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EFFECTIVE INNER PRODUCT SPACES

NORTHRUP FOWLER III

1 Introduction Dekker ([1]) introduced and studied a recursive enu-
merable vector space Up over a recursive field F which is universal for all
countable dimensional vector spaces over F. Many further results were
gotten by Guhl [3], Metakides and Nerode ([7]), and others. The purpose of
this paper* is to introduce a natural inner product on Up and to show that
the analogues of classical finite dimensional inner product space theory
fail even for the recursive spaces.

2 Preliminaries We assume that the reader is familiar with the nota-
tions, conventions, and results of [1]. We let ε denote the set of non-
negative integers, and we note that 0 plays the role of both the Gόdel
number of the zero element of F and the zero vector of Up. If β is a repere
(a linearly independent set) in Up and A: is a member of L(/3), we write
suppβ(Λ ) for the set of all elements of β which have nonzero coefficients
when x is expressed as a linear combination of elements in β. We let η = pe
be the canonical basis for UP and write supp(#) for supp^M. Following [8],
Chapter 11, we call the field F formally real if - 1 F is not expressible in F
as a sum of squares. Note that F is formally real if and only if a sum of
squares of elements of F vanishes only when each element is zero. All
formally real fields have characteristic 0; 0, β(^2), C(π) are formally
real, while Q(i) is not.

Definition Dl: Let F be any countable formally real field for which there
exists a one-to-one mapping φ from F onto ε under which the field opera-
tions correspond to (partial) recursive functions. We consider the recur-
sively presented vector space UF over F constructed in [1]. We define a
function (,) from ε x ε —» ε by
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where x = (x0, xu . . .fl, y = (y0, yl9 . . .)*, and both xn and yn are 0F for
n > k. We call (,) the standard inner product on UF and we note that it is
recursive.

From now on, all our fields F will be formally real fields for which the
function φ exists.

Proposition PI The standard inner product on UF satisfies the following:

(1) for all u, ve UF, (u, v) = (v, u),
(2) if u, v, we Up, then (u, υ + w) = (u, υ) + (u, w), where the addition on the
right is that induced on ε by φ,
(3) if aeF andu, ve UF, then (au, υ) = a(u, v), where the multiplication on
the right (really φ(a) (u, ϋ)) is that induced on ε by φ,
(4) if (v, w) = 0 for all w e UF, then w = 0,
(5) if (u, υ) = 0, then v = 0, and conversely,
(6) (βi, x) Φ 0 if and only if e{ e supp(#).

Proof: Linear algebra. Q.E.D.

3 Eight propositions The elements u, v e UF are said to be orthogonal,
denoted by u±v, if (u, v) = 0. If S c UF, we denote by S 1 the set of all
elements we UF for which (w, s) = 0 for each seS. The proofs of the first
seven propositions follow exactly as in the classical cases (with the added
observation that the Gram-Schmidt orthogonalization process is effective
on r.e. reperes) and are omitted.

Proposition P2 (a) Let S c UF. Then SL is a subspace of UF and

sL n L(s) = {o}.

(b) IfSQTQ UF, then T1 ^ Sι.

Proposition P3 If S ̂  UF is finite dimensional, then S e Sι = UF.

Proposition P4 If Wγ and W2 are subspaces of UF, then

(i) (Wk + W2)
L = W±Γι W2

L,

and

(ii) (Wt+WbtiWiΠ W2)\

Proposition P5 Let Wλ and W2 be subspaces of UF. If for each S^ UF,
(S1)1 = S, then equality holds in P4 (ii).

Proposition P6 If a0, al9 . . ., an, . . . is a (finite or infinite) sequence of
pairwise mutually orthogonal non-zero elements in UF, then γ = pa is a
repere.

Proposition P7 (a) if (x, aϊ) = 0 for 0 ^ i' ̂  n and y eL(a0, . . ., an), then

(x, y) = o.

(b) If (x, aι) = Ofor 0 ^ i ^ n and x e L(a0, . . ., an), then x = 0.

Proposition P8 Suppose b is a 1-1 recursive function ranging over an



EFFECTIVE INNER PRODUCT SPACES 695

infinite r.e. repere β. Then there is a 1-1 recursive function b whose range
is an infinite r.e. repere β such that

(i) (Vn)[L(60, .,bn) = L(b09 . . .,~bn)]9

(ii) The elements of β are pairwise mutually orthogonal.

