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NATURAL DEDUCTION RULES FOR MODAL LOGICS

THOMAS W. SATRE

Natural deduction rules for systems of modal logic have been formu-
lated in the style of Gentzen by Ohnishi, Matsumoto, Kanger, and Curry.
The purpose of this paper is to formulate natural deduction rules for the
S-, E-, and D-families of systems studied by Lemmon in [6]. Some of the
rules for modal operators contained in this paper have been employed by
others. The remainder are, to the author's knowledge, new. The style of
presentation of the rules shall be that of Lemmon's natural deduction rules
for propositional calculus in [5]; similar formulations of rules are to be
found in [15]. In section 1 the standard proof of the deduction theorem is
shown to hold in the three families of systems to be studied. In section 2
each system of these families is given a deductively equivalent formaliza-
tion by means of natural deduction rules. Finally, some suggestions
concerning interpretation of modal logics are offered in section 3.

1. In [6] Lemmon showed that the Lewis systems S1-S5, together with
SO.5, SO.9, and the families of systems D1-D5 and E1-E5, can be
axiomatized as extensions of classical propositional calculus. The proposi-
tional calculus basis common to all these systems shall be referred to as
PC and shall have the axioms and rules:

PCI: p^> (<?=) p)
PC2; (/> z> fa z> r)) D ((/> ^ q) 3 (p D r))
PC3: (-?=> -£)D ((-q^P)^ q)
PC4: Ify-A and B comes from A by uniform substitution for propositional

variables of A, then KB.
PC5: From A and A 3 B, B may be inferred.

The usual definitions of &, v, and = are assumed. Further, it is assumed
that the reader is acquainted with the modal rules (a)-(D), the modal
axioms (l)-(5), and the definitions of H, O, and = of [6].1

1. In the notation of [6] these are respectively C, M, and E'. The primitive modal
operator there is L which is represented by D in this paper.
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To illustrate the deduction theorem for systems of modal logic let K be
the system obtained by adding to PC axiom (l f) and rule (a). The definition
of a wff of PC is assumed to be extended to cover wffs of modal logic.2 The
standard definition of proof in a system S from hypotheses is adopted here,
viz., a wff B is provable in S from hypotheses Al9 . . . , An (written
Aι, . . . , An^B in S) if and only if there is a sequence of wffs Bl9 . . . , Bm

such that Bm~B and for each i (1 ^ i ^ m) either:

(i) Bi is an axiom of S; or
(ii) Bi is one of Al9 . . . , An; or

(iii) Bi follows directly from some Bjl9 . . . ,Bjk (1 ^ jk<i) by some rule
of S.

Where n = 0, B is said to be a theorem of S (written \-B in S). The use of V
here thus corresponds to that of Kleene in [4], p. 88. It is a property of the
notion of proof from hypotheses that if \-B in S then, trivially, Al9 . . . ,
An\-B in S. This property is used without mention in the proofs that follow.

Deduction theorem for K. If Al9 . . . , An\-B in K, then Al9 . . . , An^1 I- An z>
B in K.

Proof: By supposition and the definition of proof from hypotheses, there is
a sequence Bl9 . . . , Bm of wffs such that for each Bi (1 ^i - m) either
(i) Bi is some A7 (1 ^j ^ n); or (ii) Bi is one of PC1-PC3, or (1'); or
(iii) Bi comes from Bj (j <i) by PC4; or (iv) Bi comes from some Bj and
Bk = (Bj ^> Bi) (j, k < i) by PC5; or (v) Bi is ΠBj and comes from Bj by
rule (a). By proving the theorem for all i ^ m, the result follows by
putting i = m.

Case (i) (a): If = w, then B{ is An. But \-An 3 An in K in virtue of PC.
So ι-AwD I?,- in K from which it follows that Al9 . . . , An-λv-An => 5Z in K.
(b): If j j^ n, then, since HA7 ^ A7 in K, we have Al9 . . . , Aw-ihA7 in K
which is Al9 . . . , A^^^JB,- in K. By PCI and PC5 it follows that Al9 . . . ,
Aw-il-Aw^ J5, inK.

Case (ii): By definition \-Bi in K. By appropriate substitution in PCI
we have v-Bi 3 (An^ B{) in K. Thus \-An D 5, in K by PC5. Hence, A1 ? . . . ,
Aw-it-Aw^ J5, inK.

Case (iii): Then, by the restriction on PC4, it follows that \-Bi in K. So
Al9 . . . , An-ιY-An 3 B t in K by the same reasoning as case (ii).

Case (iv): As inductive hypotheses, suppose that the theorem holds for
Bj and Bk> Thus, we have both Al9 . . . 9An-x\-An ^> Bj in K and Aί9 . . . ,
An^\-An D (Bj DJ5, ) in K. As a case of PC2h-(AwD (Bj => ̂ /)) => ((Aw ^ 5 ; ) =>
(AW3 5,-)) in K. Two steps of PC4 yield Al9 . . . , A ^ h A ^ ^B{ in K.

