RELATIVE STRENGTH OF MALITZ QUANTIFIERS

STEVEN GARAVAGLIA

In this paper I will solve a problem concerning Malitz quantifiers which was posed in [1]. Before stating this problem I will introduce some notation which will be used in the proof. If X is a set then $c(X)$ is the cardinality of X and $[X]^{n}$ is the set of n-element subsets of $X . S_{n}$ is the set of permutations of $\{1,2, \ldots, n\}$. If \mathfrak{A} is a structure $|\boldsymbol{A}|$ denotes the domain of \mathfrak{M}. If \mathcal{L} is a first-order language, $\mathcal{L}(|\mathfrak{A}|)$ is the result of adjoining to \mathcal{L} one constant symbol for each element of $|\boldsymbol{A}|$. No distinction will be made between elements of $|\boldsymbol{A}|$ and the constant symbols denoting them. Variables will be denoted $x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots$

Now let \mathcal{L} be any first-order language. For each n and each infinite cardinal α a language \mathcal{L}_{α}^{n} is obtained from \mathcal{K} by adjoining the quantifier Q_{α}^{n} with the following interpretation: $\mathfrak{A} \vDash Q_{\alpha}^{n} x_{1} \ldots x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$ if and only if there is a set $X \subset|\boldsymbol{M}|$ such that $\mathrm{c}(X) \geqslant \alpha$ and for all distinct a_{1}, \ldots, a_{n} in $X, \mathfrak{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$. Malitz and Magidor [2] and Badger [1] have established many deep and interesting results concerning these languages. In [1], page 91, Badger gave a list of unsolved problems about the languages \mathcal{L}_{α}^{n}. There he raised the question whether $\mathcal{L}_{\alpha}^{n+1}$ is a proper extension of \mathscr{L}_{α}^{n}. In this paper I answer this question affirmatively for all $n \geqslant 1$ and all $\alpha>\omega$ by exhibiting two structures \mathfrak{A} and \mathfrak{B} of the same similarity type such that \mathfrak{A} and \mathfrak{B} satisfy the same sentences in \mathscr{L}_{α}^{n} but do not satisfy the same sentences in $\mathcal{L}_{\alpha}^{n+1}$. ${ }^{1}$

Let n be any fixed positive integer and let α be any fixed uncountable cardinal. \mathcal{L} will be a first-order language with equality whose only nonlogical symbol is an $(n+1)$-ary predicate symbol R.

Definition 1: If \mathfrak{A} is an \mathcal{K}-structure, γ is a finite subset of $|\mathfrak{A}|, \sigma \in S_{n+1}$, and $t_{1}, \ldots, t_{n+1} \epsilon \gamma \cup\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$ then $\sigma\left(t_{1}, \ldots, t_{n+1}\right)$ is the $(n+1)-$ tuple $\left(t_{\sigma(1)}, \ldots, t_{\sigma(n+1)}\right)$ and $\sigma R\left(t_{1}, \ldots, t_{n+1}\right)$ is the $\mathcal{L}(|\boldsymbol{\mu}|)$-formula $R\left(t_{\sigma(1)}\right.$, ..., $\left.t_{\sigma(n+1)}\right)$.

[^0]Definition 2: Suppose \mathfrak{A} is an \mathcal{L}-structure, γ is a finite subset of $|\boldsymbol{A}|$, and $1 \leqslant m \leqslant n$. An m-type p over γ is a set of $\mathcal{L}(|\boldsymbol{\mu}|)$-formulas such that
(1) all elements of p are of the form $\tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(j)}, a_{1}, \ldots, a_{n-j+1}\right)$ where $1 \leqslant j \leqslant m, \sigma \in S_{m}, \tau \in S_{n+1}$, and a_{1}, \ldots, a_{n-j+1} are distinct elements of γ,
(2) if $1 \leqslant j \leqslant m, \tau \in S_{n+1}, \quad \sigma \in S_{m}, \tau^{\prime} \in S_{n+1}, \sigma^{\prime} \in S_{m}$, and $\tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(j)}\right.$, $\left.a_{1}, \ldots, a_{n-j+1}\right) \in p$ then $\tau^{\prime} R\left(x_{\sigma /(1)}, \ldots, x_{\sigma(j)}, a_{1}, \ldots, a_{n-j+1}\right) \in p$.
Definition 3: Suppose $\mathfrak{\mu}$ is an \mathcal{L}-structure, γ is a finite subset of $|\boldsymbol{\mu}|$, and $1 \leqslant m \leqslant n$. A proper m-type p over γ is a set of $\mathcal{L}(|\boldsymbol{M}|)$-formulas such that
(1) all elements of p are of the form $\tau R\left(x_{1}, \ldots, x_{m}, a_{1}, \ldots, a_{n-m+1}\right)$ where $\tau \in S_{n+1}$ and a_{1}, \ldots, a_{n-m+1} are distinct elements of γ,
(2) if $\tau \in S_{n+1}, \tau^{\prime} \in S_{n+1}$, and $\tau R\left(x_{1}, \ldots, x_{m}, a_{1}, \ldots, a_{n-m+1}\right) \in p$ then $\tau^{\prime} R\left(x_{1}, \ldots\right.$, $\left.x_{m}, a_{1}, \ldots, a_{n-m+1}\right) \in p$.

Clearly, a proper m-type p is just an m-type in which all of the variables x_{1}, \ldots, x_{m} occur in every formula in p.
Definition 4: If \mathfrak{A} is an \mathcal{L}-structure, γ is a finite subset of $|\boldsymbol{A}|, p$ is an m-type over γ, and $b_{1}, \ldots, b_{m} \in|\boldsymbol{M}|$ then $\left(b_{1}, \ldots, b_{m}\right)$ realizes p if and only if
$\boldsymbol{A} \vDash \tau R\left(b_{\sigma(1)}, \ldots, b_{\sigma(j)}, a_{1}, \ldots, a_{n-j+1}\right) \leftrightarrow \tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(j)}, a_{1}, \ldots, a_{n-j+1}\right) \in p$ for all $1 \leqslant j \leqslant m, \tau \in S_{n+1}, \sigma \in S_{m}$, and $a_{1}, \ldots, a_{n-j+1} \epsilon \gamma$.
These notions are all borrowed from the customary model-theoretic definitions of type, realization, etc. It can be shown that types as they have been defined here correspond exactly to quantifier-free types in the usual sense with respect to a certain first-order theory. But it does not seem to simplify the exposition to use this fact so I will just ignore it.

