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CONSISTENT, INDEPENDENT, AND DISTINCT PROPOSITIONS
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1. THE PROBLEM STATED. This is a sequel to [10] and acquaintance with
it is presupposed. It was shown there that the existence postulate can be
proved in certain non-regular systems. It followed, loosely speaking, that
in those systems we had two consistent and independent and four distinct
propositions. We now propose to construct a system in which there are
denumerably many consistent, independent, and distinct propositions. Note
that this is a propositional system. We, therefore, do not yet enter into the
controversies surrounding quantified modal logic. At a future date we
intend to add quantifiers to our system and we shall see what happens then.
But we do claim that Lewis would have found our propositional system
highly satisfactory. We now give precise definitions of some of the terms
that will be used. The notation employed is that of [8].

2. DEFINITIONS. We first propose to define a proposition. We wish to
say, roughly, that a wff B is a proposition if and only if every substitution-
instance (SI) of B is equivalent to B. But it is necessary to proceed with
caution. In the definitions that follow P is a propositional calculus which
has, among its rules, the rule of substitution on variables. For the first
two definitions P can be thought of as a propositional calculus in a very
wide sense; the next two assume that it has, among its connectives ~ and Λ;
the remaining ones have, in addition, the connective O. These three
connectives may be primitive or defined. Small letters stand for variables
and capital letters denote formulas.

Definition 1. Let λ be a connective (primitive or defined) of P such that
tppλp; and further, the following rule (primitive or derived) is available in
P: "If B results from A by substitution of N(M) for M(N) at one or more
places in A (not necessarily for all occurrences of M(N) in A), if hpMλN
and fpA, then tψB [1, p. 101; with a slight variation]/' Then λ is said to be
an ^-connective of P.

Comments. In the systems T, S4, and S5, both substitutivity of strict
equivalents (SSE) and substitutivity of material equivalents (SME) are
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available. This is well-known. So both strict equivalence (SE) and
material equivalence (ME) are E-connectives of these calculi. In SI, S2,
and S3, SSE is available but not SME. This can be seen as follows.
Supposing it were available.

Zl ~0{p*~p)v(p*~p) [Sl°]
Z2 0{p*~p) => (/>Λ~/>) [Z1;S1°]
Z3 (pΛ~p) ^ O(pΛ~p) [Sl°]
Z4 O {pΛ ~p) = (PA ~/>) [Z2; Z3; Sl°]
Z5 (pΛ~p)-%p [Sl°]

Z6 O(P*~P)*P [Z4;Z5; SME]

But Z6 is not a theorem of SI, S2, or S3. In fact, it is shown in [7] that
addition of Z6 to SI or S2 gives us T, and to S3 gives us S4. So we have the
incidental result that addition of SME to SI or S2 gives us T, and to S3
gives us S4. It follows then that SE is an E-connective of SI, S2, and S3,
but not ME. This shows a fundamental difference between SI, S2, S3; and
T, S4, S5. Let us describe the former group as S-systems and the latter as
T-systems. This agrees with the spirit of [8]. See pp. 145-146.

Definition 2. A wff B is said to be a proposition of P with respect to the
connective λ, where λ is an E-connective of P, if and only if every SI, C, of
B is such that ipBλC. When no ambiguity can result we shall omit
mentioning: "with respect to the connective λ, where λ is an E-connective
of P " .

Comments, The wffs ph~p and pv~p are propositions of the Classical
Propositional Calculus (CPC) w.r.t. ME. We show that p Λ ~/> is a proposi-
tion. Let QΛ~Q be an SI of p Λ ~ρ9 Then

Zl (p*~p)^q [CPC]
Z2 (/>Λ-/>)=> (QΛ~Q) [Zl,q/QΛ~Q]

Z3 (QΛ-Q)^(PΛ^) [Zl,p/Q,q/P*~p]

Z4 (μ^MQΛ-Q) [Z2;Z3; CPC]

Similarly, it can be seen that p v~p is a proposition and also that both
these wffs are propositions of the T-systems both w.r.t. ME and SE. But
they are propositions of the S-systems w.r.t. SE but not w.r.t. ME. In these
calculi it is meaningless (see definition above) to talk of propositions w.r.t.
ME since ME is not an E-connective.

