Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

A FORMAL CHARACTERIZATION OF ORDINAL NUMBERS

NICHOLAS J. DE LILLO

In this paper we present the axioms for a first-order finitely axiomatized theory ORD, some of whose models are relational systems S with the following particular characteristics:

(i) S, the domain of discourse of S, is any ordinal number;

and

(ii) each primitive relation symbol of the alphabet of **ORD** is interpreted in S in the standard manner.

Of special importance is the fact, demonstrated below, that ORD is an example of a theory in which the proof-theoretic notions of explicit and implicit definability, as stated in Beth [1], [2] and Smullyan [3], may be illustrated.

1 Basic Concepts. Let T be a first-order theory whose non-logical axioms are the set of sentences denoted by Γ_0 . Let P, P_1 , P_2 ... be the relation symbols of the alphabet of T which occur in at least one member of Γ_0 . In addition, P will be assumed to be an n-place relation symbol for some positive integer n.

P is explicitly definable from $P_1, P_2...$ in *T* if there exists a wff $U(x_1, x_2, ..., x_n)$, all of whose relation symbols occur in the list $P_1, P_2...$, such that

 $\Gamma_0 \vdash (\forall x_1)(\forall x_2) \ldots (\forall x_n) [P(x_1, x_2, \ldots, x_n) \rightleftharpoons U(x_1, x_2, \ldots, x_n)].$

Let P' be a relation symbol of the alphabet of T having the same number of places as P. Assume P' does not occur in Γ_0 , and let Γ'_0 be the result of substituting P' for P in every sentence of Γ_0 in which P appears.

P is implicitly definable from $P_1, P_2 \ldots$ in T if

 $\Gamma_0 \cup \Gamma'_0 \vdash (\forall x_1)(\forall x_2) \ldots (\forall x_n) [P(x_1, x_2, \ldots, x_n) \rightleftharpoons P'(x_1, x_2, \ldots, x_n)].$

2 The Theory ORD. The first-order theory ORD is, basically, a theory with equality, such that the four binary relation symbols, \approx , \subseteq , \subseteq , and ϵ

Received November 29, 1971

exhaust the list of non-logical symbols in its alphabet. The set Γ_0 of non-logical axioms of **ORD** consists of the following ten members:

 $(\forall x)(\forall y)(\forall z) [((x \subset y) \land (y \subset z)) \rightarrow (x \subset z)];$ ¹ ORD 1 ORD 2 $(\forall x) [\sim (x \subset x)];$ $(\forall x)(\forall y) [(x \subseteq y) \rightarrow \sim (y \subseteq x)];$ ORD 3 $(\forall x)(\forall y) [(x \subseteq y) \lor (y \subseteq x) \lor (x \approx y)];$ ORD 4 $(\forall x)(\forall y) [(x \subseteq y) \rightleftharpoons ([(\forall z) [(z \subseteq x) \to (z \subseteq y)] \land \sim (x \approx y)] \lor (x \approx y))];$ ORD 5 $(\forall x)(\forall y)(\forall z)(\forall u) [(x \approx y) \rightarrow [(z \approx u) \rightarrow [(x \subseteq z) \rightarrow (y \subseteq u)]]];$ ORD 6 $(\forall x)(\forall y)(\forall z)(\forall u) [(x \approx y) \rightarrow [(z \approx u) \rightarrow [(x \subseteq z) \rightarrow (y \subseteq u)]]];$ ORD 7 $(\forall x)(\forall y)(\forall z)(\forall u) [(x \approx y) \rightarrow [(z \approx u) \rightarrow [(x \approx z) \rightarrow (y \approx u)]]];$ ORD 8 $(\forall x) [x \subseteq x];$ ORD 9 ORD 10 $(\forall x) [x \approx x]$.