Now I proceed to construct two \mathcal{L}-structures $\mathfrak{A}=\left\langle A, R^{\mathfrak{2}}\right\rangle$ and $\mathfrak{B}=$ $\left\langle B, R^{\mathfrak{B}}\right\rangle$. First, for each $\beta<\alpha$ a structure $\mathfrak{A}_{\beta}=\left(A_{\beta}, R^{\mathfrak{Z}}{ }_{\beta}\right)$ will be constructed. Let $A_{0}=\{1,2, \ldots, n+1\}, R^{21_{0}}=\left\{\sigma(1,2, \ldots, n+1) \mid \sigma \in S_{n+1}\right\}$. If β is a limit ordinal let $A_{\beta}=\mathrm{U}_{\delta<\beta}^{\prime} A_{\delta}, R^{2 \alpha_{\beta}}=\bigcup_{\delta<\beta} R^{212}$. If $\beta=\delta+1$ where δ is even, then let a_{β} be any element such that $a_{\beta} \notin A_{\delta}$ and let $A_{\beta}=A_{\delta} \cup\left\{a_{\beta}\right\}$ and

$$
R^{\mathfrak{N}_{\beta}}=R^{\mathfrak{2 d}_{\delta}} \cup\left\{\sigma\left(a_{1}, \ldots, a_{n}, a_{\beta}\right) \mid \sigma \in S_{n+1}, a_{1}, \ldots, a_{n} \in A_{\delta} \bigwedge_{\substack{s \neq t \\ 1 \leqslant s, t \leqslant n}} a_{s} \neq a_{t}\right\} .
$$

Now suppose that $\beta=\delta+1$ where δ is odd. For each finite subset γ of A_{δ} and each n-type p over γ let $X_{\gamma, p}^{\beta}$ be a set of cardinality α such that $X_{\gamma, p}^{\beta} \cap A_{\delta}=\varnothing$ and if $\gamma \neq \gamma^{\prime}$ or $p \neq p^{\prime}$ then $X_{\gamma, p}^{\beta} \cap X_{\gamma^{\prime}, p^{\prime}}^{\beta}=\varnothing$. Let $A_{\beta}=A_{\delta} \cup$ $\bigcup_{\gamma, p} X_{\gamma, p}^{\beta}$. For each n-tuple $\left(b_{1}, \ldots, b_{n}\right)$ of distinct elements of $X_{\gamma, p}^{\beta}$ let

$$
\begin{aligned}
& p\left(b_{1}, \ldots, b_{n}\right)=\left\{\tau\left(b_{\sigma(1)}, \ldots, b_{\sigma(j)}, a_{1}, \ldots, a_{n-j+1}\right) \mid\right. \\
& \left.\tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(j)}, a_{1}, \ldots, a_{n-j+1}\right) \in p\right\} .
\end{aligned}
$$

Let

$$
R^{\mathbb{M}_{\beta}}=R^{\mathbf{2} \mathbf{M}_{\delta}} \cup \bigcup_{\gamma, p} \bigcup\left\{p\left(b_{1}, \ldots, b_{n}\right) \mid b_{1}, \ldots, b_{n} \in X_{\gamma, p}^{\beta} \bigwedge_{1 \leqslant s \neq t \leqslant n} b_{s} \neq b_{t}\right\} .
$$

Finally, let $\mathfrak{A}=\left\langle A, R^{\mathfrak{2}}\right\rangle$ where $A=\bigcup_{\beta<\alpha} A_{\beta} R^{\mathfrak{2} 1}=\bigcup_{\beta<\alpha} R^{\mathfrak{M}_{\beta}}$.
\mathfrak{B} is constructed in a similar manner. For each $m<\omega$ a structure \boldsymbol{B}_{m} $\mathfrak{B}_{m}=\left\langle B_{m}, R^{\mathfrak{3}_{m}}\right\rangle$ will be constructed as follows. Set $B_{0}=\{1,2, \ldots, n+$ $1\} R^{\mathfrak{B}_{0}}=\left\{\sigma(1,2, \ldots, n+1) \mid \sigma \epsilon S_{n+1}\right\}$. If \boldsymbol{B}_{m} has been constructed, then for each finite $\gamma \subset B_{m}$ and each n-type p over γ pick a set $\bar{X}_{\gamma, p}^{m+1}$ of cardinality α such that $B_{m} \cap \bar{X}_{\gamma, p}^{m+1}=\varnothing$ and if $\gamma \neq \gamma^{\prime}$ or $p \neq p^{\prime}$ then $\bar{X}_{\gamma, p}^{m+1} \cap \bar{X}_{\gamma^{\prime}, p^{\prime}}^{m+1}=\varnothing$. Let $B_{m+1}=B_{m} \cup \bigcup_{\gamma, p} \bar{X}_{\gamma, p}^{m+1}$. Define $p\left(b_{1}, \ldots, b_{n}\right)$ as before and let

$$
R^{\mathfrak{B}_{m+1}}=R^{\mathfrak{B}_{m}} \cup \bigcup_{\gamma, p} \bigcup\left\{p\left(b_{1}, \ldots, b_{n}\right) \mid b_{1}, \ldots, b_{n} \in \bar{X}_{\gamma, p}^{m+1} \bigwedge_{\substack{s \neq t \\ 1 \leqslant s, t \leqslant n}} b_{s} \neq b_{t}\right\} .
$$

Finally, define $\mathfrak{B}=\left\langle B, R^{\mathfrak{3}}\right\rangle$ where $B=\bigcup_{m<\omega} B_{m}, R^{\mathfrak{B}}=\bigcup_{m<\omega} R^{\mathfrak{B}{ }^{\mathfrak{3}}}$.
It is important to make four simple observations about these structures:
(1*) if $\delta<\beta<\alpha$ then $\mathfrak{A}_{\delta} \subset \mathfrak{A}_{\beta}$ and if $m<k<\omega$ then $\boldsymbol{B}_{m} \subset \boldsymbol{3}_{k}$;
$\left(2^{*}\right)$ if $\boldsymbol{A} \vDash R\left(a_{1}, \ldots, a_{n+1}\right)$ then $\mathfrak{A} \vDash \bigwedge_{1 \leqslant s, t \leqslant n+1} a_{s} \neq a_{t}$ and if $\mathfrak{B} \vDash R\left(b_{1}, \ldots, b_{n+1}\right)$ then $\boldsymbol{B} \vDash \bigwedge_{\substack{s \neq t \\ 1 \leqslant s, t \leqslant n+1}} b_{s} \neq b_{t}$;
(3*) if $\beta<\alpha, \beta=\delta+1$ where δ is odd, γ is a finite subset of A_{δ} and p is an n-type over γ then each n-tuple of distinct elements of $X_{\gamma, p}^{\beta}$ realizes p, and an analogous statement holds for \mathfrak{B};
(4*) both $R^{\mathfrak{N}}$ and $R^{\mathfrak{B}}$ are symmetric, i.e., if $\sigma \epsilon S_{n+1}$ and $\mathfrak{A} \vDash R\left(a_{1}, \ldots, a_{n+1}\right)$ then $\boldsymbol{\mathfrak { A }} \vDash \sigma R\left(a_{1}, \ldots, a_{n+1}\right)$ and if $\mathfrak{\mathfrak { B }} \vDash R\left(b_{1}, \ldots, b_{n+1}\right)$ then $\mathfrak{B} \vDash \sigma R\left(b_{1}, \ldots, b_{n+1}\right)$.

These statements are all proved by quite simple inductive arguments. Using these facts, I can now prove the following lemma which contains the easy half of the main result of this paper.
Lemma $1 \dot{\mathfrak{A}} \vDash Q_{\alpha}^{n+1} x_{1} \ldots x_{n+1} R\left(x_{1}, \ldots, x_{n+1}\right)$ and $\left.\mathfrak{B} \vDash\right\urcorner Q_{\alpha}^{n+1} x_{1} \ldots x_{n+1} R\left(x_{1}\right.$, ..., x_{n+1}).

