that, since Df(X) is ultimately
order-preserving,

D,(T - 1) ^Df(Ί).

By Lemma 1,

Έrτef(n) < Σ/γ + i efW-

Let the recursive function dn be defined by

d(0) = 0,
d(n + 1) = ej(n).

Then

Lj^βfin) = Σ / T t l d(n)

and thus

Σ ) T f l d(n) ^ Σz-r.! ef(n).

Applying Theorem 1,

d(n) ^ ef(n) eventually

or

βf{n - 1) ^ ef(n) eventually

which says that the function βf is eventually increasing.

Again by taking T to be a cosimple T-regressive isol, the proof of
Theorem C yields the following result:

Theorem D. Let f be an increasing recursive function such tJiat Df(X) is

ultimately order-preserving on ΛZR. Then e/ is eventually increasing.

We note here that the proofs of these four theorems actually yield
stronger results than those stated. For example, in the proof of Theorem
A, the hypothesis may be weakened t o / being a recursive function such that
D/(T)eΛ for some T-regressive isol T. Theorems B, C, and D may be
similarly strengthened. These strengthened forms of the theorems may
also be obtained by using the property that every T-regressive isol is
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strongly universal (see Ellentuck, [7]). We note also that in the cited
references for Theorems A, B, and C the results given are both necessary
and sufficient conditions, so it is only one direction of each of these results
which is obtained here.

4 Two Equalities Between Infinite Series.

Theorem 2. Let T, Se ΛTR and let an and bn be functions such that 1 ^an

and 1 ^bnfor all neE, and also T <*«„ and S ^ * bn. Let Σ/Tα« = Σ / S δ w .
Then there exists a number m e E and an integer k ^ 1 - m such that

n ^ m=Φan = bn,k.

Proof: Let tn and sn be T-retraceable functions ranging over sets in T and
S, respectively. By (2),

Uo, 0), . . ., j(t0, a0 - 1), j{tu 0), . . ., j{tlf aΛ - 1), j(t2, 0), . . .,
j(s0, 0), . . ., j(s0, b0 - 1), j(su 0), . . ., j{sl9 b, - 1), j(s2, 0), . . .,

represent regressive enumerations of sets belonging to Ljjan and Σ/s&«,
respectively. Let gn and gn denote the respective regressive enumerations
determined above. Since YjΊan = Tjsbr2, it follows from results in [5] that
there exists a one-to-one partial recursive function p(x) such that
(Vn)[p(gn) = gn]. Because T ^* an and S ^ * bn, there will be partial recur-
sive functions fa and fb such that (Vn)[fa(tn) = an - l] and {Vn)[fb{sn) = bn - l ] .
It follows that the mapping

q(x) = kp-ιj(kpj(x,fa(x)), lpj(x,fa(x)) + 1)

is a partial recursive function. Because tn is a T-retraceable function,
there exists a number Ti such that for n ^Ίϊ, q(ln) < tnn. Consider a number
n^Ti and let pj(tn, an - 1) be denoted by j{sx, v). If v * bx - 1, then q{tn) = tnvl,
which is a contradiction. Thus for every n ^n, pj(tn, an - 1) is a number of
the form j(sx, bx - 1). Because sn is a T-retraceable function, we can use a
similar argument to prove that there exists a number n such that for every
n >/!, p~ιj(sf}, bn - 1) is a number of the form j(tx, ax - 1). Let m be a
number such that

m > Ti and (V;z)(w ^ m and pj(tn, 0) = j(sx, 0) =Φx > n).

Thus for n ^)iι, the ^b locks ' 7 of length an in the enumerat ion gn will be
mapped by p into ^ b l o c k s " of length brnk in the enumerat ion grn where
k > 1 - ;;/ s ince am = δOT + ̂ with m + k ^ 1 . This completes the proof.

Corollary 2.1. Let T, Se ΛTR and letf and g be strictly increasing recur-
sive functions. Let D;(T) = D^(S). Then there exists a number m e E and an
integer k ^ 1 - m such that

n ^ m =Φ ef (n) = eg (n + k),

i.e., the rate of growth of f and g is ''parallel."

Proof: By Lemma 1,
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D/(T) = D g ( S ) = » Σ τ + 1 ef(n) = Σ S 4 1 eg(n).

By Theorem 2, the result holds.

