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DEGREES OF ISOLIC THEORIES

ERIK ELLENTUCK

Ί. Introduction. In this paper* we show that most of the commonly studied
isolic structures fall into two categories as far as their first order
theories are concerned. They are those whose theory is recursively
isomorphic to that of second order arithmetic ((Λ, +, •) for example) and
those whose theory is recursively isomorphic to first order arithmetic
((Λi, +, •) for example). These results are not remarkable, for after all the
isols are obtained from P(ω) by a fairly simple construction. However they
do suggest why so many first order questions about Λ reduce to first order
questions about ω. And that is because it is hard to find algebraically
interesting properties which distinguish Λ from Az. For this reason we
believe that it would be quite worth while to continue searching for
algebraic distinctions between these structures. Basic concepts concerning
Λ and Λz are to be found in [5]. The universal theories of Λ and Λz have
received complete treatments in [11] and [7] respectively, and at least one
kind of first order distinction between Λ and Az is contained in [8]. Indeed
[8] was the author's chief motivation in undertaking the present study.

We start by defining the isolic structures relevant to our discussion.
First of all there are our basic Ω = the recursive equivalence types
(commonly called RETs), Λ = the isols, and ω = the non-negative integers.
It is also natural to consider A(R) = the regressive isols (cf. [1]), A(H) =
hyperimmune isols and even A(RH) = A(R) Π A(H). On the more effective
hand we have Ω/ = the RETs of sets with recursively enumerable comple-
ment, Az = Clf Π A = the cosimple isols, AZ(R) = Ω/ Π A(R) = the cosimple
regressive isols, AZ(H) = Ω/ Π A(H) = the cohypersimple isols, and AZ(RH) =
Ω/ Π A(RH). The latter class has been added for the sake of symmetry only,
for by T4 of [3] we have AZ(R) = AZ(RH). In order to avoid a cumbersome
repetition of names let us introduce a variable W which ranges over the
symbols in {j, R, H, RH} and use the notation A(W) or AZ{W) where
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Λ(I) = Λ, Λz(i) = Λz and where Λ(W), AZ(W) have their obvious meanings
for other values of W. Let Fn be the set of all w-ary recursive com-
binatorial functions and let finite F c Un<ωFn at least contain and +. We
should think of these functions as already extended to Ω and will use the
same symbol / : Xnω —> ω as for its extension / : XWΩ —» Ω. Throughout this
paper we shall be concerned with algebraic structures of the form (A, +9 .)
or (A,F). For our convenience these structures are divided into the
following groups

(I) (Ω, +, •>, <Ω, F), (A(W), +, •), (A(W), F)
(II) (Ω/, +, •), <Ω/, F), (AZ(W), +, •>, (ΛZ(W),F)

where We{l, R, H, RH}. In each of these cases we are to think of the
functions in F and +, . as restricted to the structure in question. It should
be noted that A(R) and AZ(R) are not closed with respect to +, (cf. T2 of
[2]) nor to many of the functions in Fn where n > 1. Thus systems like
(Λ(β), F) are really generalized algebras and would be best formulated as
relational systems. We use the present notation to stress the uniformity of
our approach.

For any algebraic system A let LW(A) be a language which is appropri-
ate for the n-th order theory of A and let Thw(A) be the set of all sentences
in LW(A) which are true in A. Here we are only interested in the case where
n = 1 or rc= 2, and n = 1 will usually be omitted in this notation. We use
v0, Vι, . . . for individual variables and σ0, σl9 . . . as set variables. In most
of this paper we shall be concerned with defining an isomorph of one
structure in another. For this purpose an iota theory is much more
convenient than the usual formulation of first order logic. The iota
language ι-Lw(A) is obtained from LW(A) by including all expressions
(iυ) φ{υ) as terms, where υ is an individual variable and φ is a formula
which itself may involve other iota terms. If A = (A, . . .) is an algebraic
system, a e A is a fixed element and / is an assignment we interpret
v2Lla{(iv) φ(v),f) as the unique xe A such that A haψ(v) [f(v/x)] if such an x
exists and as a otherwise (here f{v/x) is that assignment which agrees with
/ except for v and assigns xto υ). The precise definition of valΛ and t=βis
by induction (cf. p. 223 of [9] for details). Finally let ι-Th^(A) = all
sentences φ in ι-Lw(A) such that A \=aψ. For many structures A there is
a formula ψ(v) in LW(A) with just one free variable v such that ae A is the
unique element of A satisfying ψ(v) in A. In this case we say that ψ is
admissible for A and define valψ, \=ψ, and ι-Th^(A) as valΛ, (=<*> and
i - Thβ(A) respectively. From the folklore of model theory it is known that
(cf. lemma 1.2 of [9])

