
433
Notre Dame Journal of Formal Logic
Volume XIV, Number 4, October 1973
NDJFAM

A FELICITOUS FRAGMENT OF THE PREDICATE CALCULUS

C. L. HAMBLIN

A notation without variables of quantification is provided for a fragment
of the lower predicate calculus with one- and two-place predicates. It can
be translated nearly symbol-by-symbol into reasonable English. The
fragment is decidable. An apparently minor extension giving flexibility of
quantifier scope yields a fragment that is undecidable.

Horses are animals, but not conversely. Therefore, heads of horses
are heads of animals, though not conversely. But lovers of horses, if by
this we mean lovers of all horses, are not necessarily lovers of animals—
that is, of all animals—since they may fail to love crocodiles: in this case,
it is the converse that is true, namely, that lovers of all animals are lovers
of all horses. Likewise, lovers of (all) heads of animals are lovers of (all)
heads of horses, and heads of lovers of (all) animals are heads of lovers of
(all) horses, but in neither case conversely; and admirers of (all) lovers of
(all) horses are admirers of (all) lovers of (all) animals, but not conversely.
The example, in its earlier stages, is from De Morgan ([l], p. 131) and
examples like it are to be found earlier in Junge [4] in discussion of the
topics of genus and species. The general rule of validity for our extension
of it is that the complex term containing "horses" must be in subject-
position if the number of occurrences of "all" in it (and in its counterpart
containing "animals") is even, and in predicate-position if this number is
odd.

The English expression of these consequences is more compact and
perspicuous, provided some care is taken with quantifiers, than their
predicate calculus equivalents. For example, the statement that admirers
of all lovers of all horses are admirers of all lovers of all animals has the
form

Vx(Vy{Vz(az z> gyz) 3 fxy) 3 Vy{Vz{bz 3 gyz) 3 fxy)) (1)

The English expression contains no counterpart of variables of quantifica-
tion. The expedient is suggested of introducing quantifiers with the
grammatical function of what are called in older grammar-books pronoun-
relatives (not to be confused with relative pronouns) like Latin quicumque.
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Let A represent "everything that": we can use it either preceding two
one-place predicate symbols, as

Aab

representing

Everything that - is a - is b,

or to link a two-place predicate symbol to a one-place predicate symbol to
give a complex one-place predicate expression, as

fAa

representing

bears / t o - everything that - is a.

English word-order is preserved. Formula (1) now takes the form

AfAgAafAgAb (2)

"Everything that - admires - everything that - loves - everything that - is
a horse - admires - everything that - loves - everything that - is an animal."

We may use E similarly for "something that." Embedded in a
propositional calculus the forms Aab and Eab give us a notation for
syllogistic inference in the manner of Lukasiewicz ([6], see also [8]) and
the system may be seen as an extension of this. Certain other extensions
immediately suggest themselves, notably to negative and compound terms.
Since it is of interest to see how much of the lower predicate calculus
(LPC) can be comprised, we shall also employ negative and compound
two-place predicates, free individual variables and certain special symbols.

The prospect of a relatively rich language that is effectively a subset
of English and is provided with both a precise syntax and a logic gives this
project some connection with the work of Montague [7].* The language to be
described is richer than Montague's in containing connectives, though
poorer in making no provision for adjectives and adverbs. In another
respect it is not quite comparable since its goal does not include—as
Montague's does—the modelling of some ambiguities found in English.

The notation in its main features was previously used by the author in
an unpublished thesis [3]. The present paper deals with its use to represent
ordinary predicate calculus but it has other possible uses and extensions,
such as to many-sorted calculi, proportional quantification and probability.