3 Illustration of Explicit and Implicit Definability in ORD. Using the notation of the last section, take for P the relation symbol \subseteq and for P' the relation symbol ϵ . Then the set Γ'_0 consists of

ORD' 1 $(\forall x)(\forall y)(\forall z) [((x \in y) \land (y \in z)) \rightarrow (x \in z)];$ ORD' 2 $(\forall x) [\sim (x \in x)];$ ORD' 3 $(\forall x)(\forall y) [(x \in y) \rightarrow \sim (y \in x)];$ ORD' 4 $(\forall x)(\forall y) [(x \in y) \lor (y \in x) \lor (x \approx y)];$ ORD' 5 $(\forall x)(\forall y) [(x \subseteq y) \rightleftharpoons ([(\forall z) [(z \in x) \rightarrow (z \in y)] \land \sim (x \approx y)] \lor (x \approx y))];$ ORD' 6 $(\forall x)(\forall y)(\forall z)(\forall u) [(x \approx y) \rightarrow [(z \approx u) \rightarrow [(x \in z) \rightarrow (y \in u)]]];$

and where ORD' n = ORD n for n = 7, 8, 9, 10.

We then have the following

Theorem I: With P, P', Γ_0 , and Γ'_0 so described, P is implicitly definable in ORD by U(x, y), where U(x, y) is the wff $[(x \subseteq y) \land \sim (x \approx y)]$.

Theorem II: With P, P', Γ_0 , and Γ'_0 so described, P is implicitly definable in ORD, i.e., from $\Gamma_0 \cup \Gamma'_0$ it is possible to deduce $(\forall x)(\forall y) [(x \subseteq y) \rightleftharpoons (x \in y)]$.

In proving each of these theorems, we omit the details of formal logic, and merely indicate how each step follows from preceding ones by invoking the appropriate member of Γ_0 or Γ'_0 . It should, however, be pointed out that a proof of each completely within the syntax of **ORD** is possible.

For the proof of Theorem I, first assume that $(x \subseteq y)$. If, in addition, $(x \approx y)$ is assumed, then these two would yield $(x \subseteq x)$ by ORD 6; but $(x \subseteq x)$ is impossible by ORD 2. Thus, $(x \subseteq y)$ implies $\sim (x \approx y)$. On the other hand, suppose $(x \subseteq y)$ did not imply $(x \subseteq y)$, i.e., suppose both $(x \subseteq y)$ and $\sim (x \subseteq y)$ were true. Since $\sim (x \subseteq y)$ is the case, $\sim ([(\forall z) [(z \subseteq x) \rightarrow (z \subseteq y)] \land$ $\sim (x \approx y)] \lor (x \approx y))$ follows by ORD 5. That is, $([\sim (\forall z) [(z \subseteq x) \rightarrow (z \subseteq y)] \lor$ $(x \approx y)] \land \sim (x \approx y))$ results from $\sim (x \subseteq y)$. Since $\sim (x \approx y)$ has already been established, it must also follow that $\sim (\forall z) [(z \subseteq x) \rightarrow (z \subseteq y)]$ is true, i.e.,

^{1.} Throughout this paper we adopt the convention of placing the binary relation symbol between the symbols being related.

there must exist some w such that $(w \subseteq x)$ but $\sim (w \subseteq y)$. Hence, some w exists such that $(w \subseteq x)$ and either $(y \subseteq w)$ or $(y \approx w)$, by ORD 4. Suppose $(y \approx w)$ were true. Since $(w \subseteq x)$, it would follow that $(y \subseteq x)$, which is impossible by the original assumption that $(x \subseteq y)$ and ORD 3. Furthermore, if $(y \subseteq w)$ were so, then $(y \subseteq w)$ coupled with $(w \subseteq x)$ would again yield $(y \subseteq x)$ by ORD 1. Since all possibilities have been exhausted, the conclusion is that it is impossible for $(x \subseteq y)$ and $\sim (x \subseteq y)$ to hold jointly. Thus if $(x \subseteq y)$ is true, then $(x \subseteq y)$ follows, i.e., $(x \subseteq y)$ implies $(x \subseteq y)$. Therefore, if $(x \subseteq y)$, then both $(x \subseteq y)$ and $\sim (x \approx y)$, i.e., $(x \subseteq y)$ implies $[(x \subseteq y) \land \sim (x \approx y)]$.

