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A GENERALIZATION OF COMBINATORIAL OPERATORS

ANNA SILVERSTEIN

Let ε = (0, 1, 2, . . .). We mean by number, an element of ε; by set, a
subset of ε. Let V be the class of all sets, Q the class of all finite sets.
Combinatorial operators, introduced by John Myhill [4], are certain maps
from V into V such that sets in Q are mapped into Q. We are concerned
with what happens if the operator is allowed to map finite sets to infinite
sets. If we require certain uniformity conditions, many of the properties of
combinatorial operators still hold. Some of these operators, called uniform
semicombinatorial operators, are inherited in a natural way from recur-
sive combinatorial operators of several variables. The main result of this
paper* is the existence of a family of uniform semicombinatorial operators
none of which can be obtained in this way.

We will use the following notations: For n^ 1, εn, Vn, Qn, and so on,
denote the ordinary Cartesian products. If ae Vn, 1 ^ t ^ n, at denotes the
f th component of a, and similarly for εn. When dealing with ordered
^-tuples of sets, c and ~ are understood coordinate-wise; however, γ c a
means γ c a and γ Φ a. If / is a function, f(x) and fx are used inter-
changeably, and δf denotes the domain of /. We will use the following Gδdel
numbering for Q: pQ = 0, and for n s* 1,

Pn = (*Ί, . . •> 4), where n = 2 ί ( 1 ) + . . . + 2iik\

and the ij are distinct. Denote card pn by rn. We assume knowledge of the
definitions and elementary properties of recursive equivalence types, as
given in [3], Chapter II or [2]. We denote the collection of isolated sets
by J.

1 Combinatorial and semicombinatorial operators An operator of n
variables (n ^1) is a mapping from a subclass of Vn containing Qn into V.
For any operator Φ, we write

*The results presented in this paper were taken from the author's doctoral dissertation
written at Rutgers University under the direction of Professor J. C. E. Dekker.
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U ( Range Φ) = Φε.

A combinatorial operator (CO) Φ of n variables is an operator with domain
Vn satisfying:

(i) aeQn=ΦΦ(a)eQ,
(ii) (α, βe Q*and a ~ β) =Φ Φ(α) - Φ(/3),
(iii) there is a map, denoted by Φ~\ from Φε into Qn such that for xe Φε,
ae Vn

xe Φ(CZ)<#ΦΦ"1(ΛΓ) C a.

The map Φ""1 given by (iii) is unique and is called the quasi-inverse for Φ.
Any operator Φ defined on Vn which has a quasi-inverse satisfies

Φ(α) = U{Φ(y): ye Qw and y c a}, for αe Vn.

It is useful to define the associated operator Φo from Qn into F, by

Φ0(αf) = Φ(α) - U Φ(y), for αe Qw.
ycof

A CO Φ of n variables is recursive if the function £*: εn —* ε given by

PteίO) = Φ [ P « I ) , . . . , P ( O L

is recursive. If Φ is any operator of w variables satisfying (i) and (ii), the
induced function of Φ, denoted by /φ, is the function from tn into ε given by

fΦ(i) = card φ[ι>(zΊ), . . ., i/(A,)],

where v0 = 0 , and for j ^ 1 , i/; = (0, 1, . . ., j - 1). A function f:εn-*ε is
called a combinatorial function if/ = / φ , for some CO Φ of n variables.

Definition: A semicombinatorial operator (SCO) Ψ is an operator of one
variable with domain V satisfying:

(i') (α, β e Q and a - β) ==> Φ(α) « Φ(β).
(ii') Φ has a quasi-inverse.

As in the case of a CO it can be proved that every SCO has a unique
quasi-inverse. An SCO is isolic if it maps Q into J. We define the induced
function Fψ of an SCO \£, analogously as for a CO, as follows:

Fψ(i) = Req Φ(^ ), for z'€ ε.

Clearly, the family of (isolic) SCOs which map Q into Q coincides with the
family of COs of one variable.

Definition: An SCO Ψ is uniform if

(iii1) the function g: Ψε—> ε, given by pg(x) = Φ"1^), has a partial recursive
extension,
(ivf) there is a partial recursive function of three variables f(a, b,x), such
that if ra = rb, then fab is a one-one function of x, with

MPa) £ δΛ* and /^[^(pΛ)] = Φ(pft).
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Each such function f(a, byx) is called a u-function for Ψ. A function
from ε into Ω is called semicombinatorial (SC) if it is induced by some
uniform SCO. An SC function is isolic if it maps ε into Λ, i.e., if it is
induced by a uniform isolic SCO. Analogues of most of the propositions of
[3], Chapter I, are valid for uniform SCOs and SC functions. These
analogues will be denoted by an asterisk. The following four examples of
such propositions are among the most important.