(1) If ψ is a formula, then for every sentence φ in i - LW(A) we can effec-
tively find a unique sentence φ* in LW(A) such that ifψ is admissible for A
then φe i - Th^(A) if and only if φ* e Thw(A).

Another problem that we will be concerned with is that of identity. Let
A = (A, . . .) and B = (B, . . .) be algebraic structures, and suppose that in
our attempt to define an isomorph of A in B we are only able to define a
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structure A* in B for which there is a congruence relation E c X2B such
that the natural quotient A*/E is isomorphic to A. Sometimes we can find a
formula ψ(v0, vj whose free variables are v0 and v1 such that E = {(x0, x^ :
B \= ψ[x0, Xι]\. In this case we say that ψ is acceptable for A and B with
respect to the interpretation D of A* in B. Again from the folklore of
model theory (lemma 4.4 of [6])

(2) If ψ is a formula and D is an interpretation then for every sentence φ
we can effectively find a unique sentence φ* such that if ψ is acceptable for
A and B with respect to the interpretation D then φe Thw(A) if and only if
<p*eThw(B).

We will also use certain notations from recursion theory. Let us use
<! for one-one reducibility and ^ for recursive isomorphism. The funda-
mental result for these notions is (cf. theorem 18 of [10])

(3) If a ^ β and β ^ a then a ^ β (where a, β c ω).

By applying (3) to the preceding paragraph it is clear that if we identify
sentences with their Gδdel numbers then under the hypotheses of (1) we
have Thw(A) ^ i- Thψ(A). Since all of the structures under discussion
satisfy (3 \υ) (Vw) (UV = v) and since our strongest condition concerns recur-
sive isomorphism of theories we shall identify Thw(A) with i - Th^(A) where
ψ is the formula (VM) (UV = v). Also note that under the hypotheses of (2) we
have Thw(A) ^ Thw(B). This fact together with (3) will be used in the next
section to obtain recursive isomorphism. All other notions from recursion
theory that we use can be found in the standard isolic literature.

Our paper is organized as follows. Section 2 is devoted to a computa-
tion of the recursive functions necessary to imply ^ between relevant
theories. In general a formula will be exhibited, and in case the author
feels that the formal expression is difficult to read an explanation will
follow. Except in cases of mathematical interest no attempt will be made
to prove that the formula does the required job. That it does so will be
clear from the obvious absoluteness. Except when we wish to be precise
informal variables will be used throughout. The letters x, y, z, . . . will
denote individual variables and a, β, γ, . . . will denote set variables. In
section 3 we prove two lemmas which are needed in order to justify the
claims of section 2. Both appear to be independently interesting and the
author hopes that (in other contexts) they will be useful to isol theorists.

2. Reducibilities.

Theorem 1. Each of the structures in group I has a first order theory

which is recursively isomorphic to Th2(ω, +, •).

Theorem 2. Each of the structures in group Π has a first order theory

which is recursively isomorphic to Th(ω, +, •).

First, let us list the reducibilities which are necessary to obtain these
results. Their grouping is meant to indicate similarity in techniques of
our proofs.
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ί Th(Ω, +, •) ̂  Th(Ω, F ) , Th(Ω/, +, •) ̂ T h ί Ω , , F)
K J \Th(A(W), +, •) ̂ i T h ( Λ ( ψ ) , F ) , Th(Λz(PF), +, •) ̂  Ύh(Az(W), F)

(5) Th(Λ, +, 0 ^ Th(Ω, +, •), Th(Λ2, +, •) ̂  Th(Ω / ? +, •)

(6) Th(Ω, F) ^ Th2(ω, +, .)