Corollary 2.2. Let T, Se ATR and let f and g be strictly increasing recur-
sive functions. Let

(5) D / ( T ) = D g ( S ) .

ΓΛew there exists a number u e E such that T - S ± u.

Proof: From Corollary 2.1 there exists a number m e E and an integer k
such that

n ^ m =Φ> βf(n) = eg(n + &)

or

w > ;;? = >̂ /(,?) - /(// - 1) = g(n + k) - g(n + k - 1)

from which

n ^ z =^> f(n) = g(n + k) + 777, 777 an integer

or

(Vw)(/(« + ;«) = ̂ *(w + >;z + k) + in).

Thus for any A e A we have

which implies (by a r e s u l t of A. Nerode)

Of (A + m) = D (̂Λ + ?» + /?) + 777.

In p a r t i c u l a r ,

D/(T) = D/(T - m + m) = D^(T - ;« + / » + / ? ) + 777 = Dg(T + /?) + 777.

Using (5),

(6) Dg(S) = D^(T + /?) +777.

By writing the extension mappings as infinite series and using a proof
similar to that of Theorem 2, it is not difficult to show that for h a strictly
increasing recursive function, A, Be ΛTR , and p some number ^ 1, we have

0h{A) = Dh(B) +p==>A = B + q for some qe E, q > 1.

It also becomes clear here that e^ is eventually a cyclic function of period
q. Applying this to (6) we obtain the desired result; in addition, if 777 Φ 0,
we see that eg (and hence ef) is eventually cyclic.

Theorem 3. Let T e ATR , S e ΛR - E, and let an and bn be functions such that
1 ^ On and 1 < bn for all n e E, and also T < * an, S < * bn-i. Let LJJan = Lj^bn.
Then there exists a number keE and a strictly increasing function h(n)
such tJiat
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k Λ(o)

Ltdi = LJ bi
ί-Q ί = 0

and
h{n+l)

ak,n+ι= . £ bi for all ne E.
l = Λ(«)4l

Proof: Let tn be a T-retraceable function ranging over a set in T and sn a
regressive function ranging over a set in S. By (2),

j(t0, 0), . . ., j(t0, a0 - 1), j(tu 0), . . ., j(tu a, - 1), j(t2, 0), . . .,
j{s0, 0), . . ., j(s0, b0 - 1), j(su 0), . . ., j{su b, - 1), j(s2, 0), . . .,

represent regressive enumerations of sets belonging to Ύjjan and Σ s bn,
respectively. Let gn and gn denote the respective regressive enumerations
determined above, and, since Ύjjan = Σ/ s bn, let p(x) be the one-to-one
partial recursive function such that (Vn)(p(gn) =gn). An argument similar
to that in the proof of Theorem 2 proves the existence of a number k such
that for every n^k, pj(tn, an - 1) is a number of the form j(sx, bx - 1). Then
for every n ^k + 1, every "a-block" in the enumeration gn will be mapped
by p into the sum of a number of "δ-blocks" in the enumerat ion^. This
completes the proof.

Corollary 3.1. Let Te Λ T R , S e ΛR - E, and let f and g be strictly increasing
recursive functions. Let D/(T) = Dg(S). Then there exists a number keE
and a strictly increasing recursive function h{n) such that

f(n + k) =g(h(n)) for aline E,

i .e . , / eventually takes on only values of g.

Proof: The result follows at once from the Theorem by applying Lemma 1.

Corol lary 3.2. Let T e Λ T R , S e ΛR - E, and let f andg be strictly increasing
recursive functions. Let D/(T) = Dg(S). Then there exists a number keE
and a strictly increasing recursive function h{n) such that

S = Dh(Ί - k).

Proof: By Corol lary 3.1, t h e r e exists a number keE and a s t r i c t l y
i n c r e a s i n g r e c u r s i v e function h(n) such that

(Vn)[An + k)=g(h(n))].

Thus

D g ( S ) = D / ( T ) = D f { n + k ) ( Ί - k) = D g { h i n ) ) ( j - k) = D g ( D A ( T - * ) ) .

Since h is a strictly increasing recursive function, by results in [ l] ,
D̂ ( T - k) e ΛR. Also, by a result of A. Nerode, if g is a strictly increasing
recursive function, then Dg is one-to-one on ΛR and hence

D g ( S ) = D g ( D h ( l - k))==>S = Dh(Ί - k ) .

This completes the proof.
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