Now note that 0{P*~P) is also a proposition w.r.t. SE of both S- and
T-systems. Let O(Q A ~Q) be an SI of O(P*~P). Then

Zl (p*~p)^q [Sl°]
Z2 (p* ~p) Ξ (Q Λ ~Q) [As above]
Z3 O (p Λ ~p) =O(pA ~p) [Sl°]
Z4 O(pΛ~p) Ξ O ( Q Λ ~ Q ) [Z2;Z3; Sl°]

Similarly, it can be seen that any wff built from p*~p by prefixing any
number of c~'s and 'O's in any order as well as conjunctions of such wffs
are propositions w.r.t. SE of both T- and S-systems. More generally, of
any system that contains Sl°.
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Definition 3. The propositions Pu P2, . . . , Pn (w.r.t. λ; of P) are said to
be distinct {w.r.t, λ; in P) if and only if

tp~(P 1 λP 2 )Λ~(P 1 λP 3 ) Λ . . . Λ - ί P ^ λ P * ) .

In this case, we say that {pl9 P2, . . . , Pw}is a distinct set of propositions

(w.r.t. λ; in P).

Comments. The propositions pΛ~p and pv~p are distinct in CPC w.r.t.

ME since

tζ p c ~((/>Λ~p) = (/)v -/>)).

Since every theorem of CPC is a theorem of the T-systems, they are also
distinct in the T-systems w.r.t. ME. They are also distinct in both
T-systems and S-systems w.r.t. SE.

Zl O(P*~p)vO(pv~p) [SI]

Z2 ~hθtoΛ~/))Λ(/)Λ^/))}Λ~θ{(pv-ί)Λ(pv~/))}] [Zl; Sl°]

Z3 ~[{{P*~P)*lPv~PJ\*{iPv~P)*(P*~PJ\] [Z2] Sl°]
Z4 ~{(/>A~/>) Ξ (/>v~/>)} [Z3;S1°]

We have shown in [10] that the propositions (see comments to Definition 2)
O O ( £ Λ ~ / > ) , ~OO(/>Λ~/>), O(/>Λ~/>), and ~<>(P*~P) are distinct in S6

w.r.t. SE.

Definition 4. An infinite set of propositions (w.r.t. λ; of P) is said to be a
distinct set of propositions (w.r.t. λ; in P) if and only if every finite subset
of the infinite set is a distinct set of propositions (w.r.t. λ; in P).

Comments. None yet. See section 3.

Definition 5. The propositions PlfP2, . . . , P« (w.r.t. λ; of P) are said to
be consistent (w.r.t. λ; in P) if and only if

(1) IpOίPiA. . . A P W ) .

In this case, we say that {Pl9 P2, . . . , Pn] is a consistent set of proposi-
tions (w.rJ. λ; in P).

Comments. Suppose now that P contains Sl°. Then it is easy to see that (1)
is equivalent to

ip ~{(Pi Λ . . . Λ Pr-i A P r + 1 A . . . Λ P«) -3 ~ Pr} l> = 1, 2, . . . , n].

And this, of course, is in accord with our intuitive notion of consistency.

Definition 6. An infinite set of propositions (w.r.t. λ; of P) is said to be a
consistent set of propositions (w.r.t. λ; in P) if and only if every finite
subset of the infinite set is a consistent set of propositions (w.r.t. λ; in P).

Definition 7. The propositions Pl9 P2, . . . , Pn (w.r.t. λ; of P) are said to
be independent (w.r.t. λ; in P) if and only if

(2) fpO(PiA. . . Λ P M Λ ~P rΛP r+1A. . .ΛP«) [r= 1, 2, . . . , n].
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In this case, we say that {P1? P 2 , . . . , Pn} is an independent set of proposi-
tions (w.r.t. λ; in P).

Comments. Again let P contain Sl°. Then (2) is equivalent to

ip ~{(JPi Λ . . . AP r - i Λ P r + i Λ . . . Λ P J HS p r } [r = 1, 2, . . . , n],

which again is in accord with our intuitive notion of independence.

Definition 8. An infinite set of propositions (w.r.t. λ; of P) is said to be an
independent set of propositions (w.r.t. λ; in P) if and only if every finite
subset of the infinite set is an independent set of propositions (w.r.t. λ;
inP) .

3. MODAL SYSTEM S10. The following theorem is implicit in [10].

Theorem 1. β = (M, D, Π, -, P) is a σ-Ύegular S6-matrix if and only if

(A) (M, Π, -, p) is a weak modal algebra-,

(B) D is an additive ideal of M\
(C) x=Oifandonlyif-P(x)eD;
(D) x ^ Px;
(E) PPOeD;
(F) P0 ^ Px.