Proof: By construction of \mathfrak{A}, if $\beta=\delta+1$ where $\delta<\alpha$ is even then $A_{\beta}=$ $A_{\delta} \cup\left\{a_{\beta}\right\}$. Let $X=\left\{a_{\beta} \mid \beta<\alpha, \beta=\delta+1\right.$, δ even $\}$. Then $c(X)=\alpha$. Any $(n+1)-$ tuple of distinct elements of X has the form $\sigma\left(a_{\beta_{1}}, \ldots, a_{\beta_{n+1}}\right)$ where $\beta_{1}<$ $\ldots<\beta_{n+1}, \beta_{i}=\delta_{i}+1, \delta_{i}$ even for $i=1, \ldots, n+1$, and $\sigma \epsilon S_{n+1}$. The set $\left\{a_{\beta_{1}}, \ldots, a_{\beta_{n}}\right\}$ is contained in $A_{\delta_{n+1}}$ since $\beta_{1}<\ldots<\beta_{n}<\delta_{n+1}$, so by construction of $\mathfrak{A} \sigma\left(a_{\beta_{1}}, \ldots, a_{\beta_{n+1}}\right) \in R^{\mathfrak{2}}$. This proves that $\mathfrak{A} \vDash \mathbb{Q}_{\alpha}^{n+1} x_{1} \ldots$ $x_{n+1} R\left(x_{1}, \ldots, x_{n+1}\right)$.

Now suppose that $X \subset B, c(X)=\alpha$, and for all distinct $b_{1}, \ldots, b_{n+1} \in X$ $\mathfrak{B} \vDash R\left(b_{1}, \ldots, b_{n+1}\right)$. Since $\omega<\alpha$ there must be some m such that $X \cap$ $\left(B_{m+1}-B_{m}\right)$ is infinite. Let b_{1}, \ldots, b_{n+1} be distinct elements of $X \cap\left(B_{m+1}-\right.$ $\left.B_{m}\right)$. By our assumption $\mathfrak{B} \vDash R\left(b_{1}, \ldots, b_{n+1}\right)$. Suppose that $\left(b_{1}, \ldots, b_{n+1}\right) \epsilon$
$R^{\mathfrak{B}_{m+1}}$. Then there must be some $\gamma \subset B_{m}$, an n-type p over γ, and distinct elements c_{1}, \ldots, c_{n} in $\bar{X}_{\gamma, p}^{m+1}$ such that $R\left(b_{1}, \ldots, b_{n+1}\right) \in p\left(c_{1}, \ldots, c_{n}\right)$. But if $R\left(t_{1}, \ldots, t_{n+1}\right) \in p\left(c_{1}, \ldots, c_{n}\right)$ then at least one of the t_{i} must be an element of γ. This is an immediate consequence of the definition of an n-type. Since $\gamma \cap\left\{b_{1}, \ldots, b_{n+1}\right\}=\varnothing$, it must be that $\left(b_{1}, \ldots, b_{n+1}\right) \notin R^{\mathfrak{B}_{m+1}}$. But by observation (1^{*}), $\mathfrak{B}_{m+1} \subset \mathfrak{B}$ so $\left(b_{1}, \ldots, b_{n+1}\right) \notin R^{\mathfrak{B}}$, i.e., $\left.\mathfrak{B} \vDash\right\urcorner R\left(b_{1}, \ldots\right.$, $\left.b_{n+1}\right)$. This is a contradiction. Therefore no such X can exist, i.e., $\mathfrak{B} \vDash \neg Q_{\alpha}^{n+1} x_{1} \ldots x_{n+1} R\left(x_{1}, \ldots, x_{n+1}\right)$.
Q.E.D.

Now we move on to the more difficult part of the proof: showing that \mathfrak{A} and \mathfrak{B} satisfy the same sentences in \mathcal{C}_{α}^{n}. I adjoin two O-ary predicates T ("true") and \mathbf{F} ("false") to \swarrow and give them the obvious interpretation in any structure. They can be regarded as defined terms with the definitions $\mathbf{T} \equiv \forall x_{1}\left(x_{1}=x_{1}\right)$ and $\mathbf{F} \equiv \exists x_{1}\left(x_{1} \neq x_{1}\right)$. This expanded language is called $\mathcal{L}(\mathbf{T}, \mathbf{F})$.
Lemma 2 To each formula $\varphi\left(y_{1}, \ldots, y_{k}\right)$ of $\mathcal{L}(\mathbf{T}, \mathbf{F})_{\alpha}^{n}$ with free variables among y_{1}, \ldots, y_{k} one can effectively associate a quantifier-free formula $\psi\left(y_{1}, \ldots, y_{k}\right)$ of $\mathcal{L}(\mathbf{T}, \mathbf{F})$ with free variables among y_{1}, \ldots, y_{k} such that

$$
\mathfrak{A} \vDash \forall y_{1} \ldots \forall y_{k}\left[\varphi\left(y_{1}, \ldots, y_{k}\right) \leftrightarrow \psi\left(y_{1}, \ldots, y_{k}\right)\right]
$$

and

$$
\mathfrak{B} \vDash \forall y_{1} \ldots \forall y_{k}\left[\varphi\left(y_{1}, \ldots, y_{k}\right) \leftrightarrow \psi\left(y_{1}, \ldots, y_{k}\right)\right] .
$$

Proof: By using induction on the length of the formula, the proof can be reduced to the consideration of two special cases.
Case 1: Suppose $\varphi\left(y_{1}, \ldots, y_{k}\right) \equiv \exists x_{1} \eta\left(x_{1}, y_{1}, \ldots, y_{k}\right)$ where η is a conjunction of atomic formulas and negations of atomic formulas in $\mathcal{L}(\mathbf{T}, \mathbf{F})$.
(a) If $x_{1}=y_{j}$ or $y_{j}=x_{1}$ is a conjunct in η for any j then it is easy to see that

$$
\mathfrak{M} \vDash \forall y_{1} \ldots \forall y_{k}\left[\exists x_{1} \eta\left(x_{1}, y_{1}, \ldots, y_{k}\right) \leftrightarrow \eta\left(x_{1} / y_{j}, y_{1}, \ldots, y_{k}\right)\right]
$$

and

$$
\mathfrak{B} \vDash \forall y_{1} \ldots \forall y_{k}\left[\exists x_{1} \eta\left(x_{1}, y_{1}, \ldots, y_{k}\right) \leftrightarrow \eta\left(x_{1} / y_{j}, y_{1}, \ldots, y_{k}\right)\right]
$$

