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A FORMAL CHARACTERIZATION OF ORDINAL NUMBERS

NICHOLAS J. DE LILLO

In this paper we present the axioms for a first-order finitely
axiomatized theory ORD, some of whose models are relational systems S
with the following particular characteristics:

(i) S, the domain of discourse of £, is any ordinal number;

and

(ii) each primitive relation symbol of the alphabet of ORD is interpreted in
S in the standard manner.

Of special importance is the fact, demonstrated below, that ORD is an
example of a theory in which the proof-theoretic notions of explicit and
implicit definability, as stated in Beth [l], [2] and Smullyan [3], may be
illustrated.

1 Basic Concepts. Let T be a first-order theory whose non-logical axioms
are the set of sentences denoted by Γo. Let P, Pl9 P 2 . . . be the relation
symbols of the alphabet of T which occur in at least one member of Γo. In
addition, P will be assumed to be an rc-place relation symbol for some
positive integer n.

P is explicitly definable from Pl9 P2 . . . in T if there exists a
wff U(xί9 x29 . . . , # w ) , all of whose relation symbols occur in the list
Pί9 P 2 . . ., such that

Γ0\-(Vxi)(Vx2) . . . (Vxn) [P(xl9x2, . . .,*«) & U(xl9x2, . . .,#„)].

Let P f be a relation symbol of the alphabet of T having the same
number of places as P. Assume P f does not occur in Γo, and let Γ£ be the
result of substituting P' for P in every sentence of Γo in which P appears.

P is implicitly definable from Pl9 P 2 . . . in T if

Γo U Γί H(v#i)(Vff2) . . . (Vxn) [Pbi,x2, •,*«) ^ ^'(*i,*2, .,*«)].

2 The Theory ORD. The first-order theory ORD is, basically, a theory
with equality, such that the four binary relation symbols, ~, c, c, and e
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exhaust the list of non-logical symbols in its alphabet. The set Γo of
non-logical axioms of ORD consists of the following ten members:

ORD 1 (V*)(Vy)(Vs) [((* c y) Λ (y c z)) - (x c *)] 1

ORD 2 (V^KiC^)];
ORD 3 (V#)(Vy) [(* C y) -. ~ (y c ΛΓ)]
ORD 4 (V#)(Vy) [(ΛΓ C y) v (y c x) v (ΛΓ « y)];

ORD 5 (V*)(Vy) [(* C ^ ([(V*) [(* C ^ ( 2 C ^ ) ] A ~ ( I , y)] v (ΛΓ - y))]
ORD 6 (V*)(Vy)(Vs)(Vtt) [(ΛΓ « y) - [(* « u) - [(ΛΓ C Z) -> (y C «)]]]
ORD 7 (V*)(Vy)(Vs)(Vw) [(ΛΓ « y) - [(* * «) -+ [(* ς ^ ( y c «)]]]
ORD 8 (Vx)(Vy)(Vz)(Vu) [(x - y) - [(* * «) - [(* - z) - (y - «)]]]
ORD 9 (VΛΓ) [ΛΓ C ΛΓ]

ORD 10 (VΛΓ) [ΛΓ « ΛΓ] .

3 Illustration of Explicit and Implicit Definability in ORD. Using the
notation of the last section, take for P the relation symbol c and for Pr the
relation symbol e. Then the set Γ£ consists of

ORDf 1 (V#)(Vy)(Vs) [((xe y) *(ye z)) - (xez)];
ORD f 2 (VΛΓ) [~(xex)];
ORDf 3 (V#)(Vy) [(xey)-» ~ ( y e # ) ] ;
ORD f4 (V^)(Vy) [(AΓ€y)v(y€^)v(^«y)];
ORDr 5 (V*)(Vy) [(ΛΓ C ^ ([(V^) [Ue ΛΓ) - Ue y)] A^(ΛΓ « y)]v(x * y))];

ORD' 6 (V*)(Vy)(V*)(Vtt) [(ΛΓ « y) - [(« « ^) - [(ΛΓ€ Z) - (ye M)]]];

and where ORDf w = ORD n for rc = 7, 8, 9, 10.

We then have the following
Theorem I: With P, Pr, Γo, and T'o so described, P is implicitly definable in
ORD by U(x, y), where U(x, y) is the wff[(x c y) Λ ^(ΛΓ « y)].

Theorem II: W2£/z P, JP', Γo, αn<i Γ^ so described, P is implicitly definable
in ORD, i.e., from Γou Γ^ it is possible to deduce (V#)(Vy) [(ΛΓ C y)^± (xe y)].

In proving each of these theorems, we omit the details of formal logic,
and merely indicate how each step follows from preceding ones by invoking
the appropriate member of Γo or Γ£. It should, however, be pointed out that
a proof of each completely within the syntax of ORD is possible.

