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IN SO MANY POSSIBLE WORLDS

KIT FINE

Ordinary modal logic deals with the notion of a proposition being true
in at least one possible world. This makes it natural to consider the notion
of a proposition being true in k possible worlds for any nonnegative integer
k. Such a notion would stand to Tar ski's numerical quantifiers as ordinary
possibility stands to the existential quantifier.

In this paper1 I present several logics for numerical possibility. First
I give the syntax and semantics for a minimal such logic (sections 1 and 2);
then I prove its completeness (sections 3 and 4); and finally I show how to
extend this result to other logics (section 5).
1. The Logic Kn. The logic Kn is defined as follows.

Formation Rules: Formulas are constructed in the usual way from a set V
of propositional variables pu p2, . . . , the binary operator v (or), the unary
operators - (not), L (necessity) and Mk, k = 2, 3, . . . , and parentheses
( and ).

Throughout the paper I observe some familiar conventions: A, B, C, D
and E, with or without subscripts, range over formulas; —>, <->, M
(possibility) etc. are given standard definitions; all expressions are used
autonomously; and parentheses are omitted from formulas in an obvious
way. M0A abbreviates A —> A, MXA abbreviates MA and QkA abbreviates
MfcASz- Mk+1 A, k = 0, 1, . . . . Mk A is taken to mean A is true in at least
k possible worlds; so QkA means A is true in exactly k possible worlds
(see section 2). \-A means A is a theorem of Kn.

Transformation Rules:

Axiom-schemes {where k, I = 1, 2, . . .)

1. All tautologous formulas

1. The results of this paper are contained in my doctorate thesis, submitted to the
University of Warwick in 1969. I am greatly indebted to my supervisor, the late
Arthur Prior. Without his help and encouragement this paper would never have
been written.
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2. L (A — B) — (LA — 15)
3. MkA -*Mι_A,l<k

4. MkA^y/to Mi (A & 5) & MΛ_,. (A & - 5)
5. Z, (A - > £ ) - > (ΛfΛ A-> MkB)

Rules of Inference.

Modus Ponens. From A, A -* B infer B

Necessitation. From A infer L A

2. Semantics. A frame 5 is a pair (W,R) where W (worlds) is a non-empty
set and R (accessibility) is a binary relation on W. A structure % is a pair
(S, 0) where 5 is a frame (W,R) and 0 (valuation) is a map from V
(variables) onto φ (W) (sets of worlds or propositions).

Relative to each structure % = (W, R, φ) we define the truth-relation
1= as follows; for win W,

(i) w\=P{ iff we φ (Pi)
(ii) wt=-Aiffnotwt=A
(iii) w \= AvB iff'w \= A or w \= B

(iv) w t= L A iff υ N A /or all v such that wRυ
(v) w 1= M& A z)5f card {t>:wfl?;&i>l=A}^&.

A is valid, t=A, if relative to each structure 31 = (W, R, φ) w \=A for all
^ in W. 51 is a model for a set of formulas Δ if for some w in W w 1= A for
each A in Δ.

3. A Preliminary Result. A set of formulas Δ is a theory if each theorem
of Kn is in Δ and Δ is closed under modus ponens. Δ is consistent if - A is
in Δ only when A is not in Δ, and Δ is complete if - A is in Δ whenever A is
not in Δ.

Let W be the set of consistent and complete theories. For k=l,
2, . . . , we define the relations R& on W. For w, υ in W:

w Rk v iff whenever A e v then M&A ew.

First we note three straightforward lemmas:

Lemma 1. If \-A*+B then v-C <-» C(A/B).
Lemma 2. w Rk v iff {A: - Mk- Ae w} c v.
Lemma 3. If w #& v then w Rι v, k > I.

Lemma 1 is proved with the help of axiom-scheme 5; lemma 2 follows from
lemma 1; and lemma 3 is proved by axiom-scheme 3. Use of lemmas 1 to
3 will often be tacif.

The next result states the crucial property of the relations Rk. Let
TW(A) (the truth-set of A) be

{(v, I) :l> 0 8zw Rι v&Aev}.

Theorem 1. For & = 1, 2, . . . , and w in W, MkA ew iff card TW(A) ^ k.

Proof. =Φ By induction on k.
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k = 1. Assume M1 Ae w. Clearly it suffices to show that for some v, w Rλ υ
and Ae υ.