where $\eta\left(x_{1} / y_{j}, y_{1}, \ldots, y_{k}\right)$ is the result of substituting y_{j} for every occurrence of x_{1} in $\eta\left(x_{1}, y_{1}, \ldots, y_{k}\right)$.
(b) Suppose that there is no j such that $y_{j}=x_{1}$ or $x_{1}=y_{j}$ is a conjunct in η. Let Δ be the smallest set of quantifier-free formulas of $\mathcal{L}(\mathbf{T}, \mathbf{F})$ satisfying the following rules:
(1) $\mathbf{T} \in \Delta$
(2) $\rho\left(y_{1}, \ldots, y_{k}\right) \in \Delta$ where $\rho\left(y_{1}, \ldots, y_{k}\right)$ is the conjunction of all the conjuncts in η which do not contain x_{1}
(3) if $\sigma \in S_{n+1}, j \geqslant 1$, and $\sigma R\left(x_{1}, \ldots, x_{1}, y_{i_{1}}, \ldots, y_{i_{n-j}}\right)$ is a conjunct in η, or if $x_{1} \neq x_{1}$ is a conjunct in η, then $\mathbf{F} \in \Delta$
if $x_{1} \neq x_{1}$ is a conjunct in η, then $\mathbf{F} \in \Delta$
(4) if $\sigma \epsilon S_{n+1}$ and $\sigma R\left(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ is a conjunct in η, then $\bigwedge_{1 \leqslant s, t \leq n} y_{i_{s}} \neq$ $y_{i_{t}} \in \Delta$
(5) if $\tau_{1} \in S_{n+1}, \tau_{2} \in S_{n+1}$ and both $\tau_{1} R\left(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ and $7 \tau_{2} R\left(x_{1}, y_{j_{1}}, \ldots, y_{j_{n}}\right)$ are conjuncts in η, then $\bigvee_{s=1}^{n}\left(\bigwedge_{t=1}^{n} y_{i_{s}} \neq y_{j_{t}}\right) \in \Delta$.

Let $\psi\left(y_{1}, \ldots, y_{k}\right) \equiv \bigwedge_{\mu \epsilon \Delta} \mu\left(y_{1}, \ldots, y_{k}\right)$. Then I claim that $\boldsymbol{\mathfrak { A }} \vDash \forall y_{1} \ldots$ $\forall y_{k}\left[\exists x_{1} \eta\left(x_{1}, y_{1}, \ldots, y_{k}\right) \stackrel{\mu \epsilon \Delta}{\leftrightarrows} \psi\left(y_{1}, \ldots, y_{k}\right)\right]$ and $\boldsymbol{B} \vDash \forall y_{1} \ldots \forall y_{k}\left[\exists x_{1} \eta\left(x_{1}, y_{1}\right.\right.$, $\left.\left.\ldots, y_{k}\right) \leftrightarrow \psi\left(y_{1}, \ldots, y_{k}\right)\right]$. The proofs for \mathfrak{A} and \mathfrak{B} are essentially identical, so I will confine my attention to \mathfrak{M}. So suppose that (a_{1}, \ldots, a_{k}) is any k-tuple of elements of A, and suppose that $\mathfrak{A} \vDash \exists x_{1} \eta\left(x_{1}, a_{1}, \ldots, a_{k}\right)$. Then for some $a \in A, \boldsymbol{\mu} \vDash \eta\left(a, a_{1}, \ldots, a_{k}\right)$. For each $\mu \in \Delta$ I will show that $\dot{\boldsymbol{\mu}} \vDash \mu\left(a_{1}, \ldots, a_{k}\right)$. Any μ in Δ must be placed there according to one of the rules (1)-(5). So I consider each rule in turn. If $\mu \equiv \mathbf{T}$ then there is nothing to prove since $\boldsymbol{\mu} \vDash \mathbf{T}$ is always valid. If $\mu\left(y_{1}, \ldots, y_{k}\right) \equiv \rho\left(y_{1}, \ldots, y_{k}\right)$ then since ρ is a conjunction of conjuncts in η and $\boldsymbol{\mathcal { A }} \vDash \eta\left(a, a_{1}, \ldots, a_{k}\right)$ we have $\boldsymbol{\mu} \vDash \rho\left(a_{1}, \ldots, a_{k}\right) . \mu$ cannot be put into Δ according to rule (3) since in that case either $x_{1} \neq x_{1}$ or something of the form $\sigma R\left(x_{1}, \ldots, x_{1}, y_{i_{1}}, \ldots, y_{i_{n-j}}\right)$ ($\sigma \in S_{n+1}, j \geqslant 1$) would be a conjunct in η. It would follow that either $\boldsymbol{M} \vDash a \neq$ a, which is impossible or $\mathfrak{A} \vDash \sigma R\left(a, \ldots, a, a_{i_{1}}, \ldots, a_{i_{n-j}}\right)$ which is impossible by observation (2*). Next suppose μ arises via rule (4). Then $\mu \equiv \bigwedge_{\substack{s \neq t \\ 1 \leqslant s, t \leqslant n}} y_{i_{s}} \neq y_{i_{t}}$ and for some $\sigma \in S_{n+1}, \sigma R\left(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ is a conjunct in η. Therefore $\mathfrak{M} \vDash \sigma R\left(a, a_{i}, \ldots, a_{i_{n}}\right)$ and by observation (2*), this implies that $\mathfrak{M} \vDash \bigwedge_{1 \leqslant s, t \leq n} a_{i_{s}} \neq a_{i_{t}}$. Finally suppose μ arises from rule (5). Then μ is of the form $\bigvee_{s=1}^{n}\left(\bigwedge_{t=1}^{n} y_{i_{s}} \neq y_{j_{t}}\right)$ and for some $\tau_{1} \in S_{n+1}, \tau_{2} \in S_{n+1}$ both $\tau_{1} R\left(x_{1}, y_{i_{1}}\right.$, $\left.\ldots, y_{i_{n}}\right)$ and $\urcorner \tau_{2} R\left(x_{1}, y_{j_{1}}, \ldots, y_{j_{n}}\right)$ are conjuncts in η. Hence $\boldsymbol{M} \vDash \tau_{1} R\left(a, a_{i_{1}}\right.$, $\left.\ldots, a_{i_{n}}\right)$ and $\boldsymbol{A} \vDash 7 \tau_{2} R\left(a, a_{j_{1}}, \ldots, a_{i_{n}}\right)$. By observation (4*), R^{24} is symmetric, so $\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\} \neq\left\{a_{i_{1}}, \ldots, a_{j_{n}}\right\}$. By observation $\left(2^{*}\right) a_{i_{1}}, \ldots, a_{i_{n}}$ are distinct, so in fact $\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\} \not \subset\left\{a_{j_{1}}, \ldots, a_{j_{n}}\right\}$. Therefore there is some s such that $a_{i_{s}} \notin\left\{a_{j_{1}}, \ldots, a_{j_{n}}\right\}$. This implies that $\mathfrak{A} \vDash V_{s=1}^{n}\left(\bigwedge_{t=1}^{n} a_{i_{s}} \neq a_{i_{t}}\right)$. Conversely, suppose $\mathfrak{A} \vDash \bigwedge_{\mu \in \Delta} \mu\left(a_{1}, \ldots, a_{k}\right)$. I will show that $\mathfrak{A} \vDash \exists x_{1} \eta\left(x_{1}\right.$, $\left.a_{1}, \ldots, a_{k}\right)$. Let $\gamma=\left\{a_{1}, \ldots, a_{k}\right\}$. Pick some $\delta<\alpha$ such that δ is odd and $\gamma \subset A_{\delta}$. Let $p=\left\{\tau R\left(x_{\sigma(1)}, a_{i_{1}}, \ldots, a_{i_{n}}\right) \mid \sigma \in S_{n}, \tau \in S_{n+1}\right.$, and for some $\tau^{\prime} \epsilon$ $S_{n+1} \tau^{\prime} R\left(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ is a conjunct in $\left.\eta\right\}$. I claim that p is an n-type over γ. First, if $\tau R\left(x_{\sigma(1)}, a_{i_{1}}, \ldots, a_{i_{n}}\right) \in p$ for some $\tau \in S_{n+1}, \sigma \in S_{n}$ then by definition of $p \tau^{\prime} R\left(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ is a conjunct in η for some $\tau^{\prime} \in S_{n+1}$ and hence, again by definition of $p, \tau^{\prime \prime} R\left(x_{\sigma^{\prime \prime}(1)}, a_{i_{1}}, \ldots, a_{i_{n}}\right) \in p$ for any $\tau^{\prime \prime} \in S_{n+1}$ and $\sigma^{\prime \prime} \in S_{n}$. This shows that p satisfies the second condition in the definition of an n-type. Now suppose again that $\tau R\left(x_{\sigma(1)}, a_{i_{1}}, \ldots, a_{i_{n}}\right) \in p$. Then for some $\tau^{\prime} \in S_{n+1}, \tau^{\prime} R\left(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ is a conjunct in η. Hence $\bigwedge_{s \neq t} y_{i_{s}} \neq$ $y_{i_{t}} \in \Delta$. Then since $\boldsymbol{\mu} \vDash \bigwedge_{\mu \epsilon \Delta} \mu\left(a_{1}, \ldots, a_{k}\right)$ we have $\boldsymbol{\mathcal { M }} \vDash \bigwedge_{\substack{s+t \\ 1 \leqslant s, t \leqslant n}} a_{i_{s}} \neq a_{i_{t}} . \substack{s \neq t, t \leqslant n}$ This proves that p satisfies the first condition in the definition of an n-type.