(7) Th(Λ(Λ), F) ^ Th2(ω, +, .)

(8) Ύh(A(H), F) ^ Th2(co, +, •)

(9) Ύh(A(RH), F)*k Th2(ω, +, •)

(10) Th(Ω/, F) ^ Th(co, +, •)

(11) Th(Az(R),F)^ Th(ω, +, •)

(12) Th(Λ z(tf), F) ^ Th(ω, +, •)

(13) T h 2 ( ω , + , ) ^ i Th(A(W),+, 0

(14) Th(ω, +, ) ^ i T h ( Λ z ( Ψ ) , + ) •)

The identity map suffices for (4). F o r (5) define in L(Ω, +, •)

(15) 0 = ( t x ) ( V y ) ( x y = x ) , 1 = (LX) (Vy) (xy = y ) , 2 = \ + ]

(16) isoI (AT) ^ x Φ x + λ

It is c l e a r that (16) defines Λ in Ω and Az in Ω/ giving both p a r t s of (5). To

prove (10)-(12) we include (15) and define in L(ω, +, •)

(17) x < y = (3z) (x + z = y ) , x <y =x^yC\xΦy

(18) \(x,y) = (LZ)(2Z=2X + (x + y) (x+y + V)

(19) k(z) = (tx) (By) (\(x, y) = z), \(z) = (ιy) (Bx) (Ϊ(ΛΓ, y) = z)

(20) r m U , 3;) = ( t z ) ( 3 u ) (x = y u + Z Λ Z < y )

(21) Q6(x, y) = rm(k(x), 1 + \(χ) (1 +y))

(22) lh(*) = gd(*,O), W y =gd(^, 1+y)
(23) seqW = (V^ < x) (\h(y) Φ \h{x) v (Bz < \h(x)) ((y)z Φ (χ)z))

(24) setW = seqW A (Vy, z) (y < z < \h(x) - (x)y < (x)z)

(25) xey = set(3;) A ( 3 ^ < My)) (x = (y)z)

(26) x c y = se\(x)λ se\(y) Λ (V :̂) (Z e x -> z e y)

(27) x f) y = (LZ) (se\(x, y, z) Λ (VU) (ue Z =uex*uey))

(28) cαrd(Λr) = (13;) (set(Λ:)Λ 3; = \h(x))

(29) ^-setW = s e q ^ Λ \U(x) =kΛ(Vy <k) (set(Wy))

(30) x tky Ξ kse\{x)*k-se\{y) A (V^ < k) ((x)z C fa;)z)

(31) # 0*3; = ( u ) (fe-set(^, 3̂ , ^) A (VM < ^) ((^)« = (Ar)β ή Cv)J)

(32) cαrd*(*) = (ty)(k-se\(x)Aseq{y)AHy) = k A (Vu < k) (card((χ)u) = (3;^))

T h e s e definitions a r i t h m e t i z e the finite subsets of ω and p a r t of t h e i r

theory . In (18) and (19) j i s the usual pa i r ing function of r e c u r s i o n theory

and k, I i t ' s i n v e r s e s . (20) i s the r e m a i n d e r function and (21) i s GδdeΓs

β-function. (23) defines the sequence n u m b e r s , and we code s e t s as

ascending sequences . In (25)-(28) we define e l e m e n t a r y set concepts and in

(29)-(32) extend them pointwise to &-tuples (k h e r e i s a var iab le) . Let

T2(w> x, y> z) be the Kleene T -predicate which as we know is definable in

a r i t h m e t i c . We continue with

(33) K2(w, x9 y) Ξ [3z)l2{n, x, y, z)

(34) x dom n = (3y)K2{n, x, y)

(35) y rng n= (3x)K2(n, x, y)
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(36) fnc(n) = (Vx) (x dom n — (3 \y)K2(n, x, y))

(37) fπc'^n) = (vy) (y rng n - (3 \x)K2(n, x, y))

(38) mαp(n) = fnc(ft) Λ fnc" 1 ^)

(39) {n}(x) = (ιy)K2(n,x,y)

(40) k-op(n) = fnc(n) Λ (VΛ:) (X dom n = k-set(x)) A (Vy) (y rng ft —* set(y))