Syntax of FF The following table gives a context-free grammar for the
system to be known as FF. Lower-case roman words of English represent
syntactical categories, and on the right of each rewriting rule items on
separate lines, or on the same line but separated by a solidus, are

*Montague's disturbing death was fresh news while this paper was being written. I
had never met him, but held the kind of respect for his work that made me wish that
I had.
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alternatives. A formula is constructed by starting with the word "formula"
and rewriting until no lower-case roman English words remain.

formula: = nominal predicate (FS)
- formula
( formula connective formula

connective: = . |v|^>| =
nominal: = ΛΓ1371 JST | . . .

quantifier predicate
quantifier: = A | E | J
predicate: = a\ b\c\. . ,\t

- predicate
( predicate connective predicate
relation nominal
relation s

relation: - f\g\h . . . | r | =
~" relation

u relation
( relation connective relation

In the table and in subsequent discussion "predicate" means "one-
place predicate." Formulae are truth-functions of formulae of the form
"nominal predicate," which may take the form "nominal relation nominal":
a nominal may be either an individual symbol, or a quantifier followed by a
predicate. Predicates and relations may be truth-functionally complex.
Explanations of the additional symbols will be given later.

In forming compound formulae or predicates or relations using con-
nectives a left-hand bracket is inserted. Right-hand brackets are redundant
and are not used. Negation requires no bracketing, but in the case of
relations ~~ is used instead of - to distinguish the result of concatenating
""" relation" with "quantifier predicate" from the result of negating
"relation quantifier predicate."

FF into canonical English Fixed nominals x, y, . . . are read as them-
selves, or as "John," "London," "Venus," etc.

Fixed predicates ay b, . . . are read "is «," etc., or as "plays golf,"
"is green," etc.

Fixed relations /, g, . . . are read "has / to," etc., or as "loves,"
"likes going to," "is a parent of," etc.

Other signs are translated as follows:

> not (FE)
. -* and
v —» or
^ -» then
Ξ —» then and only then (thenn)
( —» both λ (according as

either I it is coupled
' if Γ with . , v, D, =
Λϊ and only if (iff)) respectively)
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~~ -• non
w —> inversely

A -» everything that
E —» something that
J — the thing that
t —> has some property, or is a thing
5 - itself
r —» has some relation to, or is a thing and so is
= —* is identical with.

As translat ions of quantifiers, " something t h a t " and " t h e thing t h a t " a r e
subject to their usual logical interpretat ions. The necessity of seeking
alternative translations of ( could, of course, have been avoided by
providing four separate bracket-symbols in the first place. It is redundant
to differentiate connectives by having both four separate initial and four
separate medial operators, but this corresponds partly with careful English
usage: comparison with Polish notation shows that it is the medial
operators, if any, that a r e redundant. The only translat ions that fail to give
grammatical English a r e those for negation and for inverse relation. Thus
" n o t " and " n o n " as initial operators give us the strained if meaningful
constructions " n o t is α , " " n o t is g r e e n , " "non loves," "non is a parent
of," which could be only slightly improved by using more exotic negatives
such as "nohow." Normal English negative construction is just a little
more complicated. In the case of the inverse relation, what is wanted is
generally a passive construction, turning, say, " l o v e s " into " i s loved b y " ;
but " inverse ly l o v e s " will have to do duty. Translation is revers ib le : the
FF formula is recoverable from its canonical English expression.

F F into LPC The following table gives rules for translat ion of FF into
standard LPC notation. Expressions in square brackets [ ] which occur
temporari ly as par t s of FF formulae a r e in LPC notation: if they a r e
one-place predicates ξ marks the argument-place, and if they a r e two-
place predicates ξ marks the left-hand argument-place and η the right.
a, β a r e a rb i t rary (possibly complex) one-place predicates of the LPC, and
φ, ψ two-place predicates . Translation s ta r t s with one- and two-place
predicates of F F and proceeds outwards.

a — [aξ] (similarly δ, c, . . .) (FP)

/ - [fξη] (similarly g, h, . . .)