Conversely, suppose it is the case that both $(x \subseteq y)$ and $\sim (x \approx y)$. In addition, suppose it were false that $(x \subseteq y)$. Then, by ORD 4, either $(x \approx y)$ or $(y \subseteq x)$. But it is immediate that $(x \approx y)$ is impossible, since it has been assumed that $\sim (x \approx y)$. Furthermore, suppose $(y \subseteq x)$. Since $(x \subseteq y)$ has been assumed, $[(\forall z) [(z \subseteq x) \rightarrow (z \subseteq y)] \land \sim (x \approx y)] \lor (x \approx y)$ holds by ORD 5. Since $(y \subseteq x)$, y is a candidate for z, i.e., $[(y \subseteq x) \rightarrow (y \subseteq y)]$ is possible; but since $(y \subseteq x)$ is assumed, we obtain the conclusion that $(y \subseteq y)$, which is impossible by ORD 2. Hence the assertion that $(y \subseteq x)$ produces a contradiction. The only remaining alternative is $(x \subseteq y)$, which must hold by ORD 4. Therefore, $[(x \subseteq y) \land \sim (x \approx y)]$ implies $(x \subseteq y)$, completing the equivalence and hence the proof of Theorem I.

The proof of Theorem II follows along similar lines. First assume $(x \subseteq y)$ is the case. In order to prove $(x \in y)$ is a consequence, ORD' 4 will be used to eliminate the possibilities $(x \approx y)$ and $(y \in x)$. Indeed, suppose $(x \approx y)$ were true; then $(x \subseteq y)$ would become $(x \subseteq x)$, which violates ORD 2. On the other hand, if it were true that $(y \in x)$, then $(y \subseteq x)$ would follow, for suppose $(z \in y)$ for any z. Then $(z \in y)$ together with $(y \in x)$ would yield $(z \in x)$ by ORD' 1, and hence, by ORD' 5, $(y \subseteq x)$, since $\sim (x \approx y)$ has also been established. Applying ORD 5 with $(y \subseteq x)$ established produces the fact that for all z, $[([(z \subseteq y) \rightarrow (z \subseteq x)] \land \sim (x \approx y)) \lor (x \approx y)]$. But, by virtue of the fact that $\sim (x \approx y)$ is true, it would follow that $(x \subseteq x)$, since we have assumed that $(x \subseteq y)$. Thus, by ORD' 4, the only remaining alternative is $(x \in y)$, and so $(x \subseteq y)$ implies $(x \in y)$.

Conversely, suppose $(x \in y)$. Then it cannot be the case that $(x \approx y)$, for if so, $(x \in y)$ would become $(x \in x)$, which is impossible by ORD' 2. Furthermore, suppose $(y \subseteq x)$ were so. Then $(y \subseteq x)$ would follow, for suppose $(z \subseteq y)$ for any z. Then, using ORD 1 with $(z \subseteq y)$ and $(y \subseteq x)$, we get $(z \subseteq x)$; by ORD 5, $(y \subseteq x)$ follows, since it is also known that $\sim (x \approx y)$. Using ORD' 5 with $(y \subseteq x)$ established, it is the case that for all z, $[([(z \in y) \rightarrow (z \in x)] \land \sim (x \approx y)) \lor (x \approx y)]$, i.e., for all z, $(z \in y)$ implies $(z \in x)$. Since this implication holds for all z, it must certainly hold for z set equal to x; that is, $(x \in y)$ implies $(x \in x)$. Thus, $(x \in x)$ is deduced from $(y \subseteq x)$, and by ORD 4, the only remaining alternative is $(x \subseteq y)$. Hence $(x \in y)$ implies $(x \subseteq y)$, completing the proof of Theorem II.

REFERENCES

- Beth, Evert W., "On Padoa's method in the theory of definition," Indagationes Mathematicae, vol. XV (1953), pp. 330-339.
- [2] Beth, Evert W., *The Foundation of Mathematics*, North-Holland Publishing Company, Amsterdam (1965).
- [3] Smullyan, Raymond M., First-order Logic, Springer-Verlag, Berlin, Heidelberg, New York (1968).

ſ

Manhattan College New York, New York