Case (v): By the restriction on rule (a) we have \-Bj in K, and by rule

2. The system K, as formulated here, was presented by Lemmon in lectures during
the spring term of 1966.
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(a) y-ΠBj in K which is v-Bi in K. Again, the proof is the same as that in
case (ii).

It will be noted that cases (i)-(iv) give just the standard proof of the
deduction theorem for classical propositional calculus {vide [13], pp. 16-18).
Case (iii) could be omitted if PC 1-3 had been stated as axiom schemata.
However, PC4 is needed when we consider the addition of modal operators,
with appropriate axioms and rules, to PC. The addition of the modal axiom
(l f) made no difference at case (ii), and no restrictions are needed on the
deduction theorem due to rule (a) since the rule will apply only to theorems.

The deduction theorem, as well as rules (a)-(Eb'), is a subsidiary
deduction rule, in the sense of Kleene [4], §22. It is not in general true that
a subsidiary deduction rule will continue to hold when a system is extended
by addition of new axioms or rules, since there may not be resulting
deductions available in the extended system. Examination of the above
proof will show that the restriction on rule (a) provides that the only new
subsidiary deductions will be of theorems; thus, the corresponding re-
sulting deductions will always be available in virtue of PCI, 2, 4, and 5.
(PC3 was not used in the proof of the deduction theorem for K.)

We can generalize the result obtained as follows: Let S be any formal
system having the symbols and formation rules of PC and obtained by
adding to PC proper axioms and rules, together with formation rules for
any new symbols introduced in the proper axioms and rules. Then the
deduction theorem above will hold for S provided that each proper rule is
applicable only to theorems of S, i.e., formulas provable from zero
hypotheses.3 It will be observed that all of the proper rules (a)-(D) are of
this type. The restrictions on (Eb') and (D) concern only the presence or
absence of modal operators in component wffs of the theorems which
result, and (a') can easily be stated so as to show that it applies only to
theorems of any system to which it is added. Hence, we may conclude that
the deduction theorem above holds for all of Lemmon's S-, E-, and
D-systems.

2. As a basic set of natural deduction rules the following, taken from
Lemmon [5]» shall be used:

Hyp: Any wff may be introduced at any line of a proof.
MP: Given A and A o B, we may derive B.
DN: Given A, we may derive — A, and vice versa.
&I: Given A and B, we may derive A & B.
&E: Given A & B, we may derive either A or B separately,
vl: Given either A or B separately, we may derive AvB.
CP: Given a proof of B depending upon A as a hypothesis, we may derive

A^> B depending upon the remaining hypotheses.

3. In [8] , p. 58, it is noted that the deduction theorem will continue to hold in ex-
tensions of PC formed by the addition of new axioms alone.
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vE: Given AvB together with a proof of C from A as a hypothesis and a
proof of C from ΰ a s a hypothesis, we may derive C depending upon
any hypotheses upon which Av B depends or upon which C depends in
its derivation from A (except for A) or upon which C depends in its
derivation from B (except for B).

RAA: Given a proof of B & -B depending upon A as a hypothesis, we may
derive -A depending upon the remaining hypotheses.

In the case of rule Hyp, the conclusion derived depends upon itself as a
hypothesis. For the rules MP-vI, the conclusion depends upon the combined
hypotheses (if any) of the premise(s). For the remaining rules, the
conclusion rests upon the hypotheses stipulated by the rule. Schematically,
these rules may be written as follows: let Γ, Δ be sequences (possibly
empty) of wffs, or conjunctions (possibly empty) of wffs, according as Γ, Δ
occur to the left or right side of ' P . To the left of V occur only hy-
potheses, if any, from which the wff occurring to the right is said to be
deducible. Wffs to the right of '\-9 and above a horizontal line are premises
from which the wff to the right of ζ\-9 and below the horizontal line is
derivable in accordance with the rule in question. To the left of ζ\-9 and
below the horizontal line are the hypotheses upon which a conclusion drawn
in accordance with the rule will depend. By rule Hyp any hypothesis is also
available as a premise in a proof, though, of course, a premise need not
have been introduced by the rule Hyp.

A.,. . . , An \-B & -B
Hyp: A\-A RAA: ι M <,-<„)

ΓHA; Δl-A D B A A , D
Tv/rp. 2 Άi, . . . , Άnt-B

1 ? B ' A1,...,Ahl,Af+1,...,An\-Ai^B(l*j*n)

& I . ΓhA; ΔH£ T\-A8zBT\-A8zB
* Γ,ΔhA&£ &E: -^-^-j^-

v I . Γ h A Δ£B_. ΓVAv£;Δ,AhC; Δ'55hC

ΓhAv£ΔK4v£ vE: Γ , Δ, Δ'HC

ΓhA r Δ
D N :

 T Π - A -^^
1 H A ΓhA

For convenience, the rule of substitution for propositional variables shall
be taken over for natural deduction also, though it could be derived as well.
The above rules, together with the rule of substitution for propositional
variables, will be referred to as NPC.