(41) &-coop(ft) = k-oρ(n) Λ (Vx, y) (x dom ft A y dom ft —> {n}(x Π 3;)

= {«}(*) ή {n}(y))
(42) &-myop(ft) = &-coop(ft) Λ (VΛ:, y) (X dom ft A 3; dom ft A card (Λ:)

= cαrd*Cv) - cαrd({w}(Λr)) = card({n}(^)))

(43) xηa ^ - (3y)Ka(a, * , 3;)

(44) Λ: C a = se\(x) Λ (V3;) (y e x —» 3;τ]α)

(45) # C^α =^-set(Λ:)Λseq(α)Λlh(α) =^ Λ (V3;< ^) (Wy c (α)y)

(46) a^b = (3n) (mαp(n)Λ (VΛ:) (λ:?]α —> (x dom n Λ {n}(x)r7&))

Λ(V V) (yηb - (3^) (Λ ηα A {n}(x) = y)))

(47) Φn(a) = ( u ) (k(w)-myop(l(w))Λ seq(α)Λ lh(α) = k(w)) Λ

(Vy) (yηz = (3^) (k(w)-set(y)Λ Λ: C* ( Λ ) Λ A 3; e {l(w)}W))

and for each integer k < ω (with the associated numeral k)

(48) <α0, . . . , ak-ύ = (ua) (seq(α)A lh(α) = kAα0 = (a)0 . . . ak-.x = (α)k_i)

We interpret (46)-(47) in the following way. Let ω(n) be the standard

enumeration of r .e . sets and let ξ(w) = ω - ω(n). If we let φn enumerate

recursive combinatorial operators (via the code indicated in (47)) then

(49) <ω, +, •> (= v0 ± v&o, xx] if and only if ξ(x0) ^ ξ ^ J

(50) (CO, +, •) (= Φi(k#n)«Vo, - , l>fe-i» = Vfc&Po, , Λjfc]

if and only if <?;•<*,„) (ξ(#0), , l (^-i)) = £(#*).

These results are obtained by interpreting (15)-(48) in (ω, +, •). Then (10)

is an immediate consequence of (2), (49), and (50) via the theory of a

structure consisting of the co-r.e. sets, the combinatorial operators

corresponding to functions in F, with the ^ relation replacing =. To prove

(11)-(12) it will suffice to find r.e. codes for the finite, immune, hyperim-

mune and regressive sets, all with r .e. complements. Let

(51) ft(α) = (3x) (seϊ(x)Λ{Vy) {y'ex =yηa))

(52) c o f t ( α ) = (3x) ( s e t ( # ) Λ (Vy) (yex= ~yηa))

(53) im(α) = (vδ) ((VΛΓ) (xηavxηb) -»coff(6))

(54) αr(rc) = fnc(w)Λ (VAT) (X dom nλse\({n}(x)) A (3y)

(y έ {n}(x))) A (VΛ:, 3;) (3z) ((z e {n}(x) ή {n}(y)) - Λ? = y)

(55) hyp(α) = (Vn) (αr(w) - (3Λ;) (Vy) (}> € W W - ~3^η«))

(56) pre(Λ:, y, a) =xηaΛyηaΛ x < 3; A (V :̂) (Λ: < z < 3; —» ~ ^r α)

(57) retr(α) Ξ (3n) (fnc(n) A (VΛ:) (λ:7]α —> Λ: dom W)Λ (VΛ;, 3;) (pre(x, 3;, α)

-> x = {n} (3;)) A (Vy) (yηah{Vx) (-pre(x, 3;, α)) — y = {w}0;)))

(58) regr(α) Ξ (36) (α ~ 6 A retr(6))

Thus in (51) we have defined the finite sets, in (52) the cofinite sets, in (53)

the immune sets, in (55) the hyperimmune sets by means of discrete array

defined in (54), in (57) the retraceable sets and finally the regressive sets
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in (58). By the previous remarks (11)-(12) follow immediately. We con-

tinue our definitions in L2(ω, +, .) (remember we use Greek letters for set

variables and interpret a(x) for set membership and (ta)φ as the empty set

when φ is not uniquely satisfied in our model).