Let 2 = {B : L Be w}u {A}. Suppose 8 is not consistent. Then by
axiom-scheme 1 and the Deduction Theorem, there are formulas B1,
B2, . . . , Bn such that L Bί9 L B2, . . . , L Bne w and \-B1 — (B2 -» . . . (Bn —

-A) . . .)• So by the logic Kn, h i B1 - ( I B2 - . . . - (L Bn -» I - A). . .).
Hence L - Ae w, i.e. - Mx Ae ^ , contrary to the consistency of w.

So 8 is consistent. By Lindenbaum's Lemma 8 is contained in a
consistent and complete theory v. But Ae v and, by lemma 2, w Rx v.
k > 1. Assume that the theorem holds for all i < k. Now assume MkAew.
By scheme 4, for each J5 there is an i ^ k such that Λf, (A & B), Mk_{ (A &
-B) e w. We distinguish two cases:

(a) For some B, 0 < i< k. By the induction hypothesis, card TW(A&
B) > z and card TW(A & -5) ^ A? - 1. But ^(A) = ^ ( A & 5) U ^(A & -5).
So card Ύw (A) ^ i + (k - z) > ife.

(b) For each J5, z = 0 or z = ife. Suppose z = 0. Then M* (A & -5) e w.
But then L (A -> -5) e •«;. For otherwise, by scheme 6, Mx (A & -5) e ^ and
so by scheme 3 we can put i = 1. Similarly, if i = k, L(A —> B)ew. So either
L (A-* -B)e w or Z(A -> B)ew.

Now let 8 = {B : -Λf̂  -Ae ^} and suppose 8 is inconsistent. Then there
are formulas Bu - . . , Bn such that -Mk -Bu . . . , -Mk -Bne w and h(J5i &
. . . & . £ „ ) - » -A. Either I. (A —» JB, ) e ^ for i = l , 2 w or for some
f = 1, 2, . . . , w, h i (A -» -JB, ). In the first case, I (A -» J5X & . . . & £w) e ^
but L (Bλ & . . . & Bn —* TA) e w; and so -Mλ Ae W—2L contradiction. In the

second case, since -Mk -Bi e w, -MkAe w by scheme 3—again a contradic-
tion.

So 8 is consistent. By Lindenbaum's Lemma, 8 is contained i n a y e W .
But then by lemmas 2 and 3, (v, i)eTw(A) for i = 1, 2, . . . , k. So
card TW(A) ^ k.

By induction on k.
k = 1. Assume card TW{A) ^ 1. Suppose (v, I) e TW(A). Now Ae v and w Ry v.
So MiAe w. Hence MxAew by scheme 3.
k > 1. Assume card Γ^A) ^ &. We distinguish two cases:

(a) For some {υu Z^, (z;2, Z2) in TW{A), υλ Φ υ2. So for some B, Beυx

and -Be v2. But then for some i, 0<i < k, TW(A & B) ^ i and TW(A & -5) ^
& - i. So by the induction hypothesis, M, (A & £ ) , M&_; (A & -.B)e w. Hence
by scheme 4, MkAew.

(b) For each (v^ 0 , <v2, Za) in Γ^ίA), υx = t>2. But then clearly,
(v191) e TW(A) for some I ^ k. So Mt Aew. Hence Mk A e w by scheme 3.

4. Canonical Models, The intuitive interpretation of w Rk v is that there
are at least k t>-type worlds accessible from w, i.e. & worlds which are
accessible from w and which are copies of, have the same truth-value
assignments as, v. So let us say t h a t / is a canonical mapping for a struc-
ture » = <X, Λ*0> if / maps X onto W and

(i) ΐ / / (#) = w and ve W, then card \y : f (y) = v & x Ry} ^ k iff w Rkυ, and
(ii) φ(pi) ={x f (x) = w & pit w\
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We now have:

Theorem 2. If f is a canonical mapping from a structure 8 = (X, R, φ)9 then
for any x in X and any formula: x 1= A {relative to 8) if and only if Aef (x).