We note that in the proof of P8, β can be gotten uniformly from β by
refining β according to the order of presentation by b. We call the process
refining β into an orthogonal repere according to b.

Proposition P9 Every r.e. space over F has a recursive orthogonal basis.

Proof: It suffices to note that since F has characteristic 0, it is infinite.
Then by suitable scalar multiplication, if necessary, the function b of P8
can be made strictly increasing.

4 The main construction The r.e. space W ̂  Up is called a recursive
space if there is some r.e. space V such that W Θ 7= Up. In the past,
recursive spaces have proved to be the easiest to work with effectively.
We show below that under these conditions the worst pathologies exist.

Lemma LI Define the recursive function α by

α(0) = α(l) = 1
a(n) = a{n - 1) + [a(n - I)]2, for n^2.

Then for all n > 1, 1 + [σ(l)]2 + . . . + [a(n)f - a(n + 1) = 0.

Proof: By induction on n. We note here that α(2) = 2, α(3) = 6, α(4) = 42,
etc. Q.E.D.

Proposition P10 (a) There exists a recursive space S such that S is an
infinite dimensional proper subspace of Up and S 1 = {θ}.

(b) There exists a recursive space S such that (S1)1 Φ S.
(c) There exists a recursive space S such that S e Sι ^ Up.

Proof: Clearly (a) implies (b) and (c). We focus on (a) and define the
recursive function d by

d(0) = e0 + e,
6(1) = e0 - £i + e2

6(2) = e0 - eγ - 2e2 + e3

d(3) = e0 - eλ - 2e2 - 6β3 + e±
d(4) = e0 - eγ - 2e2 - 6e3 - 42e4 + eb

6(n) = e0 - \Σa(ϊ)eλ + en+ι, for n> 1.

We note that η = pe is a orthonormal basis for UP under (,). Let δ = pd,
S= L(δ). We claim:

(1) δ is a recursive repere,
(2) δ U {β0} is a recursive basis for UF,
(3) S is a recursive space,
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(4) for all O^k φn, (ά(k), d(w)> = 0,

(5) S1 = {0}.

The first three are straightforward.

Re (4). The case when k = 0 is immediate. Suppose k ^ 1. Then

d(k) = e0 - ^ Σ o(i)eή + ek+1

d(n) = e0 - ( Σ a(i)eij - α(fe + l)βA + 1 - \.^+2 o(i)e j + en+1.

k

We have <d(fc), d(w)> = 1 + £ [α(ή]2 - α(fc + 1) = 0 by LI.

Re (5). Let xe S 1. Then #e £/F implies that there exists a /> such that
xe L(e0, eu . . ., ep). Note that rf0, du . . ., dp - ep+1 are p + 1 mutually
orthogonal elements in L(e0, . . ., βp)9 and hence by P6 form a basis for
L(eo> •> ep). Furthermore, (x,ό(i)) = Q for all i^O and ^ + 1 / s u p p M
imply (x, dp - ep+i) = 0. Thus x = 0 by P7 (b). Q.E.D.

We will modify the proof above several times in what follows.

Proposition P l l There exist recursive spaces Sλ and S2 such that
(Si Π S2)1 fί sl +S2, and hence the inequality in P4 (ii) cannot be strengthened
to equality even for recursive spaces.

Proof: Define recursive functions b and d similar to the definition of d in
the proof of P10 as follows:

b(0) = e0 + eu d(0) = e0 + eu

b(l) = e0 - ex + e2, 6(1) = e0 - eγ + e3,

and for n ^ 2:

b(n) = e0 - ex - ( Σ a(i + l)e2i) + e2m\t=1 /

( n-l \

Σ o(i + l)e2i+ι) + e2n+1.
Let β = pb, δ = pd, Sx = L(δ), S2 = L(β). The proofs of the following claims
are left to the reader.

(1) L(e0, e2, e4, . . .) and L(e0, e3, e5, . . .) are r.e. complementary spaces
for Si and S2 respectively,
(2) β and δ are infinite r.e. reperes, hence Sλ and S2 are recursive spaces,

(3) S1ΠS2 = L(eo + ei),
(4) Si = L(e2, e4, e6, . . .), s£ = L(e3, e5, eΊ, . . .),
(5) (Si Π S2)

1 = L(e0 - eu e2, e3, e^ . . .),
(6) (S[ + S 2

1 ) = L(e2, e3)e4,e5, . . . ) .