-[<*ξ] - [-αξ]
([aξ] K [βξ] -* [(aξ K βξ)] (K any connective)

~[φξη] - [-φξη]
"[φξη] - [φηξ]

([φξη] K [ψξη] —» [(Φξ?7 Kψξη)] (K any connective)

[φξη]s - [φξξ]
[φξη] A [aξ] - [Vξ(αζ D φξζ)] (ζ a new variable)



A FELICITOUS FRAGMENT 437

[φξη]E[aξ] - [3ζ(aζ φξξ)] (ζ a new variable)
x[aζ] —» [ax] (similarly y, z, . . .)

A[αξ] [βξ] - [Vξ(o?ζ D βζ)] (ζ a new variable)
E[αξ] [βξ] -> [3ζ(αζ . βζ)] (ζ a new variable)

Signs for which translations are not provided will be introduced later by
definition. The last three lines yield whole LPC formulae; truth-functions
of these are carried over unchanged except in respect of bracketing
convention. Apart from small points concerning w and s, translation is
again reversible.

Logic of FF Logical properties of FF may be determined by translation
into LPC equivalents but it is of interest to explore an autonomous
procedure. Assuming the properties of the propositional calculus applied
to formulae, we could start by adding an axiom set for syllogistic such as
that of Wedberg (see [8]), but it is actually a little easier to start with the
rule of singular syllogism

(Aab => (xa => xb (3)

and the analogous rule

(xfAa D (ya D xfy (4)

These give us in effect two forms of universal instantiation UI:

Aab -> (xa => xb (UI1)

xfAa -• (ya => xfy (UI2)

Existential quantification is definable in terms of universal

Eab=-Aa-b (DEI)

fEa=--fAa (DE2)
Furthermore, negations and connectives standing over or between predi-
cates or relations can be converted, when the arguments are individual, to
negations and connectives standing over or between formulae:

x -a = -xa (DN1)
χ-fy = -xfy (DN2)
x(aκb = (xa K xb (DC1)

x(fκgy= (xfy Kxgy (DC2)

where K is any connective. Consequently, we can derive corresponding
forms of EG:

(xa-xb - Eab (EG1)

(ya-xfy->xfEa (EG2)

Rules of UG and El, which are, of course, subject to the usual restrictions,
are converses of those for UI and EG.

The inverse symbol and reflexive can be eliminated in individual con-
texts:
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(χ"fy Ξ yfX (All)

( w "/ = " 7 (AI2)

C(fKg=Cfic"g (AI3)
(#/s = #/# (AR)

Although UI and El can be used formally on any formula to replace

quantifiers by individual letters, it is not in general possible to conduct the

reverse process by UG and EG. Thus EG, for example, can be performed

only on formulae that can be expressed as conjunctions of the form of the

left-hand side of (EG1), or that of (EG2). In spite of this limitation we can

prove

Theorem 1. Natural deduction is a complete proof procedure within FF.

The proof is rather trivial. No difficulty attaches to truth-functional

procedures or to conditionalisation and it is necessary only to consider the

availability of the usual procedure of stripping of quantifiers and their

possible replacement. But the operation of stripping quantifiers can

always be performed; and the operation of replacing them can be performed

whenever the object formula is expressible. The logic of formulae not

containing quantifiers is contained in the rules DN1-2, DC 1-2, AI1-3 and

AR.

We prove by way of example in essentially Quine's system [9] that if

all horses are animals then everything that is the head of some horse is the

head of some animal.

1. Aab Assumption

2. xfΈa Assumption

3. ξtf #/ξ EI2

4. ξ« => ξb 1, UI1

5. ζb xfξ 3,4, truth-functionally

6. xfΈb EG2

7. AfEafEb 2, 6, conditionalisation and UG1

Hence 1. D 7. by a further conditionalisation. The variable ξ introduced by

El in 3. is extinguished in 6. and the assumptions in 1. and 2. are cancelled

by the conditionalisations.

Identity cannot be introduced by prefixing of axioms into FF as it can

into LPC. This is because the axioms cannot all be represented in FF.