Take any n-tuple $\left(c_{1}, \ldots, c_{n}\right)$ of distinct elements of $X_{\gamma, p}^{\delta+1}$. By observation $\left(3^{*}\right),\left(c_{1}, \ldots, c_{n}\right)$ realizes p. I claim that $\mathfrak{A} \vDash \eta\left(c_{1}, a_{1}, \ldots, a_{k}\right)$.

I consider each conjunct in η separately. For conjuncts in η which do not contain x_{1} it is sufficient to note that they are also conjuncts in ρ, and since $\rho \in \Delta$ we have by assumption, $\mathfrak{M} \vDash \rho\left(a_{1}, \ldots, a_{k}\right)$. Also, by hypothesis, η has no conjunct of the form $x_{1}=y_{j}$ or $y_{j}=x_{1}$. If $x_{1} \neq y_{j}$ or $y_{j} \neq x_{1}$ is a conjunct in η, then $\mathfrak{M} \vDash c_{1} \neq a_{j}\left(\mathfrak{A} \vDash a_{j} \neq c_{1}\right)$ since $c_{1} \in A_{\delta+1}-A_{\delta}$ but $a_{j} \in A_{\delta}$. Nothing of the form $\sigma R\left(x_{1}, \ldots, x_{1}, y_{i_{1}}, \ldots, y_{i_{n-j}}\right)$ where $\sigma \in S_{n+1}$ and $j \geqslant 1$ can be a conjunct in η since if it were then $F \in \Delta$ and so we could not have $\mathfrak{M} F$ $\bigwedge_{\mu \in \Delta} \mu\left(a_{1}, \ldots, a_{k}\right)$. For the same reason $x_{1} \neq x_{1}$ is not a conjunct in η. A ${ }^{\mu \epsilon}$ conjunct of the form $x_{1}=x_{1}$ is trivially satisfied. If $\tau R\left(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ is a conjunct in η where $\tau \in S_{n+1}$, then $\tau R\left(x_{1}, a_{i_{1}}, \ldots, a_{i_{n}}\right) \in p$ and since $\left(c_{1}, \ldots, c_{n}\right)$ realizes p, we have $\boldsymbol{\mathcal { A }} \vDash \tau R\left(c_{1}, a_{i_{1}}, \ldots, a_{i_{n}}\right)$. If $\tau \in S_{n+1}, j \geqslant 1$ and $\urcorner \tau R\left(x_{1}, \ldots, x_{1}, y_{i_{1}}, \ldots, y_{i_{n-j}}\right)$ is a conjunct in η, then $\mathfrak{A} \vDash \neg \tau R\left(c_{1}, \ldots\right.$, $\left.c_{1}, a_{i_{1}}, \ldots, a_{i_{n-j}}\right)$ by observation (2*). Finally suppose $7 \tau R\left(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ is a conjunct in η. I claim that $\tau R\left(x_{1}, a_{i_{1}}, \ldots, a_{i_{n}}\right) \notin p$. If it were in p, then there would have to be some $\sigma \epsilon S_{n+1}, \tau^{\prime} \in S_{n+1}$, and j_{1}, \ldots, j_{n} such that $\sigma R\left(x_{1}, y_{j_{1}}, \ldots, y_{j_{n}}\right)$ is a conjunct in η and $\tau R\left(x_{1}, a_{j_{1}}, \ldots, a_{i_{n}}\right)$ is identical with $\tau R\left(x_{1}, a_{i_{1}}, \ldots, a_{i_{n}}\right)$. That would imply $\left\{a_{j_{1}}, \ldots, a_{j_{n}}\right\}=\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$. But since both $\sigma R\left(x_{1}, y_{j_{1}}, \ldots, y_{i_{n}}\right)$ and $\urcorner \tau R\left(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}}\right)$ are conjuncts in η, we would have $\bigvee_{s=1}^{n}\left(\bigwedge_{t=1}^{n} y_{j_{s}} \neq y_{i_{t}}\right) \in \Delta$ and hence $\boldsymbol{\mu} \vDash \bigvee_{s=1}^{n}\left(\bigwedge_{t=1}^{n} a_{j_{s}} \neq a_{i_{t}}\right)$. That means that $\left\{a_{j_{1}}, \ldots, a_{j_{n}}\right\} \neq\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$. This contradiction proves that $\tau R\left(x_{1}, a_{i_{1}}, \ldots, a_{i_{n}}\right) \notin p$. Then since $\left(c_{1}, \ldots, c_{n}\right)$ realizes p, we have $\mathfrak{M} \vDash$ $7 \tau R\left(c_{1}, a_{i_{1}}, \ldots, a_{i_{n}}\right)$. This covers all possibilities, so we have proved $\boldsymbol{\mu} \vDash \eta\left(c_{1}, a_{1}, \ldots, a_{k}\right)$ and therefore $\boldsymbol{\mu} \vDash \exists x_{1} \eta\left(x_{1}, a_{1}, \ldots, a_{k}\right)$.
Case 2: Suppose $\varphi\left(y_{1}, \ldots, y_{k}\right)$ is of the form $Q_{\alpha}^{n} x_{1} \ldots x_{n} \bigvee_{i=1}^{n} \eta_{i}\left(x_{1}, \ldots, x_{n}\right.$, y_{1}, \ldots, y_{k}) where each η_{i} is a conjunction of atomic formulas and negations of atomic formulas in $\mathcal{L}(\mathbf{T}, \mathbf{F})$. For each $1 \leqslant i \leqslant m$ I define Δ_{i} to be the smallest set of quantifier-free formulas in $\mathcal{L}(\mathbf{T}, \mathbf{F})$ satisfying the following rules:
(1) $\mathbf{T} \in \Delta_{i}$
(2) $\rho_{i} \in \Delta_{i}$ where ρ_{i} is the conjunction of all the conjuncts in η_{i} which do not contain any of the variables x_{1}, \ldots, x_{n}
(3) if $\sigma R\left(x_{j}, \ldots, x_{j}, x_{i_{1}}, \ldots, x_{i_{s}}, y_{i_{s+1}}, \ldots, y_{i_{n-h}}\right)$ is a conjunct in η_{i} for any $j, \sigma \in S_{n+1}$ and $h \geqslant 1$, or if anything of the following forms: $x_{j}=x_{h}(j \neq h)$, $y_{j}=x_{h}, x_{h}=y_{j}, x_{j} \neq x_{j}$ is a conjunct in η_{i}, then $\mathbf{F} \in \Delta_{i}$
(4) if $\tau \in S_{n+1}, \sigma \in S_{n}, 1 \leqslant h \leqslant n$ and $\tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, y_{i_{1}}, \ldots, y_{i_{n-h+1}}\right)$ is a conjunct in η_{i} then