In this section systems of modal logic are constructed by adding
various rules to NPC. The result will be families of systems deductively
equivalent to the S-, E-, and D-families and sharing NPC as a basis just as
those systems share PC as a basis on Lemmon's formalization. The
deductively equivalent natural deduction systems will be indicated by
prefixing 'N' to the name of the system. As a stock of natural deduction
rules for modal operators the following are adopted:
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DEii Given DA we may derive A depending upon the same hypotheses
as the premise.

DE2: Given DA we may derive OA depending upon the same hypotheses
as the premise.

DE3: Given DA we may derive separately OA, or, if A is fully
modalized, A. The conclusion depends upon the same hypotheses as the
premise. (A wff is said to be fully modalized if each occurrence of a
propositional variable within it is within the scope of some modal operator
also within it.)

Let Γ, Δ be any sequences (possibly empty) of wffs, or conjunctions of wffs
as before. Let DΔ be the result of prefixing 'D' to each wff of Δ.

Dlii Given DΔ and a proof of B from Δ alone as hypotheses, we may
derive ΠB depending upon the combined hypotheses of the premises DΔ.

DI2: Given DΔ and a proof of B from Δ alone as hypotheses, we may
derive DJ3, provided that Δ is not empty. The conclusion depends upon the
combined hypotheses of the premises DΔ.

DI3: Given DΔ and a proof of B from Δ alone as hypotheses, we may
derive D B, provided that Δ is not empty and that all wffs of Δ and B are
wffs of propositional calculus, i.e., Δ, B contain no occurrences of modal
operators. The conclusion depends upon the combined hypotheses of the
premises DΔ.

DI4: Given B we may derive ΠB depending upon the same hypotheses,
provided that each of those hypotheses is of the form D C for some wff C.

DI5: Given B depending upon some hypotheses, we may derive ΠB,
provided that each of those hypotheses is of the form D C for some wff C.
The conclusion depends upon the same hypotheses as the premise.

Die: Given B we may derive ΠB, depending upon the same hypotheses,
provided that each of those hypotheses is of the form of either D C or O C
for some wff C.

DI7: Given B depending upon some hypotheses, we may derive ΠB,
provided that each of those hypotheses is of the form of either D C or O C
for some wff C. The conclusion depends upon the same hypotheses as the
premise.

Dl8: (Rule Scheme) Given DΔ, where Δ is not empty, and a proof of B
by rules of NPC alone from Δ alone as hypotheses, we may derive ΠB,
depending upon the combined hypotheses of the premises; and, if Δ is empty
and KB, then hΠB, provided that B is in Λ.

DI9: Given DΔ as premises and a proof of B by rules NPC alone from
Δ alone as hypotheses, we may derive ΠB depending upon the same
hypotheses as the premises DΔ.

DI1 0: Given a proof of B from Δ alone as hypotheses, where Δ is not
empty, then (i) given as premises DΔ we may derive DB depending upon
the hypotheses upon which D Δ depend; and (ii) if each hypothesis of Δ is of
the form D C, for some wff C, then we may derive ΠB depending upon Δ.

Din: Given a proof of B from Δ alone as hypotheses, where Δ is not
empty, then (i) given as premises DΔ we may derive ΠB depending upon
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the hypotheses upon which DΔ depend; and (ii) if each hypothesis of Δ is of
the form of either DC, or OC, for some wff C, then we may derive ΏB
depending upon Δ.

DSX: Given as a premise D(A D B) we may derive D(DA z) ΠB)
depending upon the same hypotheses, if any.

DS2: Given a proof of D (A D B) as a theorem, i.e.,HD (A z> B), we may
derive as a theorem D(ΠA D ΠB).

DS3: Given proofs of D (A => B) and Π(B ^ A) as theorems, we may
derive D(DA =) ΠB) as a theorem.

These rules may be presented schematically as follows:

ΠE Γ K M ΠE Γ H Π A

D E l ΓHΛ D E a ΓhOA
ΓHΓUA ΓHΓΊA

DE3: and ———, provided A is fully modalized.
_ τ ΓhDΔ; ΔH£ ΓhDΔ; A\-B . .

i : Γhθff * 2 l ΓhΠB ' P r o v l d e d Δ 1 S n o t empty.
DI3: ——brz.—, provided that Δ is not empty and that no wffs Δ or

_L I— I I B
B contain occurrences of modal operators.

A i D

DI4: — - , provided that each wff of Δ is of the form DC for some
Δ \- U JD

wff C.
Δt-jB

DI5: =—, provided that Δ is not empty and that each wff of Δ is of
the form DC for some wff C.

Die: , provided that each wff of Δ is of the form of either DC
or OC for some wff C.

A 1 D

DI7: -———, provided that Δ is not empty and that each wff of Δ is of
the form of either DC or OC for some wff C.

ΓhDΔ; λ\-B inNPC β J , ^ ^ .
DI8: ^z—— , provided that Δ is not empty, and

1 >~D-o
11 , provided that B is in Λ.

• • H
Γt-DΔ; Δ\-B in NPC

D I s : ΓhD5
DI1 0: r r\R—' a n d FT^' provided that all wffs of Δ are of the

form D C for some wff C; in either
case Δ is not empty.