However, if identity is introduced as a primitive having its usual properties

when standing between individual symbols, its properties in quantified

formulae follow. The reflexive symbol s is definable in terms of it

fs = (/• =Et (OS)

where t is the universal predicate, defined

t = (aw-a (DT)

An identity following a quantifier is always redundant together with the

quantifier; thus
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(A=xa = xa (5)
{E=xa = xa (6)

results which are rather concise compared with their LPC counterparts.
Identity also permits definition of the definite description quantifier, thus

Jα = E(α.=Aα (DJ)

"the α," or "the thing that is α." Compare in this connection Montague's
treatment of " the" as a quantifier [7]. In expressions of the form Jab9

J has the properties of Lesniewski's ε (see [8]); but it can also be used in
other contexts, such as in xfJa.

It is hardly an exaggeration to say that FF is adequate to all the
material of an elementary course in LPC. We turn now to its limitations.

Limitations of FF In considering expressibility of LPC formulae in FF
we assume tacitly that they are confined to one- and two-place predicates.

Theorem 2. Every two-quantifier LPC formula has an equivalent expres-
sion in FF.

Let the quantifiers Q!ξQ2?7 be prenex and arrange the basic formulae of the
matrix in the forms αξ, βη, φξη and ψηξ: the last of these may be rewritten
"ψξη. Any term λξx or ωηx containing a free individual variable x may be
regarded as being of the form αξ, βη. Let Q2 be 3 (or proceed dually if it
is V): put the matrix in disjunctive normal form and distribute it over
disjunctions, then contract the scope of each Ξ3η as far as possible. Each
term containing 3 η is now of the form

3η(βη φξη)

where β, φ may now be complex: write this (in FF notation within the LPC
formula) as

[IψEβ]

Now let Qx be 3 (or again proceed dually if it is V): drive inwards as
before and conjoin predicates of ξ in FF notation to get terms of form

3|(yξ)

written

[Etγ].

The result is essentially in FF notation. On the other hand we can prove

Theorem 3. There exist three-quantifier LPC formulae that have no
equivalent expression in FF.

Such a formula is

3ξ3ηBζ(πη'gηζ hζξ)

Thus in absorbing an LPC quantifier as an FF one we can proceed only by
the inverse of the quantifier rules in (FP) above. In first absorbing 3ζ we
can use either rule containing E, getting
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3ξBη(fξη'[ηgEhξ])

or

3&η(fξη-[EK%'gη])

or trivially different forms. The second cannot be further reduced: in the
first 3 η can be absorbed giving

3ξ([ξfEgEH])

or

3|([E7l^EA|])

but neither of these is further reducible.
In consequence of Theorems 2 and 3 it is possible to express in FF the

numerical quantifier 3 (as implied in the definition of J) but not 3 or any

higher one. Thus to express "there are at most two things that" it is
necessary to use an expression resembling the negation of the example in
Theorem 3.

Now given a prenex formula F represent bound variables (equivalently,
quantifiers) as points on a diagram and join by a single line every pair of
points whose variables occur as the respective arguments of a two-place
predicate in F. The result is a relation graph for F. If the graph divides
into two or more unconnected parts the formula can be divided into
separately quantified formulae.

Theorem 4. Every LPC formula whose relation graph consists of branching
lines without closed paths, and whose prenex quantifiers can be arranged in
an order consistent with the distance of their points from an arbitrary
starting-point, has an equivalent expression in FF.

For example, a formula whose relation graph is as in (A), and whose
quantifiers are in the order indicated by the numbers, is expressible. Note
that two variables whose points are not adjacent, and in particular those
whose points are on different branches, can be isolated into separate
sub-formulae, and hence that their quantifiers can be permuted; also that
this necessarily applies to points of equal distance from the starting-point.