$$
\bigwedge_{\substack{s \neq t \\ 1 \leqslant s, t \leqslant n-h+1}} y_{i_{s}} \neq y_{i_{t}} \in \Delta_{i}
$$

(5) if $\tau \in S_{n+1}, \sigma \in S_{n}, \tau^{\prime} \in S_{n+1}, \sigma^{\prime} \in S_{n} 1 \leqslant h \leqslant n$ and both $\tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(h)}\right.$, $\left.y_{i_{1}}, \ldots, y_{i_{n-h+1}}\right)$ and $\urcorner \tau^{\prime} R\left(x_{\sigma \prime(1)}, \ldots, x_{\sigma^{\prime}(h)}, y_{j_{1}}, \ldots, y_{j_{n-h+1}}\right)$ are conjuncts in η_{i} then

$$
\bigvee_{s=1}^{n-h+1}\left(\bigwedge_{t=1}^{n-h+1} y_{i_{s}} \neq y_{i_{t}}\right) \in \Delta_{i}
$$

Now I claim that

$$
\begin{aligned}
\mathfrak{A} \vDash \forall y_{1} \ldots \forall y_{k} & {\left[Q_{\alpha}^{n} x_{1} \ldots x_{n}\left(\bigvee_{i=1}^{m} \eta_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)\right)\right.} \\
& \left.\leftrightarrow \bigvee_{i=1}^{m}\left(\bigwedge_{\mu \in \Delta_{i}} \mu\left(y_{1}, \ldots, y_{k}\right)\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathfrak{B} \vDash \forall y_{1} \ldots \forall y_{k} & {\left[Q_{\alpha}^{n} x_{1} \ldots x_{n}\left(\bigvee_{i=1}^{m} \eta_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)\right)\right.} \\
\leftrightarrow & \left.\bigvee_{i=1}^{m}\left(\bigwedge_{\mu \in \Delta_{i}} \mu\left(y_{1}, \ldots, y_{k}\right)\right)\right] .
\end{aligned}
$$

Again I give the proof only for \mathfrak{A} since the proof for \mathfrak{B} is virtually identical. Take any k-tuple (a_{1}, \ldots, a_{k}) of elements of A and suppose first that $\mathfrak{A} \vDash \mathrm{Q}_{\alpha}^{n} x_{1} \ldots x_{n}\left(\bigvee_{i=1}^{m} \eta_{i}\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{k}\right)\right)$. Then there is a set $X \subset A$ such that $\mathrm{c}(X)=\alpha$ and for all distinct c_{1}, \ldots, c_{n} in $X, \boldsymbol{\mu} \vDash \bigvee_{i=1}^{m}\left(\eta_{i}\left(c_{1}, \ldots, c_{n}\right.\right.$, $\left.a_{1}, \ldots, a_{k}\right)$. Let $\gamma=\left\{a_{1}, \ldots, a_{k}\right\}$. For each proper n-type p over γ let

$$
\begin{aligned}
& X_{p}=\left\{\left\{c_{1}, \ldots, c_{n}\right\} \in[X]^{n} \mid \text { for all } \tau \in S_{n+1}\right. \text { and all } \\
& \left.a \in \gamma \boldsymbol{\mathfrak { A }} \vDash \tau R\left(c_{1}, \ldots, c_{n}, a\right) \leftrightarrow \tau R\left(x_{1}, \ldots, x_{n}, a\right) \in p\right\} .
\end{aligned}
$$

X_{p} is well-defined since $R^{\mathfrak{2}}$ is symmetric, and p is closed under permutations. Furthermore, for any $\left\{c_{1}, \ldots, c_{n}\right\} \in[X]^{n}$ if $p=\left\{\tau R\left(x_{1}, \ldots, x_{n}, a\right) \mid\right.$ $\tau \in S_{n+1}, a \in \gamma$, and $\left.\mathfrak{A} \vDash \tau R\left(c_{1}, \ldots, c_{n}, a\right)\right\}$ then p is a proper n-type over γ and $\left\{c_{1}, \ldots, c_{n}\right\} \in X_{p}$. Therefore, $\left\{X_{p} \mid p\right.$ is a proper n-type over $\left.\gamma\right\}$ is a finite partition of $[X]^{n}$ and so by Ramsey's theorem there is an infinite set $X_{1} \subset X$ and a proper n-type p over γ such that for all $\left\{c_{1}, \ldots, c_{n}\right\} \in\left[X_{1}\right]^{n}\left\{c_{1}, \ldots\right.$, $\left.c_{n}\right\} \in X_{p}$. Now for any proper ($n-1$)-type p over γ let

$$
\begin{aligned}
& \left(X_{1}\right)_{p}=\left\{\left\{c_{1}, \ldots, c_{n-1}\right\} \in\left[X_{1}\right]^{n-1} \mid \text { for all } \tau \in S_{n+1} \text { and all } a_{i_{1}}, a_{i_{2}} \in \gamma\right. \\
& \left.\mathfrak{\mu} \vDash \tau R\left(c_{1}, \ldots, c_{n-1}, a_{i_{1}}, a_{i_{2}}\right) \leftrightarrow \tau R\left(x_{1}, \ldots, x_{n-1}, a_{i_{1}}, a_{i_{2}}\right) \in p\right\}
\end{aligned}
$$

Then as above we obtain an infinite set $X_{2} \subset X_{1}$ and a proper ($n-1$)-type p over γ such that $\left[X_{2}\right]^{n-1} \subset\left(X_{1}\right)_{p}$. Continuing in this fashion we finally obtain an infinite set $Y \subset X$ and a sequence p_{1}, \ldots, p_{n} such that each p_{j} is a proper j-type over γ and for all distinct c_{1}, \ldots, c_{j} in Y and all $a_{i_{1}}, \ldots$, $a_{i_{n-j+1}}$ in γ and all $\tau \in S_{n+1}$
$\boldsymbol{\mu} \vDash \tau R\left(c_{1}, \ldots, c_{j}, a_{i_{1}}, \ldots, a_{i_{n-j+1}}\right) \leftrightarrow \tau R\left(x_{1}, \ldots, x_{j}, a_{i_{1}}, \ldots, a_{i_{n-j+1}}\right) \in p_{j}$. This implies that for any $1 \leqslant j \leqslant n$ and any two j-tuples (c_{1}, \ldots, c_{j}), (b_{1}, \ldots, b_{j}) of distinct elements of Y, any $\sigma \in S_{n+1}$ and any $a_{i_{1}}, \ldots, a_{i_{n-j+1}} \in \gamma$, $\boldsymbol{\mu} \vDash \sigma R\left(c_{1}, \ldots, c_{j}, a_{i_{1}}, \ldots, a_{i_{n-j+1}}\right) \leftrightarrow \mathfrak{A} \vDash \sigma R\left(b_{1}, \ldots, b_{j}, a_{i_{1}}, \ldots, a_{i_{n-j+1}}\right)$.