Γl-DΔ* ΔhjB Δhΰ

Din: r π R — ' a n d n~R ' P r o y i d e d ^ n a t a 1^ hypotheses of Δ are
Δ of the form of either DC or OC for

some wff C; in either case Δ is not
empty.

ivαCADS) HP (A P I ? )
11 Γl-D(DA3ΠB) 2< hΠ(GA3DB) '

l-q(A=> J3); (-D(gJ A)
U & 3 hD(DA3Dfi)
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The motive behind the formalization here is to provide as constant
factors in all of the theories to be studied the classical propositional
calculus as well as the notion of deduction in accordance with rules alone.
The differences between modal systems are shown by differences only in
the rules governing modal operators. This is just what Lemmon-style
formalization does from an axiomatic approach. A rule much like DIj. was
suggested by Lemmon in lectures in 1966. From it a rule like Ohnishi and
Matsumoto's -»• for M* in [10] could be obtained given appropriate
translation from Gentzen-style notation. DI 2 is likewise related to rule
->D for system Q2of [10]. DI* is essentially rule ->D for S4* of [10], and
DI 5 is just DIa with the restriction that Δ (D θ in [10]) not be empty. DI 8

should be compared with Ohnishi's rules -*Π for S2* and S3* of [9].
Ohnishi's use of 'tautology' there is not exactly that of Lemmon in [6], and
Ohnishi's restriction, p. 126 of [9], does not seem to restrict use of his
rule RT when a is a theorem other than an instance of a tautology of
propositional calculus or an instance of (l f) or (2). DI 8 obtains these
restrictions by a class of wffs Λ, fixed for a given system, and by the
restriction that B be derived from Δ by NPC alone. Ohnishi obtains a
counterpart of the latter restriction by not allowing rule ^ D to occur below
RT in a proof figure. When applied in system S3, DI 8 seems easier to
employ than would be a counterpart of Ohnishi's ->D for S3* of [9]. DI 9 and
its use in NS0.5 should be compared with Routley's rule in [14] for *S0.5,
which is a Gentzen-style calculus. Finally, ΠEi is a counterpart of D—> of

[io]
Let NK be NPC with the added rule D I l e The deductive equivalence of

K and NK, i.e., \-A in NK if and only if κ 4 in K, is proven as follows:
suppose that f-A in NK. The rules of NK hold in K.

Case (1): The rules of NPC hold in K in virtue of PC and the deduction
theorem for K.

Case (2): Rule DIχ. If Δ is empty, in which case Γ is also, then DIj. is
just rule (a) of K. So let Δ be A1? . • . , An and suppose that A n . . . , An\~B
in K. By the deduction theorem for K, applied n times,\-A1 D (. . . D (An ^
B). . .) in K. By (a), (1'), and PC we havef-DAi D (. . . o (DAW :> ΏB). . .)
in K. Hence, if Γ is any set of hypotheses such that Γf-DΔ in K, then the
proof of ΓhDΔ in K may be extended by use of PC together with the above
theorem to yield a proof of Γ h O £ in K.

Conversely, suppose that \-A in K. It suffices to show that the axioms and
rules of K are derivable in NK. The axioms and rules of PC are in NPC
and so are in NK; so, Case (1) is proven.

Case (2): Let A be ( l f ) . In NK we have the proof:

1 (1) D ( / O q) Hyp
2 (2) Up Hyp
3 (3) p 3 q Hyp
4 (4) p Hyp

3,4(5) q 3 , 4 M P
1, 2(6)Πq 1 , 2 ( = D Δ = Γ ) , 3 , 4 ( = Δ ) , DIχ
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1 (7) D/> D Dtf 2, 6 CP
(8) Uip => q) => (•/> => D?) 1, 7 CP

Case (3): Let A be derived by rule (a). Since rule (a) is just the special
case of Dli where Δ is empty, \-A in NK. So, K and NK are deductively
equivalent.4 We may now easily obtain the natural deduction systems
corresponding to T, S4, and S5, which are extensions of K, as extensions of
NK. Corresponding to Lemmon's formulations of these systems we have:

T: PC; (a); (1'); (2). NT: NPC; DEX; n\.
S4: PC; (a); (1'); (2); (4). NS4: NPC; DE i ; DI*.
S5:5 PC; (a); (1'); (2); (5). NS5: NPC; DE l 5 GV

Since NT (T) is just NK (K) with the added rule (axiom) DEX (axiom(2)),
the deductive equivalence of NT and T is proven by the previous proof
except that we now add cases for DEX and (2). From (2) of T we easily
derive DE1 ? since, given DA as a premise, A always follows depending
upon the same hypotheses by appropriate substitution on axiom (2) and MP.
Conversely, given DEi of NT, (2) is proven as follows:

1 (1) Up Hyp
1(2) p 1, DEi

(3) Ώp^ p 1, 2 CP

Thus, NT and T are deductively equivalent. Since DEX and (2) are
equivalent in the presence of NPC or PC, proofs of this equivalence will be
omitted in what follows.