(59) (a)x = (ιβ)(Vy)(β(y)=a(\(x,y)))

(60) x c a = sef(x) Λ (\fy) (y έ x -> a(y))

(61) x Qk a Ξ k-se\(x) Λ (Vy < k) ((x)y c (a)y)

(62) a & β = (3w) (mαp(w) Λ (VΛΓ) (α(#) -^idomWΛ0({w}(#)))

A (V3>) (j3(3>) - (3*) (a(x) A W M = j;)))

(63) Φn(a) = (ιβ) (k(n) - myop(l(w)) A (Vy) (β(y) Ξ (3*) (k(n) -

Sβt(^)A^C*(>i)(ΪAy€{l(w)}M)))

and for each & < ω (with the associated numeral k)

(64) <of0, . . . , QfA-!> = (ta) (a0 = (a)0 Λ. . .Λ α*-! = (α) k .μ

( V ^ ) ( k < ^ - (a)x = (tβ)(β = β)))

Then exactly as in the previous case it can be shown that

(65) (ω, +, •) J= σ0 ^ σjcϋo, αx] if and only if α0 ^ «!

(66) (ω, +, •> f= Φj(k,n)«cro7 . , σ &-i» = σk[a0, . . . , ak] if and only if

<Pj(k.n) (<*0, > «Λ-l) = ^

Then (6) is an immediate consequence of (2), (65), and (66) via the theory of

a structure consisting of all sets of integers, the combinatorial operators

corresponding to functions in F, with the ^ relation replacing =. As in the

previous case we obtain (7)-(9) be defining

(67) ft(α) s (3χ) (sβt(#) A (V y) ( y έ Λ: = a(y)))

(68) coft(α) = (3*) (set(Λr) A (Vy) (y e x = - α(y)))

(69) im(of) = (Vα) ((VΛ;) (α(#) vAΓηα) — coft(«))

(70) hyp(o:) s (Vw) (αr(w) - (3x) (Vy) (y e W M - ~ α(y)))

(71) pre(jv, y, a) = a(x)ΛCt(y)ΛX < y Λ (V«) (Λ: < z < y -* ~ α(z))

(72) retr(θf) s (3w) (fnc(w)Λ (Vx)(a(x) — Λ: dom w) A (VΛΓ, y) (pre(ΛΓ, y, a) -*

Λ; = {w}(y)) A (Vy) (α(y) A (VΛf) (~PΓΘ(ΛΓ, y, a))-* y = {n}(y)))

(73) regr(Q!) = (3β) (a ά βΛretr(β))

Thus we have defined finite, cofinite, immune, hyperimmune, retraceable,

and regressive, just as before except in a second order theory and without

requiring that their complements be r.e. This proves (7)-(9). In the next

collection of results we show that arithmetic can be defined in first order

isolic theories. In L(Λ, +, .) (= L(ω, +, •)) take (15), (17) as given and then

define

(74) fin W Ξ (Vy) (x < y vy < x)

(75) fin*(*) = (Vy) (y < x - fin( y))

By lemma 1 of the following section fin* defines ω in each of the structures

in groups I or II and thus has the intended interpretation of 'the finite.' But

this (with the obvious reducibility) immediately implies (14). Let K^ be

obtained from K2 of (33) by relativization of variables to fin* and let n be
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the Gbdel number of the function (pk(x)) where px is the #-th prime integer
starting with p0 = 2. We continue our list of definitions with

(76) θ(x, y) = (iz) (fin*(*, y, z) K*(n, \{x, y)9 z))
(77) y\z = (3x) (xy = z)9y\z = ~(y\z)
(78) nd(*, y) = (w)(fin*Cv, z)*θ(y, z)\xΛ(θ(y, z + \)\x))
(79) clsfr) = (V y) (fin*(y) — nd(#, y) = 1 v nd(*, y) = 2)
(80) x(y) ΞCls(Λr)Λfin*(^)Λnd(Λ;, y) = 1
(81) x = y =c\s(x)Λc\s(y)Λ(Vz)(Hn*(z) - (*(*) = y(z)))

Now 0 defines the prime power function mentioned above, and (78) like (21)
uses an element to code a sequence (possibly eventually = 0) of integers.
However by lemma 2 for each a e {l, 2}ω there is an x0 e Λ(W) such that

(82) (A(W), +, .) Nnd(i>0, ι>i) = v2[x0, xl9 x2] if and only if
(Xι fίω and x2 = 0) or (x1 e ω and Λ;2 = a(xι))

Thus (79)-(81) adequately formalize the class concept, membership, and
class equality. With the obvious reducibility (13) follows immediately and
thus subject to the results of the next section concludes our proof of
theorems 1 and 2.