Now take any n distinct elements c_{1}, \ldots, c_{n} from $Y-\gamma$. Since $Y \subset X$, $\mathfrak{A} \vDash \bigvee_{i=1}^{m} \eta_{i}\left(c_{1}, \ldots, c_{n}, a_{1}, \ldots, a_{k}\right)$. Pick some i such that $\boldsymbol{\mathfrak { A }} \vDash \eta_{i}\left(c_{1}, \ldots, c_{n}\right.$, $\left.a_{1}, \ldots, a_{k}\right)$. I claim that $\mathfrak{A} \vDash \bigwedge_{\mu \in \Delta_{i}} \mu\left(a_{1}, \ldots, a_{k}\right)$. I consider in turn each of
the rules according to which μ may be put into Δ_{i}. If $\mu \equiv \mathbf{T}$ or $\mu \equiv \rho_{i}$ then just as in Case $1, \boldsymbol{\mu} \vDash \mu\left(a_{1}, \ldots, a_{k}\right) . \mu$ cannot be put into Δ_{i} according to rule (3) since otherwise η_{i} would have a conjunct of the form $x_{j}=x_{h}(j \neq h)$, $x_{j}=y_{h}, y_{h}=x_{j}, x_{j} \neq x_{j}$, or $\sigma R\left(x_{j}, \ldots, x_{j}, x_{i_{1}}, \ldots, x_{i_{s}}, y_{i_{s+1}}, \ldots, y_{i_{n-h}}\right)(\sigma \epsilon$ $\left.S_{n+1}, h \geqslant 1\right)$. Hence, it would be true that $\mathfrak{A} \vDash c_{j}=c_{h}(j \neq h), \mathfrak{M} \vDash c_{j}=a_{h}$, $\mathfrak{A} \vDash a_{h}=c_{j}, \boldsymbol{\mu} \vDash c_{j} \neq c_{i}$, or $\mathfrak{A} \vDash \sigma R\left(c_{j}, \ldots, c_{j}, c_{i_{1}}, \ldots, c_{i_{s}}, a_{i_{s+1}}, \ldots, a_{i_{n-h}}\right)$ ($h \geqslant 1$). The first is impossible since c_{1}, \ldots, c_{n} are chosen to be distinct, the second and third are impossible since $c_{j} \in Y-\gamma$, the fourth is always impossible, and the fifth cannot be true because of observation (2^{*}). If μ gets in Δ_{i} by way of rule (4) then μ has the form $\bigwedge_{\substack{s \neq t \\ 1 \leqslant s, t \leqslant n-h+1}} y_{i_{s}} \neq y_{i_{t}}$ where $1 \leqslant h \leqslant n$, and for some $\tau \epsilon S_{n+1}, \sigma \epsilon S_{n}, \tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, y_{i_{1}}, \ldots, y_{i_{n-h+1}}\right)$ is a conjunct in η_{i}. Therefore $\mathfrak{M} \vDash \tau R\left(c_{\sigma(1)}, \ldots, c_{\sigma(h)}, a_{i_{1}}, \ldots, a_{i_{n-h+1}}\right)$ so by observation $\left(2^{*}\right) \mathfrak{A} \vDash \bigwedge_{\substack{s \neq t \\ 1 \leqslant s, t \leqslant n-h+1}} a_{i_{s}} \neq a_{i_{t}}$. Finally, suppose. μ is put into Δ_{i} according to rule (5). Then μ has the form $\bigvee_{s=1}^{n-h+1}\left(\bigwedge_{t=1}^{n-h+1} y_{i_{s}} \neq y_{j_{t}}\right)$ where $1 \leqslant h \leqslant n$, and for some $\tau, \tau^{\prime} \in S_{n+1}, \sigma, \sigma^{\prime} \in S_{n}$ both $\tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, y_{i_{1}}\right.$, $\left.\ldots, y_{i_{n-h+1}}\right)$ and $\urcorner \tau^{\prime} R\left(x_{\sigma^{\prime}(1)}, \ldots, x_{\sigma^{\prime}(h)}, y_{j_{1}}, \ldots, y_{j_{n-h+1}}\right)$ are conjuncts in η_{i}. Hence

$$
\mathfrak{M} \vDash \tau R\left(c_{\sigma(1)}, \ldots, c_{\sigma(h)}, a_{i_{1}}, \ldots, a_{i_{n-h+1}}\right)
$$

and

$$
\mathfrak{A} \vDash\urcorner \tau^{\prime} R\left(c_{\sigma^{\prime}(1)}, \ldots, c_{\sigma^{\prime}(h)}, a_{j_{1}}, \ldots, a_{i_{n-h+1}}\right) .
$$

Since $R^{\mathfrak{2}}$ is symmetric, we also have $\mathfrak{A} \vDash \tau^{\prime} R\left(c_{\sigma(1)}, \ldots, c_{\sigma(h)}, a_{i_{1}}, \ldots\right.$, $a_{i_{n-h+1}}$). But ($c_{\sigma(1)}, \ldots, c_{\sigma(h)}$) and ($\left.c_{\sigma^{\prime}(1)}, \ldots, c_{\sigma^{\prime}(h)}\right)$ are both h-tuples of distinct elements of Y, and consequently $\mathfrak{A} \vDash \tau^{\prime} R\left(c_{\sigma^{\prime}(1)}, \ldots, c_{\sigma^{\prime}(h)}, a_{i_{1}}, \ldots\right.$, $a_{i_{n-h+1}}$). Therefore $\left\{a_{i_{1}}, \ldots, a_{i_{n-h+1}}\right\} \neq\left\{a_{j_{1}}, \ldots, a_{i_{n-h+1}}\right\}$. But by observation (2*) $a_{i_{1}}, \ldots, a_{i_{n-h+1}}$ are distinct, so $\left\{a_{i_{1}}, \ldots, a_{i_{n-h+1}}\right\} \nsubseteq\left\{a_{i_{1}}, \ldots, a_{j_{n-h+1}}\right\}$. Therefore, $\boldsymbol{\mathfrak { A }} \vDash \bigvee_{s=1}^{n-h+1}\left(\bigwedge_{t=1}^{n-h+1} a_{i_{s}} \neq a_{j_{t}}\right)$.