To establish the deductive equivalence of NS4 and S4 it suffices to show
that GI4 is deductively equivalent to (a), (1'), and (4) in the presence of NPC
and DEj (alternatively, in the presence of PC and (2)). Given (a), (1'), and
(4), DI 4 is derived as follows: if \-B in S4, t h e n h D £ in S4 by rule (a). So
suppose that Δ is not empty, i.e., A1 ? . . . ,An\-B in S4 where each
Ai (1 — i — n) is DC; for some wff C*. By the deduction theorem for S4 and
PC we have h(A1 & . . . & An) D B in S4 which, by s u p p o s i t i o n , is
h ( D d & . . . & ncn) => B in S4. By the theorem of S4 that (DC! & . . .
& DCJ = D(CX & . . . & Cn) and substitution of material equivalents we have
HG(Ci & . . . & Cn) => B in S4. By (a) and (l f) this yields \-ΏΏ{Cι & . . .
& C j ^ D 5 i n S 4 , from which, by PC and appropriate substitution on axiom
(4), we have \-n(Cx & . . . & Cn) =) ΏB in S4. By the previously used
equivalence we have \-(^C1 & . . . & ΏCn) 3 \JB in S4 which is h(Ax & . . .

4. Case 2 of this proof also illustrates the formal proof procedure in NK. Aiming to
prove (1') one tries to prove Ώq from D(/> D q) and Ώp as hypotheses. The
strategy for employing D l 2 is to add as hypotheses p D q and p and then prove q.
In step (6) of D l l t p 3 q and p are discharged as hypotheses, and the conclusion
is put to depend upon hypotheses of Ώ{p D q) and Dp, which here happen to be
themselves. The numbers at the extreme left provide a record of the hypotheses
upon which any given line in the proof depends.

5. This formulation of S5 is taken from Prior, [12], who attributes it to Gδdel.
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& An) ^ ΠB in S4. Hence, given as premises in a proof Aί9 . . . , An

depending upon Γ, the last theorem together with PC yields a proof of

T\-ΠB in S4. Conversely, given DI4 (l f) is proven in NS4 by the same

proof given in NK since D ^ is easily derived from DI4 in the presence of

DEi For (4) we have the proof in NS4:

1 (1) Up Hyp

l(2)DD/> 1,DI4

(3)D/>^DD/> 1, 2 CP.

Note that ζΠp9 here is the appropriate B as well as the one member

sequence Δ; so the step at (2) is a correct use of DI4. For rule (a), it

suffices to note that (a) is just DI4 for the case where B depends upon no

hypotheses. So NS4 and S4 are equivalent.

The deductive equivalence of NS5 and S5 is proven similarly by

showing that DI6 is deductively equivalent to (a), (1'), and (5) in the

presence of NPC and DEX (alternatively, in the presence of (2) and PC).

DI6 is derived in S5 as follows: if Δ is empty, then DI6 is just (a). Suppose

that Δ is not empty, i.e., that Al9 . . . ,An\-B in S5 where each A, (1 ^ i ^ n)

is either D Q or O Q for some wff C;. By the deduction theorem for S5:

y-A1 D (. . . D (An ^ B) . . .) in S5. By (a), (1'), and PC we have:

(i) \-ΠA1 D ( , . , D ( D A p ΠB) . . .) in S5.

By appropriate substitution on (5) and the definition of O, i-OQ ^ DOQ in

S5. Further, (4) is a theorem of S5; hence, t-ΠQ => DD d in S5. So,

whether Aι is D Q or OQ we have

(ii) v-Ai ^ ΠAi in S5.

By PC, (i) and (ii) yield \~Aλ D (. . . => (An D ΠB) . . .) in S5. Thus given as

premises Al9 . . . , An the last theorem permits the proof in S5 of ΏB

depending upon the same hypotheses as the premises. Conversely, given

DI6, DI4 is easily derived. Hence, the proof of (1') in NS5 is the same as

that given in NK since Ώlι is derivable from DI4 in the presence of DE l f

Rule (a) is the special case of DI6 where B is a theorem. Finally (5) is

proven in NS5 as follows:

l(l)O-/> Hyp

l(2)-D--/> 2, Df

(3) -D- -p 3 -Up Theorem of NK

1 (4) -Dp 2, 3 MP

l(5)D-D/> 4 DI6

(6) 0-ρ^) n- πp 1,5 cp
(7) -DpO-ί Theorem of NK

(8) -Up ^ Π-Πp 6, 7 by NPC

Lines (3) and (7) are easily derived in NK which is contained in NS5, and

their introduction as theorems in the proof can be taken as an abbreviated

way of inserting complete proofs of them. Similarly, the step at line (8)

can be taken as an abbreviated way of inserting a proof of (8) from lines (6)

and (7).
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The expected containments hold for NK-NS5. Further, the progression
from NT to NS5 can be viewed as progressive liberalizations of the rule for
introducing 'D' (in the presence of DEj into proofs from hypotheses. Given
that B is provable from hypotheses Aί9 . . . , Aw, DIj. permitted one to
derive ΠB only by strengthening his hypotheses to ΏAly . . . , ΏAn. DI4

liberalizes this to permit deriving ΠB anyway, provided that each
hypothesis was of the form of DC to begin with. DI6 further liberalizes
this to the condition that each hypothesis has been of the form of either
DC or OC.