We now show that

Theorem 2. β = (M, D, Π, -, P) is a σ-regular S§-matrix if and only if

(A) (M, Π, -, P) is a modal algebra
(B) D is an additive ideal of M;
(C) x=Oifandonlyif-P(x)eD;
(D) x ^ Px;
(E) PPOeD.

Proof. First suppose that β is a σ-regular S6-matrix. Then by Theorem 1
above and Definitions II.2, 11.19 [8], it remains to show that for x9 ye M,
P(#U:y) = PΛΓU Py. By 44.4 [3], P(#U 3>)<=>(P#u Py)e D. By Definition 11.14
(iv) [8], P(ΛΓU y) = PxΌ Py. Conversely, suppose J£R satisfies conditions
(A)-(E). By Theorem 1 above and Theorem II.1 [8], it remains to show that
P0 ^ Px. From P(x U y) = PxU Py we get Px = Px u P0 whence P0 ^ Px.

Now consider the following m a t r i x ^ . Let K = {2, 3, 4, . . .}. Let M be
the class of all subsets of K. Let D be the class of all subsets x of K such
that 2 e x. If x and y are any subsets of K, let x Π y be the intersection of x
and 3;. If x is any subset of K, let -x be the complement of x with respect to
K. We define a unary operation Px for x any subset of K as follows. If x is

the null set, or a set which contains just one member, then

P Λ = {3}
P{2}={2, 3}
P{3}={2,3, 5, 6 , . . .}
P{4}={2,3, 4,6, . . .}
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*

*

P{n}={2, 3, . . . , n, n + 2 , . . .} (n ^ 3).

If # is any other set, we define Px to be the union of all sets ?y where y is
a subset of x which contains but one member. Our matrix β = <M, D,Π, -, P).
By Theorem 2, |His a σ-regular S6-matrix.

Our system S10 is as follows. Take the formulation of S6 given in [3].
Add to it as axioms every formula not already a theorem of S6 and which is
verified by this matrix. This is S10. We are, of course, saying that S10 is
that system which is formulated by taking the four Lewis rules as primi-
tive, and which has β as a σ-regular characteristic matrix. If the reader
feels deprived I cannot help it. I have been unable so far to find a set of
axioms. We can, however, note a few things. S10 is stronger than S6.
^ver i f ies O ~ O O ( / > Λ ~ / > ) but Group I [6] verifies S6 and falsifies it. It may
be noted that this is the axiom for S3.1 [9]. S10 is independent of S3 (and
hence of S7). β falsifies the formula O (O /> Λ ~ O (/> Λ ~ />))«-* O /> when p = {3}
and this is the axiom for S3 [9]. And SE is an E-connective of S10 (by
definition). But not ME. If it were, then, as in comments to Definition 1,
we would be able to derive O(p*~p) »-3 p which is falsified by β. We shall
speak of propositions of S10. It will be tacit that they are with respect
to SE.

Consider now the following denumerable list of formulas:

Pi OO(/>Λ~/>)

P 2 O~OO(/>Λ~p)
P 3 O ~ O ~ O O ( / > A ~ / > )

* *
* *
* *

Pπ (o-r'ooίpΛ-/))

where (O^Γ""1 has the obvious meaning. By comments to Definition 2, each
of these formulas is a proposition of S10. We shall now show that they are
consistent, independent, and distinct in S10. The method of proof is
completely straightforward. We simply check that our matrix verifies the
required formulas. Before we proceed let us note that each of the formulas
(which again are propositions) O(p*~p), ~OO(p*~p), ~O~OO(p Λ~/>), . . .
is such that every way of evaluating it on the basis of β, using Π, -, P in
place of Λ, ~, O leads to the same element of M, viz., to {3}, {4}, {5}, . . .
respectively. Also note that the propositions Px, P2, . . . correspond simi-
larly to the elements (of M) {2, 3, 5 , 6 , . . .}, {2, 3, 4 , 6 , . . .}, . . ..

Now observe that β verifies each of the propositions Px, P 2, . . ..
Hence they are all theorems of S10. It follows then that

§ l θ O ( P i Λ . . . Λ P j )
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where {Pi? . . . , Pj} is any finite subset of {pl9 P2, . . .}. By Definitions 5
and 6, {Pl5 P2, . . .} is a consistent set of propositions.