For the proof of Theorem I, first assume that (ΛΓ C y). If, in addition,
(ΛΓ ~ y) is assumed, then these two would yield (ΛΓ C X) by ORD 6; but (ΛΓ C X)
is impossible by ORD 2. Thus, (ΛΓ C y) implies ~(λτ~y). On the other
hand, suppose (x c y) did not imply (ΛΓ C y), i.e., suppose both (ΛΓ C y) and
~ (ΛΓ C y) were true. Since ~ (ΛΓ C y) is the case, ~ ([(V^) [(z c x) —> (z c y)] Λ
-(ΛΓ « y)] v (ΛΓ « y)) follows by ORD 5. That is, ([~(V«) [(* c ^ j ^ c y)] v

(ΛΓ « y)] Λ ~ (ΛΓ ~ y)) results from ^ (ΛΓ C y). Since ~ (ΛΓ ~ y) has already been
established, it must also follow that ~(V£) [{z c ΛΓ) —> (^ c y)] is true, i.e.,

1. Throughout this paper we adopt the convention of placing the binary relation
symbol between the symbols being related.
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there must exist some w such that (w c x) but ~(w Cj;), Hence, some w
exists such that (w c ΛΓ) and either (y c. w) or (y ~ ^ ) , by ORD 4. Suppose
(y ~ w) were true. Since (w c ή , it would follow that ( j c i ) 5 which is
impossible by the original assumption that (x c 3;) and ORD 3. Further-
more, if (3; c w) were so, then (y c w) coupled with (w c ΛΓ) would again
yield (3; c ΛΓ) by ORD 1. Since all possibilities have been exhausted, the
conclusion is that it is impossible for (x c 3;) and ~(ΛΓ C 3;) to hold jointly.
Thus if (ΛΓC 3;) is true, then (ΛΓ c 3;) follows, i.e., (ΛΓ c 3;) implies (ΛΓ c 3;).
Therefore, if (ΛΓ C 3;), then both (ΛΓ C 3;) and ~ (ΛΓ ~ 3;), i.e., (ΛΓ C 3;) implies
[(ΛΓC 3>)Λ~(ΛΓ^ 3;)].

Conversely, suppose it is the case that both (ΛΓC 3;) and ~(ΛΓ~ 3;). In
addition, suppose it were false that (ΛΓ c 3;). Then, by ORD 4, either (x ~ 3;)
or (3; c ΛΓ). But it is immediate that (ΛΓ ~ 3;) is impossible, since it has been
assumed that ~(ΛΓ~3>). Furthermore, suppose (y^-x). Since (x c y) has
been assumed, [(V2) [(z c ΛΓ) —> (z c y)]* ~(ΛΓ « 3>)]V(ΛΓ~ 3;) holds by ORD 5.
Since (3; c ΛΓ), y is a candidate for z, i.e., [(3; c ΛΓ) —» (3; c 3;)] is possible;
but since (y c ΛΓ) is assumed, we obtain the conclusion that (y ^ y), which is
impossible by ORD 2. Hence the assertion that (3; c ΛΓ) produces a con-
tradiction. The only remaining alternative is (ΛΓC3;)> which must hold by
ORD 4. Therefore, [(x Q y) * ~ (?c ~ y)] implies (χCy)9 completing the
equivalence and hence the proof of Theorem I.

The proof of Theorem II follows along similar lines. First assume
(ΛΓ C y) is the case. In order to prove (xe y) is a consequence, ORD' 4 will
be used to eliminate the possibilities (x ~ y) and (yex). Indeed, suppose
(ΛΓ ~ 3;) were true; then (ΛΓ C 3;) would become (ΛΓ c ΛΓ), which violates ORD 2.
On the other hand, if it were true that (ye ΛΓ), then (y c x) would follow, for
suppose (z e y) for any z. Then (zey) together with (3;eΛr) would yield
{ze ΛΓ) by ORDf 1, and hence, by ORDf 5, (3; c ΛΓ), since ~(x ~ 3;) has also
been established. Applying ORD 5 with (3; c ΛΓ) established produces the
fact that for all z, [([(z c 3;) -, (z c ΛΓ)]Λ -(ΛΓ « 3;)) v (ΛΓ W y)]. But, by virtue
of the fact that ~(ΛT ~ y) is true, it would follow that (ΛΓ C ΛΓ), since we have
assumed that (ΛΓ C 3;). Thus, by ORD' 4, the only remaining alternative is
(ΛΓ€ y), and so (ΛΓ C 3;) implies {xe y).

Conversely, suppose (ΛΓe 3̂ ). Then it cannot be the case that (ΛΓ ~ y), for
if so, (Λ e 3̂) would become (xe ΛΓ), which is impossible by ORD' 2. Further-
more, suppose (y c ΛΓ) were so. Then (y c ΛΓ) would follow, for suppose
(z c 3;) for any z. Then, using ORD 1 with (z c 3;) and (3; c ΛΓ), we get
(z c ΛΓ); by ORD 5, (3; c ΛΓ) follows, since it is also known that ~(ΛT ~ 3;).
Using ORD' 5 with (3; c ΛΓ) established, it is the case that for all z,
[([Ue 3;) -» (ze ΛΓ)]Λ ^(ΛΓ ~ 3;)) v (ΛΓ « 3;)], i.e., for all z, (ze y) implies (zex).
Since this implication holds for all z, it must certainly hold for z set equal
to ΛΓ; that is, (ΛΓ€ y) implies (ΛΓ€ ΛΓ). Thus, (xe x) is deduced from (3; c ΛΓ),
and by ORD 4, the only remaining alternative is (ΛΓC3;). Hence (ΛΓ€ 3;)
implies (ΛΓ C 3;), completing the proof of Theorem II.
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