P8* Let Φ be a uniform SCO, and Φo ̂
s associated operator. Then

(a, βeQ and α * β) ==> %(a)I%(β).

P l l * Let >3> be a uniform isolic SCO. Then \£0 maps Q into Jl, and

(a, βeQ and a ~ β) ==> %(a) ** %(β).

P19* For each function F from ε into Λ, there is a unique sequence {Cϊ\ of

isolic integers such that for all n

P20* Let F: ε -» Λ, and let {C;} be the unique sequence given by P19*.
Then F is SC iffdeA for all i.

By P20*, a function from ε to ε is combinatorial iff it is SC. In
addition, it can be shown that the family of isolic SC functions includes all
constant functions F: ε —• Λ and is closed under addition and multiplication.
Finally, the following relations from [3], p. 51, are valid for a uniform
isolic SCO Φ, for a, β e V:

(1) aeJ ==>*(«)eJ,

(2) a* β ^ *(<*)- Φ(|3).

Thus a uniform isolic SCO induces a function from Ω to Ω which maps Λ
into Λ. Relation (1) follows from (iiir); (2) may be proved using the
following lemma, which is verified in [5], pp. 47-53:

Lemma If Ψ is a uniform isolic SCO, then the associated operator % has a

u-function.

2 Inherited semicombinatorial operators We will need the following
properties of Φo, where Φ is a CO of n variables; they are the respective
^-variable analogues of P8, P10, and P l l of [3].

(3) (α, β e Qn and a * β) => Φ0(α) Π Φ0(j8) = 0,

(4) φ(α) = U{$o(y): γeQnandγc a}Jor ae Vn,
(5) (a, βeQnanda~β)=Φ> Φ0(a) ~ Φ0(β).

Proposition Let k "&• 1, and let Φ be a recursive CO of k + 1 variables.

Then for any μ e Vk, the operator Φ given by

(6) Ψ(cr) = Φ(μ,a),foraeV,

is a uniform SCO. Furthermore, if μ e Jk, then Ψ is isolic.
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Proof: We first verify conditions (ir)-(iV) for Ψ. Condition (i') holds by
(ii) of [3], p. 52. Conditions (ii') and (iii') follow from the fact that the
projection of Φ"1 onto the (k + l)st coordinate is a quasi-inverse for Ψ.
Concerning (iv'): For all a, b such that ra = rb, let pab be the natural
bijection from pa onto ρb. From the recursiveness of Φ and (3), (4), (5), it
follows that there is a partial recursive function of three variables
f(a,b,x), such that if ra = rby then fab is a one-one function from Φ(ε*, ρa)
onto Φ(ε*, ρb), and for r e Qk, a c pa,

/JΦo(τ,α)]= Φ0(τ,M(α)).

Therefore by (4),

/J>(μ>p«*)] = $(μ,Pb)>

i.e.,

fabiMpa)] = *(pb).

The above shows that Φ i s a uniform SCO. Finally, if μ e Jk and ae Q, then
Φ(μ, α) e J by (iii) of [3], p. 52, and hence Ψ is isolic.

Definition: A uniform SCO Φ is inherited if Ψ is a recursive CO or if, for
some k ^ 1, there are a recursive CO Φ of k + 1 variables and a fc-tuple of
sets μ such that (6) holds. An SC function is inherited if it is induced by
some inherited SCO.

The family of isolic, inherited SC functions includes all constant
functions from ε into Λ, and is closed under addition and multiplication.
The non-recursive combinatorial functions are isolic SC functions (by
P20*) but they are not inherited. The theorem below asserts the existence
of a family of infinite-valued isolic SC functions which are not inherited.

We will need the following definitions and notation. A set is indecom-
posable if it cannot be expressed as the union of two infinite separable sets.
An RET X is indecomposable if it cannot be expressed as the sum of two in-
finite RETs, i.e., if every set in X is indecomposable. Clearly,all indecom-
posable RET s are isols. By [2], Theorem 43(b), there are 2*° infinite
indecomposable isols. Denote the collection of infinite indecomposable sets
by Jo, and the collection of infinite indecomposable isols by Λo. The
following conditional is obvious but useful:

Xe Λo =Φ (Vwe ε)(X - ne Λo).

For ae F, ne ε, let

[a, n] = {x: ρx c a and rx = w}.