Next notice that the sets {2, 3, 5, 6, . . .}, {2, 3, 4, 6, . . . } , . . . are
such that the complement of each is contained in every other. And if {n} is
the complement of any, then ?{n} is designated. From these remarks it
follows that if {P i l ? Pi2, . . . , P in} is any finite subset of {Px, P2, . . .}, then

feoOίP^Λ. . .APi r - 1A~Pi rAP i r + 1A. . .APin) [r = 1, 2, . . , , n].

By Definitions 7 and 8, {Px, P2, . . .} is an independent set of propositions.
Lastly, take any two different (not yet distinct) propositions Pi and Pj

from the set {Pl5 P2, . . .}, i.e., i Φ j . By the previous paragraph,

feoOίPiΛ-Pj).

By Sl°,

'sioOίPiΛ-PjNOίPjΛ-Pi).

Again by Sl°,
lSl0~{~O(P iA~P j)A-O(P jA~P i)}.

By Sl° again,

» § i o ~ ( P i i P j ) ,

so that Pi and Pj are distinct. It follows by Definitions 3 and 4 that
{P L, P2, . . .} is a distinct set of propositions.

We make a final observation. We claim that S10 is such that no finite
σ-regular matrix will verify it. For all n we have

'sio-ίPii P2)*~(Pi = PS)Λ. Ά~(Pπ-i = Pn).

So for any σ-regular SlO-matrix, -(PPO^>P - PPO) Π - (PPO<=>P - P - PPO)
Π . . . Π-βP-Γ^PPO^P-Γ^PPOleZ). By Definition Π.14 (ii) [8], Theorem
IΠ.6 [9], and Boolean algebra, we have that -(PPO«=>P - PP0)eD, -(PPO«=>P -
P - PPO)eZ>, . . . , -{(P-Γ""2PP0«=>(P-)β"1PP0}€l>. Now if -xeD,x$D; for
if xeD, then by Definition Π.14 (iii) [8], x Π - xeD, i.e., Oe D, which con-
tradicts Theorem III.8 (D) [8]. So PPO<=>P - PPO^Z), PPO<=>P - P - PPO^i),
. . . , (P-)n~2PP0<?*(P-)n-1PP0t D. But if x<^y 4 D, x Φ y; for, if x = y, then
(χ<^>y) = (χ<=Φχ)eD. So PPO Φ P - PPO, PPO Φ P - P - PPO,... , (P-)W""2PPO Φ
(P-Γ^PPO. In other words, the elements PPO, P - PPO, . . . , (P-Γ^PPO of
the matrix are all distinct (in a mundane sense; not, of course, in the sense
of Definition 3). And this is true for all n.

There are a number of places where Lewis complains about Boolean
algebras, e.g., "Boolean algebra is a rather unsatisfactory form for any
calculus of logic [5, p. 30]". But there is nothing wrong with Boolean
algebras as such. Our matrix |H is a Boolean algebra. It seems to
me that what Lewis "intends to assert" can be clarified in the light
of future developments. The postulates of material implication are
such that the two-element Boolean algebra (we think of it as a matrix)
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is characteristic for the system. To him this was very objectionable.
His systems S1-S5 do not have finite characteristic matrices [2]. This
was a significant step forward. But a defect remained. The two-
element matrix verified S1-S5. This is remedied in the non-regular
systems S6-S8 since no two-element matrix will verify them (this is easily
seen by noting that there are four propositions of these systems distinct in
them and using the argument of the previous paragraph.) But there are
four-element matrices which do so. In this paper we have taken yet
another step. We have produced a system which is an extension of S2
independent of S3—and S2 was the system that Lewis favored—such that no
finite matrix will even verify it. Having said this, let us make a qualifica-
tion. Our discussion has been restricted to σ-regular matrices. It would
have been nice to prove in complete generality that no finite model will
verify the system. But it is well-known that such a general assertion is
almost impossible to prove. All kinds of structures each of which has the
perfect right to be called a model keep sprouting. In view of this, it does
not seem too objectionable that we have limited our treatment to σ-regular
matrices. One more thing. The reader may feel uncomfortable that S10 is
defined in terms of an infinite matrix (non-denumerable, at that); then it is
shown that no finite σ-regular matrix will verify it, and this fact is paraded
as a virtue of the system. But there is no cause for alarm. Non-denumer-
able characteristic matrices have been exhibited for quite a few modal
systems [4, pp. 207-208], but they do not share this latter property with S10.
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