3. Definability.

Lemma 1. The formula fin* of (75) defines ω in each of the structures
(i) {Λ(W), 4, and (ii) (AZ(W), 4, where We {l, R, H, RH}.

Proof of (i). Let a e A e A(W). If A e ω then A clearly satisfies fin* in each
A(W). Thus suppose A e A(W) - ω so that a is an immune set. Now (a) if a
is immune then every infinite subset of a is immune, (b) if a is hyperim-
mune then every infinite subset of a is hyperimmune, and (c) if a is an
infinite regressive set then a has 2 ° infinite regressive subsets, (a) and
(b) are immediate and (c) holds because an infinite regressive a contains an
infinite retraceable subset β (cf. proposition 7 of [1]), and an infinite
retraceable β contains at least 2̂ ° infinite retraceable subsets (cf. proposi-
tion 4 of [3]). Since every isol has at most tf0 predecessors, and contains
exactly tf0 sets, we can use (a)-(c) to choose an infinite β c a such that if
B = Req(/3) then B^A and AeA(W) implies BeA(W) for each choice of
W (Req(β) denotes the RET to which β belongs). Also A ^ B9 for otherwise
there would exist a partial recursive isomorphism mapping a onto a proper
subset of itself contradicting the fact that A e Λ. Thus A and B are incom-
parables in Λ, hence in Λ(W), each of which is closed under ^. But this
violates the formula fin*. QED.

Proof of (ii). In [2] it is shown how a Turing degree Δ(A) can be associated
with each A e Az or Ae A(R). In the first case it is the common degree of
the aeA with r.e. complement and in the second case it is the common
degree of the aeA which are retraceable. The ingredients of our proof
consist of (a) for every r.e. degree α > 0 there is an Ae AZ(RH) such that
α = Δ(A), (b) if A, B e Λ(β) - ω and A ^ B then Δ(A) = Δ(£), and (c) there are
at least three r.e. degrees, (a) and ft>) are respectively propositions 16 and
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17 of [2]. Now for our proof. Again we need only take care of the case
AeAz(W)-ω. Case (1) A e A(R). Choose B e AZ(RH) with non-recursive
degree Δ(B) Φ Δ(A). Then A is incomparable with B in Λ, by (b), hence in
AZ(W). Thus A violates fin*. Case (2) A^Λ(β). Take any Be AZ(RH) with
non-recursive degree Δ(£). A ^ B, for otherwise by proposition 9 of [l],
A(R) is closed under ^, giving Ae A(R). If B ^ A then A violates fin*. On
the other hand if B ^ A then by (a) we can choose a C e ΔZ(RH) with non-
recursive degree Δ(c) Φ Δ(i?). Then B is incomparable with C by (b), and
B ^ A by cases. Thus A violates fin*. Since AZ(W) is closed under < these
violations occur in AZ(W). QED.

If we examine our proof we see that ω is actually defined in A(W), AZ(R)
by the formula fin. This was observed by S. Tennenbaum for the case of Λ
(cf. the footnote on page 103 of [5]). In [8] a complicated priority argument
is used to show that fin defines ω in Az. Whether it also works for AZ(H) is
an open question. Our point is that if one is willing to replace fin by a
slightly more complicated formula then most of the technical details are
avoided.

Let a:ω-*ω be one one and let b:ω-*ω. In [2] a^*b is defined to
mean that there exists a partial recursive function q such that pa c δq and
q(θn) = bn for each ne ω (we use the notation of [2] in the rest of this paper,
interchangeably writing an for a(n) whenever it is more convenient, except
that we still use ω for the integers).