Clearly (5) and (6) give us the desired conclusion. Q.E.D.

5 Orthogonal complements In light of P10 (c), we denote by O.C. the
family of all subspaces Wot UP such that W e Wι = UF.
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Proposition P12 Cαrd(O.C) ̂  c.

Proof: Let σ c ε. Then L(e(σ)) e O.C. Q.E.D.

We show below that even in O.C. the theory is not smooth by showing that
there exist recursive spaces in O.C. whose orthogonal complements are
not r.e.

Definition D2: For S c UF and xeUF, we say that x is orthogonal to S,
denoted (x9 S) = 0, if xe S1.

Proposition P13 Let W^ UF and let W= L(β), then (x, W) = 0 if and only if
(x, β) = 0.

Proof: Linear algebra. Q.E.D.

Proposition P14 Let We O.C. be r.e. Then W1 is r.e. if and only if for
each xe UF we can effectively test (x, W) = 0.

Proof: If W1 is r.e., then Wis recursive. Given xe Up, we can effectively
express x as w + w where weW and we Wι. Then (x, W) = O O w = 0.
Conversely, if we can effectively test for each xeUF whether or not
(x, W) = 0, then clearly W1 is r.e. Q.E.D.

Definition D3: For x e UF - {θ}, we define

(i) z(x) as the element of least index (w.r.t. the function e) in supp(#),
(ii) t(x) as the index of z(x),
(iii) ΓΠ(ΛΓ) as the element of largest index in supp(Λr),
(iv) uM as the index of m(x).

Clearly, z{x),t(x), m(x), and u(x) are partial recursive functions of x with
domains ε - {θ}. If S c UF, we let m(S) denote the set {m(x)\xeS - {θ}} and
similarly for z(S). We note the following properties of the functions m
and z:

(a) Let Wbe a r.e. space. Then rr\(W) is an r.e. set and Wis recursive if
and only if vn(W) is a recursive space [3], PI. 14.
(b) Let W be any space and β any basis for W. If m is 1-1 on β, then
m(/3) =m(W) [3], PI. 15.
(c) Every space has a basis on which the function m is 1-1.
(d) Every r.e. space has a r.e. basis on which the function m is 1-1
[3], PI. 17.
(e) Let W be any space and β any basis of W. If z is 1-1 on β, then
z(β) =z(W) [3], PI. 26.

Proposition P15 There exists a recursive space We O.C. such that Wι is
not r.e.

Proof: Let / b e a 1-1 recursive function ranging over a non-recursive
n

subset of {2, 4, 6, 8, . . .}. Let g(n) = 1 +£/(*)• Note that g is a 1-1

strictly increasing function which is recursive and pg c {l, 3, 5, 7, . . .}.
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Furthermore, for all w, f(n) <g(n), and eof and eog are 1-1 recursive
functions, the latter strictly increasing. Hence ρ(eof) and ρ(eog) are r.e.
and recursive respectively. Define c(n) = ej(n) + eg(n), ό(n) = ej{n) - eg(n),
y = pc(n), W=L(γ), δ = pd(n), F=L(δ).

Note that W® V® L(η - (ρ(eof) u ρ(tfog ))) = UF and W1 = F e L(η - (p(eof) U
p(eo£ ))). Since m(c(n)) = m(d(n)) = e(g(n)) is a 1-1 strictly increasing
recursive function of n, y, and δ are bases for the recursive spaces W and
V respectively. If Wι were r.e., we could effectively test (e2n, W) for each
n and thus p(eof) would be recursive. Q.E.D.

6 Decidable spaces The r.e. space W is said to be decidable if the set
Up - W is r.e. Guhl [4] has shown that if F is infinite, then there are
decidable spaces which are not recursive. In light of our previous
examples we ask the following two questions:

(i) If W is r.e. and Wι is r.e., is W Φ Wι decidable?
(ii) If W is r.e. and for each xe UF we can effectively test (x, W) = 0, is
W e Wι decidable?

It is clear that a positive answer to (i) implies a positive answer to (ii).
Proposition P18 below gives a negative answer to (ii).

