Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

A FORMAL CHARACTERIZATION OF ORDINAL NUMBERS

NICHOLAS J. DE LILLO

In this paper we present the axioms for a first-order finitely axiomatized theory ORD, some of whose models are relational systems \mathcal{S} with the following particular characteristics:
(i) S, the domain of discourse of \mathcal{S}, is any ordinal number;
and
(ii) each primitive relation symbol of the alphabet of ORD is interpreted in \mathcal{S} in the standard manner.

Of special importance is the fact, demonstrated below, that ORD is an example of a theory in which the proof-theoretic notions of explicit and implicit definability, as stated in Beth [1], [2] and Smullyan [3], may be illustrated.

1 Basic Concepts. Let T be a first-order theory whose non-logical axioms are the set of sentences denoted by Γ_{0}. Let $P, P_{1}, P_{2} \ldots$ be the relation symbols of the alphabet of T which occur in at least one member of Γ_{0}. In addition, P will be assumed to be an n-place relation symbol for some positive integer n.
P is explicitly definable from $P_{1}, P_{2} \ldots$ in T if there exists a wff $U\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, all of whose relation symbols occur in the list $P_{1}, P_{2} \ldots$, such that

$$
\Gamma_{0} \vdash\left(\forall x_{1}\right)\left(\forall x_{2}\right) \ldots\left(\forall x_{n}\right)\left[P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightleftarrows U\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right] .
$$

Let P^{\prime} be a relation symbol of the alphabet of T having the same number of places as P. Assume P^{\prime} does not occur in Γ_{0}, and let Γ_{0}^{\prime} be the result of substituting P^{\prime} for P in every sentence of Γ_{0} in which P appears.
P is implicitly definable from $P_{1}, P_{2} \ldots$ in T if

$$
\Gamma_{0} \cup \Gamma_{0}^{\prime} \vdash\left(\forall x_{1}\right)\left(\forall x_{2}\right) \ldots\left(\forall x_{n}\right)\left[P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightleftarrows P^{\prime}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right] .
$$

2 The Theory ORD. The first-order theory ORD is, basically, a theory with equality, such that the four binary relation symbols, $\approx, \subset, \subseteq$, and ϵ
exhaust the list of non-logical symbols in its alphabet. The set Γ_{0} of non-logical axioms of ORD consists of the following ten members:
ORD $1 \quad(\forall x)(\forall y)(\forall z)[((x \subset y) \wedge(y \subset z)) \rightarrow(x \subset z)] ;^{1}$
ORD $2(\forall x)[\sim(x \subset x)]$;
ORD $3 \quad(\forall x)(\forall y)[(x \subset y) \rightarrow \sim(y \subset x)]$;
ORD $4(\forall x)(\forall y)[(x \subset y) \vee(y \subset x) \vee(x \approx y)]$;
ORD $5(\forall x)(\forall y)[(x \subseteq y) \rightleftarrows([(\forall z)[(z \subset x) \rightarrow(z \subset y)] \wedge \sim(x \approx y)] \vee(x \approx y))]$;
ORD $6(\forall x)(\forall y)(\forall z)(\forall u)[(x \approx y) \rightarrow[(z \approx u) \rightarrow[(x \subset z) \rightarrow(y \subset u)]]]$;
ORD $7(\forall x)(\forall y)(\forall z)(\forall u)[(x \approx y) \rightarrow[(z \approx u) \rightarrow[(x \subseteq z) \rightarrow(y \subseteq u)]]]$;
ORD $8(\forall x)(\forall y)(\forall z)(\forall u)[(x \approx y) \rightarrow[(z \approx u) \rightarrow[(x \approx z) \rightarrow(y \approx u)]]]$;
ORD $9(\forall x)[x \subseteq x]$;
ORD $10(\forall x)[x \approx x]$.
3 Illustration of Explicit and Implicit Definability in ORD. Using the notation of the last section, take for P the relation symbol \subset and for P^{\prime} the relation symbol ϵ. Then the set Γ_{0}^{\prime} consists of
$\mathrm{ORD}^{\prime} 1(\forall x)(\forall y)(\forall z)[((x \in y) \wedge(y \in z)) \rightarrow(x \in z)] ;$
ORD' 2 ($\forall x)[\sim(x \in x)]$;
ORD' $3(\forall x)(\forall y)[(x \in y) \rightarrow \sim(y \in x)]$;
$\mathrm{ORD}^{\prime} 4(\forall x)(\forall y)[(x \in y) \vee(y \in x) \vee(x \approx y)]$;
ORD' $5(\forall x)(\forall y)[(x \subseteq y) \rightleftarrows([(\forall z)[(z \in x) \rightarrow(z \in y)] \wedge \sim(x \approx y)] \vee(x \approx y))]$;
ORD' $6(\forall x)(\forall y)(\forall z)(\forall u)[(x \approx y) \rightarrow[(z \approx u) \rightarrow[(x \in z) \rightarrow(y \in u)]]]$;
and where ORD' $n=$ ORD n for $n=7,8,9,10$.
We then have the following
Theorem I: With $P, P^{\prime}, \Gamma_{0}$, and Γ_{0}^{\prime} so described, P is implicitly definable in ORD by $U(x, y)$, where $U(x, y)$ is the wff $[(x \subseteq y) \wedge \sim(x \approx y)]$.