Sublemma. If f : ω —> ω is strictly increasing and a : ω —> ω - {θ} then there
exists a strictly increasing regressive function t such that t *ζ* a and f(tn) <
tn+i for every ne ω.

Proof. Let p enumerate the primes in increasing order starting out with
p(0) = 2. Define t0 = p(0)a(0) and tn+1 = tn p(f{tn))a(n+1) for neω. First note
that tn+ί>p(f(tn)) >f(tn)>tn giving f(tn)<tn+1 for neω. Also p(f(tn)) is
greater than every prime factor of tn and this implies that the highest
prime factor of tn occurs with exponent a(n). Let #(0) = 0 and otherwise
q{x) = the exponent to which the highest prime of x occurs in x. q is
recursive and q{tn) = On. Thus t ^* a. Let r(x) = t0 for xe {θ, £0}and other-
wise let r(x) = x divided by its highest prime factor raised to the #(#)-th
power, r is recursive and r(t0) = t0, r(tn+ί) = tn for neω. Thus t is a re-
gressive function. QED.

In the construction of [4] a precursor infinite product of isols is used.
Let v{n) = {x :x < n] and j(x x a) = {j(x, y) : y e a}. We code eventually van-
ishing sequences x = {x0, . . . , x^ 0, . . .} and Xk Φ 0 with the number {#„}* =
(n^/)(i) x ( l ) ) - 1. Note that for the sequence consisting entirely of 0's
(denoted by {θ}) {#}* = 0. There are recursive functions c, d such that
c(0) = c{{θY) = 0, and c({x0, . . . , xk, 0, . . .}*) = k + 1 for xk φ 0, and
d{k, {xn}*) = x^ These notions are all explained in [4]. For any a : ω —• ω -
{0} and regressive function t let γn = {θ}u j(tnx (u(an) - {θ})) and then define

(83) ξ = {{*„}* : (Vn)(xneγn)}.

Lemma 2. For any a : ω—* ω - {θ} there is a regressive function t such
that ξ (as defined by (83)) is a regressive hyperimmune set.
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Proof. Let q and r be as in the sublemma and let s(ή) - Ui<nai. We define
ξ (and consequently t) in stages. Let | 0 = {{#}*} = {0} and y0 = 0. Given ξn

let yn+1 = {θ, . . . , O,j(tn, 1), 0, . . .}* where the sequence contains an initial
string of n zeros and where tn is chosen so as to satisfy (i) q(tn) =an,
(ii) r(tn) = tn~i if n > 0 and r(t0) = t0 otherwise, (iii) yn+1 > x for every xe ξw,
and (iv) tn> g(s(n)) where g ranges over the first n recursive functions
enumerated in some order. Thus construction is legitimatized by the
sublemma (note that by the induction hypothesis, in (iii) yn is a function of
£w-i). Now define

(84) ξw+1 = ξw U {{*,-}* : c(fo}*) = n + 1 A (VZ ^ n) (*,. e Ύi)}

where the y* have been constructed from the t{ as in (83). By the construc-
tion t is regressive and it is evident that ξ = Un<ωξn where ξ is given by
(83). We first show that ξ is regressive (in fact retraceable) by defining a
partial recursive function u which retraces it. Let u(0) = 0 and for any
x Φ 0 we start the following computation. Compute c(x) = n + 1 and d(i, x)
for i^n. This gives us complete knowledge of the sequence which x =
{x0, . . . , xn, 0, . . .}*, xn Φ 0 represents. Compute A = {i ̂  n : X{ Φ 0} (note
t h a t neA) a n d fefo), Z(#, ) , q(k(xi)), r M ( k ( X i ) ) , a n d r*(k(Xi)) f o r e a c h ieA
(recal l that rM is the m-th i terate of r and that r*(a) is the least m such
that r(m)(a) = r ( w + 1 ) ( α ) ) . If Z( f̂ ) > φ(xi) or Z(^i) = 0 for any i e A then u(x)
i s u n d e f i n e d . If r * ( k ( x n ) ) Φ n o r r{n~i} (k(xn)) Φ k(X{) f o r a n y ieA t h e n u(x) i s
undefined. Otherwise