J^> O O^—O8 ^ 0 1 2

(A)

Since the last quantifier must correspond with the end of a branch,
there is only one other bound variable to which it is related by a two-place



A FELICITOUS FRAGMENT 441

predicate. Drive the quantifier inwards and absorb it as in Theorem 2.
Then take the next last, and so on.

Theorem 5. FF is decidable.

We shall say that a predicate letter a at a particular occurrence
stands under 2L quantifier Q if a is or is part of the predicate a in the
expression

in which Q appears. Now consider a formula F in which no predicate
stands under more than n quantifiers altogether: we say F is of level n.
We show that F may be analysed in terms of statements expressing the
instantiation or otherwise of certain predicates which may be called
Venn predicates, comparable with the predicates that characterise regions
of a Venn diagram. Venn predicates are not independently instantiable but
it is possible that they should all be instantiated.

Let F contain elementary predicates α* , relations //, which may include
= , and individual variables ΛΓ&. The basic predicates of level 0 will be the
predicates aι together with fjXk and "fjXk (for all j and k). Venn predicates
of level 0 are state-descriptions (s .ds) of these, namely, lexically ordered
conjunctions each containing just each predicate or its negation. We now
form basic predicates of level 1 by adding to the basic predicates of level 0
all predicates of the form 0Eπ where 0 is an s.d. of the relations /7 and
their inverses w/; and π is a Venn predicate of level 0. Venn predicates of
level 1 are s.ds of these, and so on. We now have the

Lemma. Any formula of level n has an equivalent expression as a truth-
function of the formulae of the forms

Etπ and X^Ή

in which π is a Venn predicate of level n.

Let F be such a formula and express all its quantifiers as existential
ones by DE1-2: for Eaβ write Et{a.β. Now at each level of each sub-
formula starting at the lowest, express each predicate or relation or
truth-function of either in complete disjunctive normal form and distribute
quantifiers using

(fE(avb = (fEavfEb
((fvgEa = (fEavgEa
(Ea(bvc = (EabvEac

(Eab = Eba
(x(a v b = (xa v xb

Repeated application yields the form specified. This proves the lemma.
Turning to the theorem, let F be of level n and let the number of Venn

predicates given the elementary predicates, relations and individuals of F
be m. Since multiple instantiation of any Venn predicate is non-significant
compared with single instantiation, the maximum number of individuals,
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exclusive of the x^ needed to achieve all instantiation-possibilities of the
Venn predicates is m. The Xk will instantiate at least one of these and
decision of/ can be achieved in a universe of m + kr - 1 individuals, where
kr is the number of the Xk* F is valid if it is true on all valuations of
elementary one- and two-place predicates of the m + kr - 1 individuals,
subject only to conditions on =.

The augmented system FF+ We noticed that although expressions such as

xfAgy

are syntactically well-formed in FF,fAg cannot be regarded as a relation.

In particular given say

(ya. xfAgy

we cannot use EG2 to derive

xfAgEa

From the fact that x admires everything written by Conan Doyle and that
Conan Doyle is a spiritualist, it does not follow that x admires everything
written by a spiritualist. We can, however, contemplate an augmented
system in which bracketed fQg—we shall actually use right braces as fAg},
/Eg}—count as relations. Note that fEg] is what is usually called a
relational product. This supplementation of the system turns out to be, on
its own, a half-measure, and it is more satisfactory to treat ψ}, where ψ is
a relation, as itself a relation that may be joined by logical connectives to
other relations of the same kind, as in the expression