Clearly,

a~ β-Φ[a9n]^ [β,n],

and we define for Aeί2,

[A, n] = Req[α, n], where a is any set in A.
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Theorem Let Xe Λo. Define C{ = X - i, for ie ε, and

F(ή) = Σ/ C, ( . ), for neε.

Then F is an isolic SC function which is not inherited.

Proof: The function ?{n) is SC by P20*. Suppose F is inherited. Let Ψ be

an inherited SCO which induces F. Since F attains infinite values, Ψ is not

a recursive CO. Therefore for some k ^ 1, there are a recursive CO Φ of

k + 1 variables and a &-tuple of sets μ, such that (6) holds for all α. We

may assume without loss of generality that all the sets μm(l ^ m < k) are

infinite. For suppose not, say μk is finite. Then the operator Φ* of k

variables given by

<&*(«!, . . ., ak) = Φtei, . . ., ak_ί9 μk, ak),

is a recursive CO such that for all a e V,

Ma) = Φ*(μi, . . ., μjb-i, a).

Denote for i e zk, n e ε,

(7) c(z, n) =/Φ o(ίi, . . ., 4 , rc) € ε.

(This is well-defined by (5).) Denote the ordered &-tuple of zeros by 0 .̂

We will need the following two lemmas.

Lemma LI For a e Q,

*o(α) = U{Φo(r,α): τeQkandτ c μ}.

Lemma L2 Suppose %(a)eJΌ for some aeQ. Then there is a number t,

1 ^ t ^ k, such that μte Jί and

Reqμ, = Req %(ά) - c(0k,n),

where n = card a.

Lemma LI is a direct consequence of the definition of Φo &
nd (4); L2

will be verified later. The proof of the theorem can be completed using L2

as follows: For any ne ε, it can be shown that

(8) Req %(un) = Cn = X - n,

using a proof similar to that in [3], p. 20. Let s(0) = 0, and for j ^ 0, let

s ( j + D = s( i ) + c(0 Λ ϊ s θ ) ) + l.

By (8) and L2, there i s for each j e ε, a set μ,(7 ) e ( μ l 5 . . ., μk) such that

μ/ ( / ) e ĉ  and

Req μ / ( / ) = Req %(l/sφ) - c(0^, s(j)).

It follows by (8) and the definition of the sequence s(j) that for each jet,

Req μ,(7 ) > Req μκ/+i) Therefore, the sets μ ^ ) are all distinct, which i s a

contradiction. This proves that F cannot be inherited.
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We now prove L2. Assume aeQ is such that %(a)eJΌ, and let η =
%(a). For τeVk and i e εk, we will say r is of type i, if T e Qk, r c μ and for
1 ^ m ^ ky card τOT = ΐOT. Define for i e εk,

(9) η(i) = U{Φ o (τ,a): T is of type *}.

By LI,

(10) 7] = U η(i).
iezk

Note that the unions in (9) and (10) are disjoint by (3). Denote for 1 ̂  m ^ k,
ϋm = Req μm. We claim:

(a) Forίcε*, Req φ) = [U^zΊ] . . . .[UA,zJ c(i,«);
(b) For e e ε* - (0^), the set φ) is infinite or empty;
(c) There is a unique ie εk - (0Λ) such that 77(0 is infinite;
(d) Req η = c(0&,w) + Req η(i), where i is the unique &-tuple given by (c);
(e) If i is as in (d), then for some t, 1 ̂  t ^ k, Req φ) = \Jt.

Statements (d) and (e) together imply the desired result. Statement (a) is a
direct consequence of the definitions and relations (7) and (9); (b) follows
from (a) and the fact that the RETs \Jm are infinite. Concerning (c): Recall
that η is an infinite indecomposable set. We have η(i) is infinite for at
least one i Φ 0 ,̂ since otherwise (b), (9), and (10) imply

η =η(0k) = Φ0(Φk,(*)

(where φk denotes the &-tuple of empty sets), and hence η e Q. Also, for any
ie εk,

r?ωlUi?O"),
jΦi

since Φ is recursive. Therefore, by (10), at most one of the sets η(i) is
infinite. This proves (c). Statement (d) follows from (b), (c), (7), and*(10).
Finally, (e) can be proved from (a) using the fact that for A infinite, n ^ 2,
[A, n] is decomposable. This proves L2 and hence the Theorem.

Remark: According to a suggestion by Erik Ellentuck, the result of the
Theorem also holds if X is any infinite isol which is multiple-free, i.e.,
such that

2Y^X^>Yeε.

Since there are infinite multiple-free regressive isols ([1]), this proves the
existence of a non-inherited isolic SC function with range a subset of the
class of infinite regressive isols.
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