Proposition P16 Suppose W ® Wιf£ UF and xe Up - (W e Wι). Let β be an
orthogonal basis for W where β = pb, a 1-1 function. Suppose

k

x = ,Σy αfyβ,-., where wolog we assume that (β, ., W) Φ 0 for 0 ^ j ^ k.

Then:

(a) (x9 bn) Φ 0 for infinitely many n,
(b) for at least one j(0 ^ j ^ k), (e{., bn) Φ 0 for infinitely many n.

Proof: Clearly (a) =^(b). Now suppose (a) is false, say (x, bp) = 0 for all
but p = j l f . . ., j s . Let u = x - z where

Then ΛΓ = M + z, ze W, ue W1 and thus xe W Φ W1, contrary to the choice
of*. Q.E.D.

Proposition P17 Let W^ UP and β be an orthogonal basis for W where
β = pb, a 1-1 function. Let eneη. Then (en, bk) Φ 0 for infinitely many k if
and only if eneUF-(W Φ WL).

Proof: The "if" part follows directly from P16. The converse will follow
from: if xe We WL, then (x, bk) Φ 0 for at most finitely many k. Suppose
x = u + υ where ue W, ve Wι. Then (x, bk) = (u, bk). If u = a1biι + . . . +
anbin, then (u, b^ φ 0 if and only if fee {il9 . . ., in}. Q.E.D.

Proposition P18 There exists a r.e. space W such that
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(i) for all x e UP> we can effectively test (x, W) = 0,
(ii) UF - (W ® W1) is not r.e.

Proof: Let a be the function defined in LI. Let p be the function which
enumerates the primes in order, i.e., p(0) = 2, p(ή) = nth odd prime. It is
well known that p is 1-1, strictly increasing and recursive; let r = pp. For
each n, define

Pn = {p\n)\k > 1} and P* = {e(x)\xePn}

Let Γ = ε - (\JP\ Γ* = {e(x)\xe Γ} = η - ( U PjV Let t be the principal
\neε / \neε /

function of Γ; note that t is 1-1, strictly increasing and recursive. Define
the 1-1 recursive function ά(mfn) of two variables as follows:

d(0,0) = eQ + ex = et{o) + etω

d(0, n) = e0 - ( Σ a(i)etU)j + et(n+l), for n > 1,

for m ̂  1, we proceed as follows:

d(m,0) = epim-i) + ̂ ( w z . l ) ) 2 ,

g flW^(«-i))ί+1) + ^(^-D)«+ 2 > f 0 Γ n > L

For a fixed m, let Qw = pά(m, n). We note the following four facts:

(i) for all m, n, if m Φ n, then supp(Qw) Π supp(Qn) = φ,
(ii) supp(Qo) c Γ*, and if m ̂  1, then suP P(Qj c P*_1?

(iϋ) 77 c U supP(Qj,
met

(iv) pά is an orthogonal repere.

Now let/ be a 1-1 recursive function ranging over a non-recursive subset
a of r. Let αf = T - α; thus α?f is not r.e. The goal of the following con-
struction is to modify the definition of ά{m,n) above in such a way that the
resulting orthogonal repere spans Wand e(τ) Π (UF - (W® W1)) is e(af). We
define two 1-1 functions d and c such that W= L(pd) and Wι = L(pc). d will
be very similar to d; the only change is if f(k) = p(m - 1), then we define

d(m, n) = e(?Gw_ i ) )w+2, for all n > k.

Otherwise, d(m, n) = d(m,n). Note that d is recursive: to compute ά(m,n),
first compute /(0), . . ., f(n). If none of these is p(m - 1), then d(m,n) =
d(ra, n). If /(^) = /?(m - 1) for some 0 ̂  k ̂  n, then d(m, n) = ̂ ( O T . I ) ) « + 2 . We
define c(0) = ef(0). For k ̂  1, if /(^) = />(ra - 1), we define

cw B β M -(g# ( ί M 4

We note that c is also recursive. As an example, suppose /(4) = />(1) = 3.
Then

5(4,0) = e3 + e9

d(4,1) = ez - eQ + e2Ί
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d(4,2) = e3 - e0- 2e27 + e81

d(4,3) = e3 - e9 - 2e27 - 6e8 1 + e2 4 3

d(4,4) = β729

d(4,w) = ̂ w + 2 , for n ^ 4
c(4) = έ?3 - £9 - 2e2 7 - 6£8 1 - 42^243.