Theorem II: With $P, P^{\prime}, \Gamma_{0}$, and Γ_{o}^{\prime} so described, P is implicitly definable in ORD, i.e., from $\Gamma_{0} \cup \Gamma_{0}^{\prime}$ it is possible to deduce $(\forall x)(\forall y)[(x \subset y) \rightleftarrows(x \in y)]$.

In proving each of these theorems, we omit the details of formal logic, and merely indicate how each step follows from preceding ones by invoking the appropriate member of Γ_{0} or Γ_{0}^{\prime}. It should, however, be pointed out that a proof of each completely within the syntax of ORD is possible.

For the proof of Theorem I, first assume that ($x \subset y$). If, in addition, ($x \approx y$) is assumed, then these two would yield ($x \subset x$) by ORD 6; but ($x \subset x$) is impossible by ORD 2. Thus, $(x \subset y)$ implies $\sim(x \approx y)$. On the other hand, suppose ($x \subset y$) did not imply ($x \subseteq y$), i.e., suppose both ($x \subset y$) and $\sim(x \subseteq y)$ were true. Since $\sim(x \subseteq y)$ is the case, $\sim([(\forall z)[(z \subset x) \rightarrow(z \subset y)] \wedge$ $\sim(x \approx y)] \vee(x \approx y))$ follows by ORD 5. That is, $([\sim(\forall z)[(z \subset x) \rightarrow(z \subset y)] \vee$ $(x \approx y)] \wedge \sim(x \approx y)$) results from $\sim(x \subseteq y)$. Since $\sim(x \approx y)$ has already been established, it must also follow that $\sim(\forall z)[(z \subset x) \rightarrow(z \subset y)]$ is true, i.e.,

[^0]there must exist some w such that $(w \subset x)$ but $\sim(w \subset y)$. Hence, some w exists such that ($w \subset x$) and either ($y \subset w$) or ($y \approx w$), by ORD 4. Suppose ($y \approx w$) were true. Since ($w \subset x$), it would follow that $(y \subset x)$, which is impossible by the original assumption that $(x \subset y)$ and ORD 3. Furthermore, if ($y \subset w$) were so, then ($y \subset w$) coupled with ($w \subset x$) would again yield $(y \subset x)$ by ORD 1. Since all possibilities have been exhausted, the conclusion is that it is impossible for ($x \subset y$) and $\sim(x \subseteq y)$ to hold jointly. Thus if ($x \subset y$) is true, then ($x \subseteq y$) follows, i.e., $(x \subset y)$ implies ($x \subseteq y$). Therefore, if $(x \subset y)$, then both $(x \subseteq y)$ and $\sim(x \approx y)$, i.e., $(x \subset y)$ implies $[(x \subseteq y) \wedge \sim(x \approx y)]$.