φQ{ψ] KX} (K a connective)

or to predicates, as

φQ(a K ψ}

where in the latter case the addition of an individual symbol or quantified
predicate will complete ψ} and convert (a K ψ} into logical connection of
predicates. The genesis of this notation is as follows: Consider a relation
graph in respect of the variables of quantification of a matrix and imagine
these variables initially free but bound one by one. As a variable is bound,
draw a circle round the point representing it, enclosing also any circles
that already enclose adjacent points. The final circle encloses the whole
graph as in the example (B). Jhe last point circled is the first quantifier of
the prefix and the corresponding FF formula traces a path from it to each
other point. We can suppose at first that a left brace is inserted whenever
a circle is entered, and a right brace when one is left, with appropriate
right braces at the end of a branch: the enclosure circles resemble contour
lines and are recoverable from the pattern of braces, which determine
altitudes of the quantifiers. But left braces may be omitted since they are
recoverable by tracing backwards (from the end of each branch) and
locating a counterpart of each right brace. And braces at the end of a
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(B)

branch may be omitted since we can always assume we have an inexhaust-
ible supply there. It is further possible to economise braces on open-
ended branches by systematically omitting those that result from enclosure
of points on independent branches. In the case of formulae of FF all braces
disappear and the notation is the same as before. Braces, when they occur,
are associated with relations corresponding with the intersected lines, and
right braces are conveniently written following the relevant relation
symbols.

Syntax of FF+ From the purely syntactical point of view it is simplest just
to add to the rules (FS) the rule

relation : = relation} (FS+)

This introduces some unwanted formulations but they are all interpretable.
We shall also now require right brackets round logical connections between
relations (though not predicates) and must amend the fourth line of the
rewriting rule for "relation" in (FS) to

(relation connective relation).

FF+ into English English is unreliable in these matters. It seems that the
brace, as introduced, is often represented by a pause; or we discriminate
fAg]Ea from fAgEa by reading E in the first case as "some" and in the
second as "any." One may arbitrarily suggest reading } simply as
"brace." Some similar arbitrary solution, say "bracket," will be neces-
sary to the case of ).

FF+into LPC Consider first LPC into FF+. The brace maybe regarded
as introduced into FF+ by EG from formulae such as

yielding

ξ0Eψ}77

More generally, however, there may be some (irreducible) conjunction, on
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right or left of the quantifier, of relations with possibly different individual
left or right arguments: thus

yields by EG

ξi0i * hzΦz)E (<* " (Ψi} Vi Ψ2} η2

(If either ψx or ψ2 is in turn of this branching form the brace needs to be
inserted in all its branches.) Subsequent translation must replace ξx, ξ2,
T7i, η2 by expressions containing quantifiers and may associate braces with
01? 02. In reversing the procedure and translating from FF+ to LPC we
must assume the reverse of these procedures already performed. The
general rule, where 77 denotes repeated conjunction, is: If the r]; and
possibly ξf are nominals containing quantifiers, and if none of the 0Z end
with braces,

-[3ζ(aζ^jψjζηrτriφiξiζ)]

Similarly if σ denotes repeated disjunction

σiξi[φiξη]A([at;] 'n1[ψ1ξη]}η1

-+[Vζ((aζ iΓjψiζηi)^σiφiξiζ)]

Logic of FF+ J can be defined in the new context

fJg} = fE(g}.=Ag}}

Identity can be introduced into FF+ as into LPC by prefixing of axioms
to formulae containing it, but only if s, which is needed in formulating the
axiom of reflexivity, is in turn primitive. The brace is non-significant in
an individual formula with a single quantifier; thus

(χfQg}y Ξ xfQgy

Hence given a conjunction

(ya - xfQgy

we may insert a brace in the right member: fQg} is now a relation and we
may use EG2 to infer

xfQg}Ea

Similarly for comparable applications of UI2, etc. Now given

((az - iTj zgffl Tϊi Xi fi z — Ήi Xi fi E {a : π ; gj} yj (E G3)

and similar variants of UI, etc. we have

Theorem 6. Natural deduction is a complete proof procedure within FF+.

Proof as before.
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Limitations of FF+

Theorem 7. Every three-quantifier formula has an equivalent expression
in FF+.

Let the prenex quantifiers by QiξQ2τ?3ζ (or proceed dually if the last is
Vζ). Drive the last quantifier inwards until expressions of the form

3ζ(yζ.0ξζ.ψζη)

are reached: translate into FF+ as

ξφE(γ"ψ}η

The resulting formula may be translated as in Theorem 2.