Proof. By induction on the length of A. The main case is A = Mk B. Now
MkBew =f(x) iff card {(v, I) : I > 0 & w Rt υ & B e v} ^ k (by theorem 1)
iff for some (v{, lt), v{ Φ Vj{i <j), Σyf=i li - k, w Rιέ v{ and Be V{, i, j = 1,
2, . . . , m iff for some (viy U), v{ Φ Vj (i <j),Σ/?=i lί~k, card {3;: / (υ) =
Vi & x Ry] ^ li and y 1= B for / ( y) = #* i, j - 1, 2, . . . , m (by / canonical and
induction hypothesis) iff card {y : y N B & x Ry} ^ k iiϊ x \=MkB.

Now define 8 = (X, fl, 0> by: X= WxN where JVΓ = {l, 2, . . .}, <w, l)
R{v, k) iff M; Rk v and 0 (/>) = {(w, I) : pe w).
Let/ ((w,l)) = w. Then clearly/ is a canonical mapping for 5B. So we have:

Theorem 3. (Completeness) A set of formulas Δ is consistent if and only if
Δ has a model.

Proof. => Assume Δ consistent. By Lindenbaum's Lemma, for some
wew,AQ w. So by theorem 2, (w, 1) \= A for all A in Δ, and Δ has a model.
<= Straightforward.

Note that there are alternative ways of defining R above. For example,
we could let (w, I) R (v, k) iff k > I and w Rk-i υ. In this case the canonical
structure 8 would be asymmetric.

5. Other Logics. The above method can be applied to other logics L
besides Kn. First we relativise to L all of the constructions and results up
to theorem 2. Then we prove the analogue of theorem 3. This requires
that R have certain properties, which will follow from the definition of 2*
and the fact that each theory in W contains L. I shall outline this procedure
for some logics below.
(I) Tn, given by Kn plus the axiom-scheme

7. LA-^A,

and complete for all reflexive structures. The definition of the canonical
mapping / for 8 is as before, but with

(w, ΐ) R (v, k) iff w = υ,k ^ I and w Rk+1-1 v or w Φ v, k> I and w R^-ι v.

Notice that β, so defined, is antisymmetric.
(II) K Bn, given by Kn plus the axiom-scheme

8. A -* L MA,

and complete for all symmetric structures. We now letX be the set of all
sequences wx kx w2 k2 . . . kn_λ wn, n ^ 1, such that wu wne W, ki eN and
WίRki+ι wi+\ if wi-i exists and wi^1 = wiy and w{ Rki wi+1 otherwise.

xRy iff y = xkw or x = ykw, and f(x) is the last term of x.

The above construction may be modified to show that KTBn is complete
for all reflexive and symmetric structures.



520 KIT FINE

(III) We may also determine the logics which are complete for R being
reflexive and transitive, reflexive and transitive and antisymmetric, linear
etc. However, in all of these cases the completeness proofs are very much
more difficult. It is worth noting that imposing antisymmetry on a reflexive
and transitive relation makes a difference to one's logic. For example,
A & M (-A & MkA) -* Mk+1 A becomes valid.
(IV) S5n, given by Tn plus the axiom-scheme

9. MkA -> L MkA,

complete for all reflexive, symmetric and transitive structures. Com-
pleteness for S5n can be proved by the above method and also by normal
forms.2

Let S5ττ+ be the logic obtained from S5 by adding propositional
quantifiers which range over all sets of possible worlds. Then S5n has the
interesting property that any formula of S5ττ+ is equivalent to a formula of
S5n (see [2]).

Finally, it should be noted that standard techniques, or modifications of
them, may be used to prove the decidability of most of the logics mentioned
above.

REFERENCES

[1] Bull, R. A., "On possible worlds in propositional calculi," Theoria, vol. 34
(1968), pp. 171-182.

[2] Fine, K., "Propositional quantifiers in modal logic," Theoria, vol. 36 (1970),
pp. 336-346.

[3] Kaplan, D., "S5 with multiple possibility," (Abstract) The Journal of Symbolic
Logic, vol. 35 (1970), pp. 355-356.

[4] Prior, A. N., "Egocentric logic," Nous, vol. 2 (1968), pp. 191-207.

St. John's College
Oxford University
Oxford, England

2. The second method was carried out independently by Kaplan [3] and myself.
The case in which one adds only M2 (or Qi) to S5 was axiomatized by Prior [4]
and proved complete, independently, by Bull [1], Kaplan and myself.