(85) 77X = {{ ,̂ }* : c({^, }*) «? n + 1 A (Vi ̂  n) (z> e {0} U
Jir^HHxJ) x (K^r^-^ (k(xn)))) - {0})))}

can be effectively computed from x. By our eliminations it is clear that
x e ηx. Arrange the elements of ηx in size order and define u(x) as the
immediate predecessor of x in that order. u(x) is clearly a partial recur-
sive function and in order to see that it retraces ξ first note that if xe ξ,
say xe ξn+1 - ξw, then xe δu. Moreover it is apparent by inspecting (84)-(85)
that ηx = ξn+1. By (iii) if m > n then every element in ξm+ί - km exceeds
every element in ηx. Thus the location of x as the i-th element of ηx is its
location in ξ. This proves that ξ is retraceable. Now we show that ξ is
hyperimmune. Let xn enumerate ξ in increasing order and suppose that
xn < g(n) for all n, for some recursive function g. By (iii) v{yn+ι) Π ξ = ξw

which contains s(n) elements. Thus yw+1 = #s(«) < g"(s(w)). But tn< yn+1 so
that tn < g(s(ri)) for all n which contradicts (iv). QED.

From this lemma and Tl of [4] we obtain the desired result

Corollary. For every sequence a : ω —> ω - {0} there is an xe A(RH) such
that pζ\x if and only if y ^ an.

It should be remarked that T4.4 of [12] would provide a very short
proof that A(R) contains an x satisfying the corollary, however it would be
necessary to modify that theorem to get the x in A(RH). It is probably true
that (83) defines a regressive hyperimmune ξ for any regressive hyperim-
mune t satisfying t ^* a. The difficulty is in regressing as complicated an
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object as ξ. Our idea was that if one were only in need of an example, a

special and pathological t would do.

We draw two final conclusions. First if fu . . . , fn and g are recursive

combinatorial functions then we cannot show that g is undefinable in

<Λ, +, , fx, . . . , /„) by a computation of degrees. Similarly for all the

other structures mentioned in this paper. Second, that the theory of Λz is a

constructible set but it seems likely that the theory of Λ is not. That is

indeed a strong difference.

REFERENCES

[1] Dekker, J. C. E., "Infinite series of isols," in Recursive Function Theory,
American Mathematical Society Proceedings of Symposia in Pure Mathematics,
vol. 5 (1962), pp. 77-96.

[21 Dekker, J. C. E., "The minimum of two regressive isols," Mathematische Zeit-
schrift, vol. 83 (1964), pp. 345-366.

[3] Dekker, J. C. E., and J. Myhill, "Retraceable sets , " Canadian Journal of
Mathematics, vol. 10 (1958), pp. 357-373.

[4] Dekker, J. C. E., and J . Myhill, "The divisibility of isols by powers of pr imes,"
Mathematische Zeitschrift, vol. 73 (1960), pp. 127-133.

[5] Dekker, J . C. E., and J. Myhill, "Recursive equivalence types," University of
California Publications in Mathematics (New Series), vol. 3 (1960), pp. 67-214.

[6] Feferman, S., and R. L. Vaught, "The first order properties of products of al-
gebraic systems," Fundamenta Mathematicae, vol. 47 (1959), pp. 57-103.

[7] Hay, L., "The co-simple isols," Annals of Mathematics, vol. 83 (1966), pp.

231-256.

[8] Hay, L., "Elementary differences between the isols and the co-simple isols,"
Transactions of the American Mathematical Society, vol. 127 (1967), pp. 427-441.

[9] Montague, R., and R. L. Vaught, "Natural models of set theories," Fundamenta
Mathematicae, vol. 47 (1959), pp. 219-242.

[10] Myhill, J., "Creative se t s , " Zeitschrift fur Mathematische Logik und Grund-

lagen der Mathematϊk, vol. 1 (1955), pp. 97-108.

[11] Nerode, A., "Extension to isols," Annals of Mathematics, vol. 73(1961), pp.

362-403.

[12] Nerode, A., "Diophantine correct nonstandard models in the isols," Annals of

Mathematics, vol. 84 (1966), pp. 421-432.

Rutgers, The State University

New Brunswick, New Jersey

and

University of Kyoto

Kyoto, Japan