Conversely, suppose it is the case that both $(x \subseteq y)$ and $\sim(x \approx y)$. In addition, suppose it were false that ($x \subset y$). Then, by ORD 4, either ($x \approx y$) or ($y \subset x$). But it is immediate that ($x \approx y$) is impossible, since it has been assumed that $\sim(x \approx y)$. Furthermore, suppose $(y \subset x)$. Since $(x \subseteq y)$ has been assumed, $[(\forall z)[(z \subset x) \rightarrow(z \subset y)] \wedge \sim(x \approx y)] \vee(x \approx y)$ holds by ORD 5 . Since $(y \subset x), y$ is a candidate for z, i.e., $[(y \subset x) \rightarrow(y \subset y)]$ is possible; but since $(y \subset x)$ is assumed, we obtain the conclusion that $(y \subset y)$, which is impossible by ORD 2. Hence the assertion that ($y \subset x$) produces a contradiction. The only remaining alternative is ($x \subset y$), which must hold by ORD 4. Therefore, $[(x \subseteq y) \wedge \sim(x \approx y)]$ implies $(x \subset y)$, completing the equivalence and hence the proof of Theorem I.

The proof of Theorem II follows along similar lines. First assume ($x \subset y$) is the case. In order to prove ($x \in y$) is a consequence, ORD' 4 will be used to eliminate the possibilities $(x \approx y)$ and $(y \in x)$. Indeed, suppose ($x \approx y$) were true; then $(x \subset y$) would become $(x \subset x)$, which violates ORD 2. On the other hand, if it were true that $(y \in x)$, then ($y \subseteq x$) would follow, for suppose $(z \in y)$ for any z. Then ($z \in y$) together with $(y \in x)$ would yield $(z \in x)$ by ORD $^{\prime} 1$, and hence, by ORD' $^{\prime} 5,(y \subseteq x)$, since $\sim(x \approx y)$ has also been established. Applying ORD 5 with $(y \subseteq x)$ established produces the fact that for all $z,[([(z \subset y) \rightarrow(z \subset x)] \wedge \sim(x \approx y)) \vee(x \approx y)]$. But, by virtue of the fact that $\sim(x \approx y)$ is true, it would follow that $(x \subset x)$, since we have assumed that $(x \subset y)$. Thus, by ORD' 4 , the only remaining alternative is ($x \in y$), and so ($x \subset y$) implies ($x \in y$).

Conversely, suppose $(x \in y)$. Then it cannot be the case that ($x \approx y$), for if so, $(x \in y)$ would become ($x \in x$), which is impossible by ORD' 2. Furthermore, suppose $(y \subset x)$ were so. Then $(y \subseteq x)$ would follow, for suppose $(z \subset y)$ for any z. Then, using ORD 1 with $(z \subset y)$ and $(y \subset x)$, we get $(z \subset x)$; by ORD $5,(y \subseteq x)$ follows, since it is also known that $\sim(x \approx y)$. Using ORD' 5 with $(y \subseteq x)$ established, it is the case that for all z, $[([(z \in y) \rightarrow(z \in x)] \wedge \sim(x \approx y)) \vee(x \approx y)]$, i.e., for all $z,(z \in y)$ implies $(z \in x)$. Since this implication holds for all z, it must certainly hold for z set equal to x; that is, $(x \in y)$ implies $(x \in x)$. Thus, $(x \in x)$ is deduced from $(y \subset x)$, and by ORD 4, the only remaining alternative is $(x \subset y)$. Hence ($x \in y$) implies ($x \subset y$), completing the proof of Theorem II.

REFERENCES

[1] Beth, Evert W., 'On Padoa's method in the theory of definition,', Indagationes Mathematicae, vol. XV (1953), pp. 330-339.
[2] Beth, Evert W., The Foundation of Mathematics, North-Holland Publishing Company, Amsterdam (1965).
[3] Smullyan, Raymond M., First-order Logic, Springer-Verlag, Berlin, Heidelberg, New York (1968).

Manhattan College
New York, New York

[^0]: 1. Throughout this paper we adopt the convention of placing the binary relation symbol between the symbols being related.
