COMMUTATIVITY OF GENERALIZED ORDINALS

JOHN L. HICKMAN

In set theory without Choice, a generalized (\mathbf{g}-) ordinal is defined to be the order-type of a totally ordered set that has no infinite decreasing sequences. In this note* it is shown that two \mathbf{g}-ordinals are additively commutative if and only if they are finite multiples of some third g-ordinal.

We work within set theory without the Axiom of Choice, and define a totally ordered set A to be general-well-ordered (gwo) if there is no injection $f: \omega \rightarrow A$, where ω is the set of natural numbers, such that $f(n+1)<f(n)$ for each $n<\omega$. The order-type $\circ(A)$ of a gwo set A is called a "g-ordinal". Some of the properties possessed by gwo sets and gordinals can be found in [1], and from time to time in this note we shall draw upon these properties. Let α, β be two g-ordinals: we put $\alpha \stackrel{\downarrow}{\underline{1}}$ if there is an order-type ε such that $\beta=\alpha+\varepsilon$. The order-type ε is uniquely defined by this equation, and is itself a g-ordinal; if $\varepsilon \neq 0$, then we write " $\alpha \downarrow \beta$ ". The relation \downarrow defines a strict partial order on the class of g -ordinals. Let α, β be two g -ordinals, and let B be a representative set for β, i.e., B is totally ordered and $\circ(B)=\beta$. Then $\alpha \downarrow \beta$ if and only if B has a proper initial segment A with $o(A)=\alpha$; this segment A is unique. If A, B are totally ordered sets, then a map $f: A \rightarrow B$ is called a "monomorphism" if f is order-preserving and $f^{\prime \prime} A$ is an initial segment of B; a surjective monomorphism is called an "isomorphism". If A is gwo, then for any (totally ordered) set B, there is at most one monomorphism $f: A \rightarrow B$. Because of this last fact we can (and henceforth do unless explicitly state otherwise) assume that if α, β are g-ordinals with respective representative sets A, B, and if $\alpha \stackrel{\downarrow}{\underline{V}} \beta$, then A is an initial segment of B.

Theorem 1 Let α, β be two g-ordinals such that $\alpha+\beta=\beta+\alpha$. Then there is $a \mathbf{g}$-ordinal γ such that $\alpha=\gamma m, \beta=\gamma n$ for some natural numbers m, n.

Proof: Assume that no such \mathbf{g}-ordinal γ exists. This of course immediately

[^0]implies that α, β are both nonzero and that $\alpha \neq \beta$. Therefore either $\alpha \downarrow \beta$ or $\beta \downarrow \alpha$, since (with a slight abuse of language) both α and β are initial segments of $\alpha+\beta=\beta+\alpha$. Without loss of generality we may assume that $\alpha \downarrow \beta$. We shall define a decreasing ω-sequence $\left(\gamma_{n}\right)_{n<\omega}$ of \mathbf{g}-ordinals ($\neq 0$) (i.e., $\gamma_{n+1} \downarrow \gamma_{n}$ for each n) such that each γ_{n} commutes with both α and β. (In point of fact, we only require that each γ_{n} commute with one of α, β, say β, but the induction process by which we define this sequence needs commutativity with both.)

Put $\gamma_{0}=\alpha$, and assume that γ_{i} has been defined appropriately for $i \leqslant k$. Clearly $\gamma_{k} \downarrow \beta$; it is also clear that β commutes with $\gamma_{k} p$ for each number p, and hence that β and $\gamma_{k} p$ are \downarrow-comparable for each such p. But we cannot have $\gamma_{k} p \downarrow \beta$ for every p, for this would lead via some 'limit"' properties presented in [2] to $\gamma_{k} \omega \stackrel{\downarrow}{\underline{1}}$, whence $\gamma_{k}+\beta=\beta \neq \beta+\gamma_{k}$ a contradiction. (We should mention that the use made of Choice in deriving the limit properties given in [2] can be eliminated in the special case being considered here.) Thus there is a unique number p such that $\beta=\gamma_{k} p+\delta$ for some $\delta \downarrow \gamma_{k}$. If $\delta \neq 0$, then we put $\gamma_{k+1}=\delta$, and in this case we have to show that δ commutes with α and β. To do this we make use of the fact established in [1] that g-ordinals are additively (and, incidentally, multiplicatively) leftcancellable. Now we have $\gamma_{k} p+\beta+\delta=\beta+\gamma_{k} p+\delta=\beta+\beta=\gamma_{k} p+\delta+\beta$; hence $\beta+\delta=\delta+\beta$. In order to show that $\alpha+\delta=\delta+\alpha$, we perform essentially the same trick: $\gamma_{k} p+\alpha+\delta=\alpha+\gamma_{k} p+\delta=\alpha+\beta=\beta+\alpha=\gamma_{k} p+$ $\delta+\alpha$. Now suppose that $\delta=0$, i.e., $\beta=\gamma_{k} p$. Clearly $\alpha=\gamma_{k} \gamma+\varepsilon$ for some number r and some $\varepsilon \downarrow \gamma_{k}$. In this case we cannot have $\varepsilon=0$, since otherwise the choice $\gamma=\gamma_{k}$ would contradict our initial hypothesis. In this case we put $\gamma_{k+1}=\varepsilon$, and it remains to prove commutativity.