Just as we obtain extensions of NK or K by either liberalizing rules for
ζΠ* or by adding axioms, we obtain contractions of NK or K by either
dropping axioms or restricting rules. By adopting more restricted rules
for introducing 'D' we have weaker NS- or S-systems. Corresponding to
Lemmon's formalizations we have

S3: PC; (af); (1); (2). NS3: NPC; DEX; Dig, where Λ is the set of all
substitution instances of tautologies, of (1), and
of (2);DS1.

S2: PC; (af); (b); (l f); (2). NS2: NPC; DEX; DI8, where Λ is the set of all
substitution instances of tautologies, of (l f),
and of (2); DS2.

SI: PC; (a'); (bf); (3); (2). NS1: NPC; DEX; DI8, where Λ is the set of all
substitution instances of tautologies, of (3), and
of (2);DS3.

For the deductive equivalence of NS1 and SI it suffices to show that
DI8 for NS1 and DS3 are deductively equivalent to (af) for SI, (b'), and (3) in
the presence of NPC and DEX (or PC and (2)). DI8 for NS1 is proven for SI
as follows: if Δ is empty (in which case Γ is also), then DI8 is just (a') of
SI. So let Δ be A l5 . . . , An and suppose that Al5 . . . , A^i-^in NPC. By
the equivalence of NPC and PC and the deduction theorem, we have:

(i) h-Ax =) (. . . => (An 3 B) . . .) in PC.

Since (i) is an instance of a theorem of PC, it is an instance of a tautology.
So by (a') and PC4 of SI we get\-Π{Aι z> (...=> (An D B) . . .)) in SI. (lf) is
derivable in SI; this together with PC yields

(ii) \-ΏAγ D (. . . 3 (D An D ΠB) . . .) in SI.

Thus, given as premises ΠA1} . . . ,ΠAn depending upon Γ, (ii) and PC will
yield a proof of Γ\-ΠB. DS3 is derived by (bf) and the definition of i by
substitution on the theorem Π(Πp ^>Πp) of SI. Conversely, in NS1 we
prove (3) as follows:

1 (l)D(/>3 q) Hyp
2(2)D(<?Dr) Hyp
3 (3) p D q Hyp
4(4)pr Hyp

3 , 4 ( 5 ) p r 3, 4 NPC
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1,2 (6) Π(p^> r) 5DI 8 , (1, 2 = Γ = DΔ; 3, 4 = Δ)
1 (7) D (q z> r) z> D (p z> r) 2, 6 CP

(8) D(/> => 0) z> (D(# z> r) z> 1, 7 CP
D(/>z> r))

(9) (D(p 3 ?) & D (q z> r)) z> 8 NPC
D (/> Z) r)

Again, in a step of DI8 there are hypotheses discharged, where Δ is not
empty. The restriction that only NPC rules be used in the subsidiary
deduction is easily checked. Rule (a') is DI 8 where Δ is empty. Finally,
rule (bf) is obtained from (i) (p = q) z> (-p i -q); (ii) (p = q) z> ((r z> />) =
(r D #)); (iii) (p = q) ^ {(p ^> r) = (q ^ r)); and (iv) the rule D S3, which is a
counterpart of the rule (Gbf) of [16].

Rule DS2 is just rule (b). Thus, it suffices for showing the deductive
equivalence of NS2 and S2 to show that DI8 for NS2 is deductively equivalent
to (a') for S2 and (Γ) in the presence of NPC, DE 1 } and DS2 (or PC, (2), and
(b)). Where Δ is not empty the proof that DI8 for NS2 holds for S2 is the
same as that given for SI. Of course, where Δ is empty, DI8 is just (a') for
S2. Conversely, (l f) is proven in NS2 by the same proof as that given in NK
except that step (6) is now justified by DI8 rather than by DI l β Since the
subsidiary deduction from steps (3) through (5) of that proof is by NPC
alone the restrictions of DI8 are met. Finally, (a') for S2 is the special
case of DI8 for NS2 where Δ is empty. Hence, NS2 and S2 are deductively
equivalent.

It is obvious that axiom (1) and rule DSX are deductively equivalent in
the presence of NPC or PC with the deduction theorem, just as (2) and DEX

are. Also, in S3, DI8 for NS3 holds where Δ is empty since it is then just
(a') for S3. Where Δ is not empty, the proof that DI8 holds for S3 is the
same as that for SI, since (1') is derivable in S3. Conversely, in NS3 (a')
for S3 holds as a special case of DI8 where Δ is empty; (1) and (2) hold by
virtue of ΠE1 and DI8 for NS3. Thus we obtain the deductive equivalence of
NS3 and S3.