Theorem 8. There exist four-quantifier LPC formulae that have no equiva-
lent expression in FF+.

Such a formula is

3ξ3τj3ζ3ω(Λξη -/aξζ -/3ξω Άηζ 'f5ηω -/βζω)

Thus eliminate 3ω getting

3ξ3η3ζ(/ 1ξη./ 2 |ζ./ 4ηζ.[ξ/ 3E(7 5}ί 7 7β}ζ])

and eliminate 3?, say in the form

3ξ3τ?(/1?r?.[ξ/3E(75}77 7β}E(7 a}ξ.74}τ7])

The formula is not now in a form in which elimination of 3 η or of 3 ξ is
possible: the same difficulty attends the alternative forms of elimination
ofBζ.

A consequence of Theorems 7 and 8 is that although the numerical
quantifier 3 can be defined in FF+, 3 cannot. The number system of FF+

is "one, two, many," as is reputedly that of certain primitive natural
languages.

Theorem 9. Every LPC formula whose relation graph does not contain four
points pairwise linked by independent paths has an equivalent expression
in FF+.

For example, an LPC formula with relation graph as in (C) is
expressible provided the dotted line is not included. The result is

(C)
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independent of the order of the quantifiers as a consequence of the
genesis of the brace-notation, but it is necessary to prove that a suitable
path can be traced through the graph from any starting-point. Note that by
conjunction of forms 0XQ02 . . . 0«, possibly with predicates conjoined with
the φi, we can represent branches that later recombine; also that using the
form φ . . . ψ} . .}s we can represent a path that loops back to its starting-
point.

In view of the example of Theorem 8 the graph can certainly be drawn
without crossing of lines. Let a starting-point be given and suppose an
arrow placed on each line in such a way that any point on the graph can be
reached from the starting-point by travelling along arrows. We show that
this can be done in such a way that when two paths diverge and later
converge again no other paths except open-ended ones diverge from them
along their length.

Thus let λ be the starting-point and let ξ - η - ζ and ξ - θ - ζ be parallel
branches of a section of the graph such that either λ = ξ or there is a path
λ- I separately from the branches: let ξ be the first branch point with two
or more non-open branches on the path λ —> ξ. We assume first that there
is no independent path between ξ and ζ: it follows that ζ does not lead
independently to λ. Under these circumstances if there is a path η - θ we
can put in arrows ξ -* η -* θ —> ζ and η —» ζ —» θ; if there is a path 77 - K to a
point /cona branch beyond ξ we can put in arrows η —» K —* ζ.

Alternatively assume that there is an independent path between ξ and ζ.
Now a path η - θ would contravene the assumptions and so would a path η - κm

But if there is no such path arrows can be put in ξ -^ η -* ξ, ξ —> θ —>ζ; and
if λ is on the independent path, ζ - ^ λ - ^ ξ . If λ is not on the path it is
merely another parallel path ξ —> ζ. Any separate system of parallel
branches can be similarly dealt with.

Now we can return to the theorem. Given F, draw its graph and,
starting from the point corresponding with the first quantifier, trace a path
through the graph placing arrows on the lines; invert relations as neces-
sary so that the order of variables corresponds. Then absorb quantifiers
in turn, starting with the last. Alternatively absorb quantifiers in any
convenient order disregarding braces, then insert braces as indicated by
enclosure circles.

Theorem 10. FF+z's undecidable.

This is a corollary of Theorem 7 and of the known undecidability of
LPC, since by a result of Suranyi [10, 11] every formula of LPC is
equivalent in respect of validity to one of the form

3x3y3zB-3x3yVzC

or according to Kahr, Moore and Wang ([5]; see also [2]), to one of the form

ΞxVyΞzB

where B and C contain at most one- and two-place predicates and no
quantifiers.
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