We prove that $\alpha+\varepsilon=\varepsilon+\alpha$ in exactly the same way as we proved that $\beta+\delta=\delta+\beta$. Now we show that $\gamma_{k} \gamma+\varepsilon=\varepsilon+\gamma_{k} \gamma$. We have $\gamma_{k} \gamma+\gamma_{k} \gamma+\varepsilon=$ $\gamma_{k} r+\alpha=\alpha+\gamma_{k} r=\gamma_{k} r+\varepsilon+\gamma_{k} r$; now left-cancel. Further, $\gamma_{k} r+\gamma_{k}+\varepsilon=\gamma_{k}+$ $\gamma_{k} \gamma+\varepsilon=\gamma_{k}+\alpha=\alpha+\gamma_{k}=\gamma_{k} \gamma+\varepsilon+\gamma_{k}$, and so $\gamma_{k}+\varepsilon=\varepsilon+\gamma_{k}$. But $\beta=\gamma_{k} p$; hence $\varepsilon+\beta=\beta+\varepsilon$. This gives us our decreasing sequence $\left(\gamma_{n}\right)_{n<\omega}$. Now let B be a representative set for β, and for each n let C_{n} be the unique initial segment of B having type. γ_{n}. Put $C=\bigcap\left\{C_{n}: n<\omega\right\}$; our first task is to show that $C \neq \varnothing$. Suppose that $C=\varnothing$. Then for each $x \in B$, there exists n such that $y<x$ for all $y \in C_{m}$ with $m \geqslant n$. On the other hand, in view of the fact that each γ_{n} commutes with β and our convention on monomorphisms, we see that for each n there exists p_{n} such that $C_{n} \times p_{n} \stackrel{\downarrow}{\underline{1}} B \downarrow C_{n} \times\left(p_{n}+1\right)$, where we are extending the interpretation of " \downarrow " to sets in the obvious manner. Therefore to each $x \in B$ and $n<\omega$, there exists a unique ordered pair $\left\langle c_{n, x}, k_{n, x}\right\rangle \in C_{n} \times\left(p_{n}+1\right)$ such that x " $=$ " $\left\langle c_{n, x}, k_{n, x}\right\rangle$. We now define a map $f: \omega \rightarrow B$ as follows. Let $x \in B$ be fixed, and put $f(0)=x$. Suppose that $f(i)$ has been defined for $i \leqslant m$ in such a way that $f(i+1)<f(i)$ for $i<m$, and let n^{0} be the least number for which $y<f(m)$ for every $y \in C_{n}$. Now put $f(m+1)=c_{n}{ }^{0}, f(m)$. Clearly $f(m+1)<f(m)$, and so f is well-defined. But this contradicts the fact that B is gwo. Hence $C \neq \varnothing$.

Since $C \downarrow C_{n}$ for each n and $C_{n} \times p_{n} \stackrel{\downarrow}{\underline{~}} B \downarrow C_{n} \times\left(p_{n}+1\right)$ for each n, it follows that there exists m such that for each $n \geqslant m$ the ordered union $C_{n} \dot{\cup} C$ is (isomorphic to) an initial segment D_{n} of B. Each D_{n} has therefore a final segment R_{n} isomorphic to C : let $g_{n}: C \rightarrow R_{n}$ be the unique isomorphism. Now let $x \in C$ be fixed and define $f: \omega \rightarrow B$ by $f(n)=g_{m+n}(x)$. It is routine to show (using, e.g., Theorem 7 of [3]) that f is decreasing, which again contradicts the fact that B is gwo. This proves our result.

Lemma Let α, β be two \mathbf{g}-ordinals and n a positive integer. If $\alpha n=\beta n$, then $\alpha=\beta$.

Proof: If $n=1$, then of course there is nothing to prove. Thus we assume that $n=m+1$ for some $m>0$. Now αm and βm are \downarrow-comparable, being "initial segments" of $\alpha n=\beta n$. Suppose $\alpha m \neq \beta m$; then without loss of generality we may assume $\alpha m \downarrow \beta m$. But this yields $\beta n=\alpha n=\alpha m+$ $\alpha \downarrow \beta m+\alpha$, whereupon we obtain $\beta \downarrow \alpha$, which in turn gives $\beta m \downarrow \alpha m$, a contradiction. Thus $\alpha m=\beta m$; now apply induction.

Theorem 2 Let Γ be a set of pairwise (additively) commutative g-ordinals. Then Γ is additively isomorphic to a set of natural numbers.

Proof: We may assume that $\Gamma \neq \varnothing$, and we show that there is a g-ordinal σ such that for each $\alpha \in \Gamma$ we have $\alpha=\sigma n$ for some n. Since any two elements of Γ commute, Γ is totally ordered under \downarrow. Suppose that Γ has no minimal element and take $\delta \in \Gamma$. Then it follows from Theorem 1 that for each m there exists $n>m$ such that $\delta=\tau n$ for some τ. From the Lemma it follows that we can define a decreasing sequence $\left(\tau_{n}\right)_{n<\omega}$ of \mathbf{g}-ordinals each commuting with δ. By the first part of the proof of Theorem 1 this is impossible. Hence Γ has a minimal element β. The same argument now shows that there is a minimal g-ordinal γ such that $\beta=\gamma \boldsymbol{n}$ for some n. This is the required g-ordinal.

REFERENCES

[1] Hickman, J. L., "General-well-ordered sets,"Journal of the Australian Mathematical Society, vol. XIX (1975), pp. 7-20.
[2] Hickman, J. L., "Rigidity in order-types," Journal of the Australian Mathematical Society, to appear.
[3] Hickman, J. L., "Regressive order-types," Notre Dame Journal of Formal Logic, vol. XVIII (1977), pp. 169-174.

Institute of Advanced Studies
Australian National University
Canberra, Australia

[^0]: *The work contained in this paper was done while the author was a Research Officer at the Australian National University.