The relationships of SI-S3 to each other and to S4 and T are easily
observed here. The progression from NS1 to NS3 is one of liberalizing
restrictions on introducing '•' into a proof. NS2 contains NS1, and NS3
contains NS2 in virtue of the derivability of ΠS2 from DS^ Further, DI8 for
NS3 and DSJL are derivable from DI4; so, NS4 contains NS3. However, DI8

for NS3 is not derivable from DIX since for NS3 Λ of DI8 contains (1) which
is not provable from DIX. So NT does not contain NS3. Further NS3 does
not contain NT since DIX is not derivable from DI8 for NS3 given the
restrictions for the case where Δ is empty. But DI8 for NS2 is easily
derivable from DIX and DEX, since both (l f) and (2) are provable by these
rules. So NT contains NS2. Thus the relations of these systems noticed by
Lemmon, p. 180 of [6], are obvious when the systems are given natural
deduction formalizations also. Moreover, if we further restrict the intro-
duction of ζΠ9 by replacing DI8 in NS1 by DI9, we then get a system
deductively equivalent to SO.5. Thus we have:

SO.5: PC; (a"); (1'); (2). NS0.5: NPC; DI9; DEX.
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In SO.5, NPC and DEL hold by PC, the deduction theorem, and (2) as usual.
Dig is obtained as follows: if Δ is empty then we have just a special case
of rule (a") since all theorems of NPC are instances of tautologies. If Δ is
not empty, then proof is the same as that given for DI8 of NS1 for SI, citing
(a") in place of (a f). Conversely, in NS0.5 we have (2) by DEX as usual,
(a") is DI9 where Δ is empty, and (1;) follows by the same proof as that in
NK, noting that at line (6) rule DI9 would be cited correctly since all of the
restrictions of that rule are met by the previous proof.

In the same manner we can construct corresponding natural deduction
systems for the families of E- and D-systems. The deductive equivalence
of DEX with (2) in the presence of NPC or PC has already been noted. Also,
in the presence of PC and (2) either (1) or (l f) together with (Eb) permits
us to derive DI 2 as follows. Suppose that Aly . . . , An\-B. By PC we have
v-A1 ^ (A2 z> (. . . D (An z> B) . . .)). By (Eb) we have \-ΏAλ ^ D (A2 D (. . . D
( A W D £ ) . . .)), and so repeated use of (l f) and PC yields hDA λ 3 (πA2 D
(. . . 3 (ΏAn D ΠB) . . .)). Thus given a proof of ΏAU . . . , DA«from Γ,
this theorem enables us to prove T\-ΏB. Since (1') is derivable from (1),
given (2), the above proof holds for systems having axiom (1) in place of
(1'), provided that they have (2). Conversely, DI2 yields (l f) by the same
proof given in NK and yields (1) in the presence of the additional DSX. (Eb)
results as follows: suppose that t-A ~D B. Then we use the following proof
scheme for any system containing NPC and DI 2:

1 (1) DA Hyp
2 (2) A Hyp

(3) A D B Theorem by supposition
2{A)B 2, 3 MP
1 (5) ΠB 1, 2, 4 DI2

(6) DA z> ΠB 1, 5 CP

The restrictions on DI2 are met in this proof scheme since line (3) is not a
hypothesis, though it is a premise. Thus the fact that no line of the proof
scheme contains Ώ(A ̂ >B) is not a problem because A n ΰ is not in Δ
anyway.

The above considerations yield natural deduction systems NE2 and NE3
deductively equivalent to E2 and E3 respectively:

E2: PC; (Eb); (l f); (2). NE2: NPC; DI2; DE l β

E3: PC; (Eb); (1); (2). NE3: NPC; DI2; DEX; DS l β

If we restrict the wffs A, Alf . . . , An, B of the previous paragraph to wffs
of PC (NPC), i.e., wffs not containing modal operators, we have a proof of
the deductive equivalence of (Eb') and (l f) with DI 3. Thus we also have
shown the deductive equivalence of:

El : PC; (Ebf); (l r); (2). NE1: NPC; DI3; DE^

Corresponding to the remaining E-systems we have:

E4: PC; (Eb); (I'); (2); (4). NE4: NPC; DIB; DE l β

E5: PC; (Eb); (1'); (2); (5). NE5: NPC; DI7; DE l β
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By a proof similar to that deriving DLt (Dig) from (a) and (4) ((a) and (5))

we can derive DI5 (DI7) from (Eb) and (4) ((Eb) and (5)) in the presence of

(1'). Conversely, (4) holds in NE4 by the same proof given in NS4, and (5)

is proved in NE5 by the same proof given in NS5, since both (i) -D- -p ^

-Up and (ii) -Πp^> O-/> are easily derived as theorems of NE5. (1') is

provable in NE4 and NE5 as follows, in the latter system citing DI7 at line

(6):

l ( l )D(/>^ q) Hyp

2 (2) Up Hyp

1(3) p-D q I D E !

2 (4) p 2 DEi

1, 2 (5) q 3, 4 MP

1, 2(6)Dtf 5 DI5

1 (7) Πp^> Ώq 2, 6 CP

(8) Π(/>=> 0) D (Dp 3 Ώq) 1,7 CP

This proof is also available in both NS4 and NS5.