Note that L(d(4,0), . . ., d(4,3), c(4)) = L(e3, e9, e27, e81, e2A3). For fixed m
define Qm = ρd(m,n). We note_ that facts (i)-(iv) are true when Qm is
replaced with Qm. Let δ = (J Qm> Ύ = pc. Then y U δ is a repere since γ is

orthogonal and (c(&), δ) = 0 for all k. Since γ and δ are each r.e., W = L(δ)
and S - L(γ) are each infinite dimensional r.e. spaces. We claim:

(1) for each xe UP, we can effectively test (x, W) = 0,
(2) Wι = S,
(3) W e Wι is not decidable.

Re (i). Let xe Up. Then x = axeiγ + . . . + apeip. By looking at eiχy . . ., eip

we can effectively decompose x uniquely into a finite number of pieces

such that 0 <£ supp ΛΓ7jfe ^ supp(Q/jb). Note that for all j k , n such that j k Φ n,
(xjk,Ίϊn) = 0. Then (x, W) = 0 if and only if (x, δ) = 0 if and only if (xjk, Q^) =
0, for & = 1, 2, . . . , # . Each of these last q conditions can be effectively
tested as follows:

Case 1. j k = 0. Let et{i) be the element of maximum index in supp(^).
Compute d(0,0), . . . , d(0,i). Then (xjk,~Qjk) = 0 if and only if (xik, d(0,0)) = 0
and . . . and (xjk, d(0,i)) = 0. By the same reasoning as in the proof of
P10 (5), this happens if and only if Xjk= 0.

Case 2. j k = s > 0. Let ^ (s-1vvΓ be the element of supp(#7fe) of largest index.
Compute d(s,0), . . ., d(s, r - 2), d(s, r - 1).

Subcase 2.1. Card (supp (d(s, r - 2))) = 1. Then d(s, r - 2) = e r and
< * f t , d ( s , r - 2 ) > * 0 .

Subcase 2.2. Card (supp (ά(s, r - 2))) > 1 and card (supp (d(s, r - 1)))_= 1. Then
xjk € L(^(s-i), . . ., e{pls_ι))r.ίf %{s-ί)y)> Le-y xik € L (ί( s > 0), . . ., d(s, r - 2),
c(r - 1). Then (Xjk, Qjk) = 0 if and only if Xjk e L(c(r - 1)) and this can be
effectively tested.

Subcase 2.3. Card (supp (d(s, r - 2))) > 1 and card (supp (d(s, r - 1))) > 1. Then
xjk e L(d(s, 0), . . ., d(s, r - 2), d(s, r - 1) - e(pis_i))r+1) and, as in Case 1,
{xjk, Qjh) = 0 if and only if xjk = 0.

Re (2). If <ΛΓ, ψ) = 0, then the proof of (1) implies that xe 5, and thus Wι < S.
Conversely, (c(k), δ) = 0 for all k implies that S ^ Wι.

Re (5). Let p be a prime. By P17, epeUF - (W ® Wι) if and only if
<£p, d(m,n)> ^ 0 for infinitely many pairs (m, n). Suppose p = p(s - 1). Then
by construction, epe UF - (We ψ 1 ) if and only if (ep, ά(s, n)) Φ 0 for infinitely
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many n. Again by construction, this can happen if and only if pe a\ Thus

e(r) Π (UP -(W ®W')) = e(a'). If W®W were decidable, e(a') (and hence a')

would be r.e., a contradiction to the choice of the function / . Q.E.D.

The reader can easily show that if Z = L(pd) as defined in the beginning of

the previous proof, then Z is an infinite dimensional recursive space with

infinite codimension and Zι = (0). The space W constructed in the previous

proof is also an infinite dimensional recursive space with infinite codimen-

sion. In both cases, T = L({ej\j = 0 or jeτ}) is an r.e. complementary,

space. We summarize this in the following.

Proposition P19 There exist three infinite dimensional r.e. spaces W, Z, T

such that

(i) Z®T=W®T=UF,

(ii) Zι = (0) so Z Θ Zι is recursive,

(iii) W e Wι is not decidable.

Proof: P19 and previous remarks. Q.E.D.
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