Suppose that, for some $i, \mathfrak{M} \vDash \bigwedge_{\mu \in \Delta_{i}} \mu\left(a_{1}, \ldots, a_{k}\right)$. Then I will show that $\mathfrak{\mu} \vDash \mathrm{Q}_{\alpha}^{n} x_{1} \ldots x_{n} \eta_{i}\left(x_{1}, \ldots, x_{n}, a_{1},{ }^{\mu \in \Delta_{i}} ., a_{k}\right)$ and consequently $\mathfrak{M} \vDash Q_{\alpha}^{n} x_{1} \ldots$ $x_{n}\left(\bigvee_{i=1}^{m} \eta_{i}\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{k}\right)\right)$. Let
$p=\left\{\tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, a_{i_{1}}, \ldots, a_{i_{n-h+1}}\right) \mid 1 \leqslant h \leqslant n, \tau \in S_{n+1}, \sigma \in S_{n}\right.$ and for some $\tau^{\prime} \in S_{n+1}, \sigma^{\prime} \in S_{n} \tau^{\prime} R\left(x_{\sigma^{\prime}(1)}, \ldots, x_{\sigma^{\prime}(h)}, y_{i_{1}}, \ldots, y_{i_{n-h+1}}\right)$ is a conjunct in $\left.\eta_{i}\right\}$.
Let $\gamma=\left\{a_{1}, \ldots, a_{k}\right\}$. Then just as in Case 1 it can be proved that p is an n-type over γ. Pick $\delta<\alpha$ such that δ is odd and $\gamma \subset A_{\delta}$. Then by construction of $\mathfrak{\Omega}$ there is a set $X \subset A$ such that $X \cap A_{\delta}=\varnothing, \mathrm{c}(X)=\alpha$, and all n-tuples of distinct elements of X realize p. Just set $X=X_{\gamma, p}^{\delta+1}$ and recall observation ($3 *$). Now I claim that if $\left(c_{1}, \ldots, c_{n}\right.$) is any n-tuple of distinct elements of X then $\mathfrak{M} \vDash \eta_{i}\left(c_{1}, \ldots, c_{n}, a_{1}, \ldots, a_{k}\right)$. I consider each
possible conjunct in η_{i}. First, any conjunct in η_{i} which does not contain any of the variables x_{1}, \ldots, x_{n} is satisfied by ($c_{1}, \ldots, c_{n}, a_{1}, \ldots, a_{k}$) since $\rho_{i} \in \Delta_{i}$ and hence $\boldsymbol{\mu} \vDash \rho_{i}\left(a_{1}, \ldots, a_{k}\right)$. Any conjunct of the form $x_{j}=x_{j}$ is trivially satisfied. Conjuncts of the forms $x_{j} \neq x_{h}(j \neq h), y_{h} \neq x_{j}, x_{j} \neq y_{h}$ are satisfied since $\boldsymbol{M} \vDash c_{j} \neq c_{h}(j \neq h)$ and $\mathfrak{A} \vDash c_{j} \neq a_{h}$, the first being true because c_{1}, \ldots, c_{n} are distinct by hypothesis, and the second because $c_{1}, \ldots, c_{n} \in X$ and $X \cap \gamma=\varnothing . \quad \eta_{i}$ cannot have any conjuncts of the forms $x_{j}=x_{h}(j \neq h)$, $x_{j}=y_{h}, y_{h}=x_{j}, x_{j} \neq x_{j}$, or

$$
\sigma R\left(x_{j}, \ldots, x_{j}, x_{i_{1}}, \ldots, x_{i_{s}}, y_{i_{s+1}}, \ldots, y_{i_{n-h}}\right)\left(\sigma \in S_{n+1}, h \geqslant 1\right)
$$

because in those cases we would have $F \in \Delta_{i}$ and hence $\mathfrak{A} \nRightarrow \bigwedge_{\mu \in \Delta_{i}} \mu\left(a_{1}, \ldots, a_{k}\right)$. Finally, conjuncts in η_{i} of the forms

$$
\begin{aligned}
& \neg \tau R\left(x_{j}, \ldots, x_{j}, x_{i_{1}}, \ldots, x_{i_{s}}, y_{i_{s+1}}, \ldots, y_{i_{n-k}}\right)\left(\tau \in S_{n+1}, h \geqslant 1\right) \\
& \tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, y_{i_{1}}, \ldots, y_{i_{n-h+1}}\right)\left(1 \leqslant h \leqslant n, \tau \in S_{n+1}, \sigma \in S_{n}\right)
\end{aligned}
$$

and

$$
\urcorner \tau R\left(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, y_{i_{1}}, \ldots, y_{i_{n-h+1}}\right)\left(1 \leqslant h \leqslant n, \tau \in S_{n+1}, \sigma \in S_{n}\right)
$$

can be proved to be satisfied by ($c_{1}, \ldots, c_{n}, a_{1}, \ldots, a_{k}$) in almost exactly the same way as in Case 1. Therefore $\boldsymbol{\mu} \vDash \eta_{i}\left(c_{1}, \ldots, c_{n}, a_{1}, \ldots, a_{k}\right)$ and $\boldsymbol{\mu} \vDash \mathrm{Q}_{\alpha}^{n} x_{1} \ldots x_{n} \eta_{i}\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{k}\right)$.
Q.E.D.

Corollary $1 \mathfrak{A}$ and \mathfrak{B} satisfy the same sentences in \mathcal{L}_{α}^{n}.
Proof: If φ is a sentence in \mathscr{L}_{α}^{n} then $\varphi \in \mathcal{L}(\mathbf{T}, \mathbf{F})_{\alpha}^{n}$ so there is a quantifierfree $\psi \in \mathcal{L}(\mathbf{T}, \mathbf{F})_{\alpha}^{n}$ such that $\mathfrak{A} \vDash \varphi \leftrightarrow \psi$ and $\mathfrak{B} \vDash \varphi \leftrightarrow \psi$. Since φ has no free variables, neither does ψ and therefore ψ is just a Boolean combination of \mathbf{T} and F. So clearly either both $\boldsymbol{\mu} \vDash \psi \leftrightarrow \mathbf{T}$ and $\boldsymbol{B} \vDash \psi \leftrightarrow \mathbf{T}$ or both $\boldsymbol{\mathcal { M }} \vDash$ $\psi \leftrightarrow \mathbf{F}$ and $\mathfrak{B} \vDash \psi \leftrightarrow \mathbf{F}$. In the first case, both $\mathfrak{M} \vDash \varphi$ and $\mathfrak{B} \vDash \varphi$, and in the second case both $\mathfrak{A} \vDash\urcorner \varphi$ and $\mathfrak{B} \vDash\urcorner \varphi$.
Q.E.D.

By putting together Lemma 1 and Corollary 1 we obtain
Theorem 1 For each $n \geqslant 1$ and each uncountable cardinal α there are \mathcal{L}-structures \mathfrak{A} and \mathfrak{B} such that \mathfrak{A} and \mathfrak{B} satisfy the same sentences of \mathcal{L}_{α}^{n}, but for some sentence $\varphi \in \mathscr{L}_{\alpha}^{n+1}, \mathfrak{M} \vDash \varphi$ and $\left.\mathfrak{B} \vDash\right\urcorner \varphi$.

REFERENCES

[1] Badger, L. W., "The Malitz quantifer meets its Ehrenfeucht game," Ph.D. dissertation, University of Colorado, Boulder (1975).
[2] Magidor M., and J. Malitz, "Compact extensions of $\mathcal{L}(\mathrm{Q})$," to appear.

[^0]: 1. For $a=\omega_{1}$, this result was obtained independently by Andreas Baudisch under the assumption $\diamond_{\omega_{1}}$.