Systems Dl and D2 differ from El and E2 only in having the weaker

axiom (2f) in place of (2). In the presence of PC or NPC rule DE2 and (2f)

are deductively equivalent just as DEX and (2) are. Also, the deductive

equivalence of DI3 with (Eb') and (1') and of DI2 with (Eb) and (1') does not

require that (2) or DEX be present, though the deductive equivalence of (Eb)

and (1) with DI2 did require the presence of (2) or DE l t Thus, there are

deductively equivalent natural deduction systems for Dl and D2, viz.:

Dl: PC; (Eb'); (1'); (2'). ND1: NPC; DI3; DE2.

D2: PC; (Eb); (l f); (2'). ND2: NPC; DI2; DE2.

The remaining D-systems have both the rule (D) and (2') in place of (2)

of the corresponding E-systems. It is easily shown that (D) and (2;) are

deductively equivalent to DE3 in the presence of PC. Further, for D3, (D)

and (1) permit derivation of (1'). So the previously shown deductive

equivalence of (Eb) and (1) with ΠI2 and DSi continues to hold, now in the

presence of (D) and (2') or DE3. This yields the deductive equivalence of

D3: PC; (Eb); (D); (1); (2'). ND3: NPC; DI2; DE3,

Because of the lack of (2) in D4 and D5, the corresponding systems

ND4 and ND5 require the hybrid rules DI 1 0 and D I n , which allow proof of

(l f) and (Eb), in the absence of DE 1 ? as well as (4) and (5) respectively. We

have:

D4: PC; (Eb); (D); (1'); (2'); (4). ND4: NPC; DI1 0; D E3.

D5: PC; (Eb); (D); (1'); (2'); (5). ND5: NPC; D I n ; DES.

For the deductive equivalence of D4 and ND4, it suffices to show that (Eb),

(1') and (4) yield DI 1 0 and that DI 1 0 yields (Eb), (1') and (4) in ND4. DI 1 0 is

derivable for D4 as follows: let Al9 . . . , An\~B in D4 be given. By the

deduction theorem for D4: \-Ax D ( . . , D (ABD5) . . J i n D4. By (Eb), (l f),

and PC:

(a) hDAi D (. . . z> (ΠAn ^ ΠB) . . .) in D4.
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Hence τ (i) given a proof of ΠA1 & . . . & ΏAn from Γ (a) yields a proof of
T\-ΠB in D4; (ii) if each A{ (1 ^z ^ n) is DC/ for some wff C, then, by the
theorem of D4: D C ( o π π C , , we have ι-A, =>DAf in D4. So, by PC:
HAj. D (. . . D (AΛ D UB) . . .) in D4. Thus, Al9 . . . , AwhΠJ5 in D4. Con-
versely, in ND4 (l f) is derivable by either the proof in NK or that in NE4,
citing DIio at line (6) in either case. (4) is easily derived by rules Hyp,
DIio, and CP. Finally, (Eb) follows by the previous proof of (Eb) for NE2,
using DI1 0 rather than ΠI2. The deductive equivalence of (Eb), (l')> and (5)
with D I n is shown similarly, and so the proof is omitted.

The containment relations pointed out by Lemmon between S- E- and
D-systems are easily shown on the new rules here. For any S-system, the
corresponding E-system is obtained by restricting the conditions for
introducing and distributing 'Π' in proofs. The corresponding D-system is
obtained by also restricting the conditions for eliminating Ό9 from proofs.

3. There is always a greater risk of error in drawing philosophical morals
about a concept from a set of syntactic rules for a formal system than
there is in drawing such morals from a semantic model of that system.
Nevertheless, the following are drawn. A formal system S is, under
interpretation, a system of reasoning in which one employs the concepts
formalized. Given a formal system S, it is plausible to interpret A19 . . . ,
An\~B in S as "B is warranted by S as an assertion on the basis of Al9 . . . ,
An." If one is warranted by Sto assert B given certain hypotheses, then a
D introduction rule states the further conditions, if any, required of one's
hypotheses under which S would also warrant the assertion of ΠB. For
example, interpreting 'D' as 'Jones knows that', DI2 warrants that Jones
knows that B provided that he knows each of Al9 . . . , Awand that Al9 . . . ,
An\-B in the system of reasoning considered. Both E2 and E3 (or NE2 and
NE3) are plausible formalizations for 'know' restricted to individuals.
However, under this interpretation DI5 would allow us to infer that Jones
knows anything which follows from propositions to the effect that he knows
certain things to be true. This perhaps makes E4 or NE4 unsuitable as a
formalization of a given person's knowledge.

On the other hand, the fact that a proposition B follows from proposi-
tions stating that certain things have been verified constitutes a sort of
verification of B. So NE4, with DI5, might provide a plausible formalization
of the concept 'it is verified that'. Further, DI5 provides that nothing is
verified simply by being a theorem of logic. Thus the concept formalized
here would be applicable only to propositions contingent relative to NE4 or
E4. However, the choice of an interpretation for a system of modal logic is
difficult to make without considering set theoretic models for the system.
These cannot be taken up here.
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