Notre Dame Journal of Formal Logic Volume XIX, Number 3, July 1978 NDJFAM

RELATIVE STRENGTH OF MALITZ QUANTIFIERS

STEVEN GARAVAGLIA

In this paper I will solve a problem concerning Malitz quantifiers which was posed in [1]. Before stating this problem I will introduce some notation which will be used in the proof. If X is a set then c(X) is the cardinality of X and $[X]^n$ is the set of *n*-element subsets of X. S_n is the set of permutations of $\{1, 2, \ldots, n\}$. If \mathfrak{A} is a structure $|\mathfrak{A}|$ denotes the domain of \mathfrak{A} . If \mathfrak{L} is a first-order language, $\mathfrak{L}(|\mathfrak{A}|)$ is the result of adjoining to \mathfrak{L} one constant symbol for each element of $|\mathfrak{A}|$. No distinction will be made between elements of $|\mathfrak{A}|$ and the constant symbols denoting them. Variables will be denoted $x_1, x_2, \ldots, y_1, y_2, \ldots$.

Now let \mathcal{L} be any first-order language. For each n and each infinite cardinal α a language \mathcal{L}_{α}^{n} is obtained from \mathcal{L} by adjoining the quantifier \mathbb{Q}_{α}^{n} with the following interpretation: $\mathfrak{A} \models \mathbb{Q}_{\alpha}^{n} x_{1} \ldots x_{n} \varphi(x_{1}, \ldots, x_{n})$ if and only if there is a set $X \subset |\mathfrak{A}|$ such that $c(X) \ge \alpha$ and for all distinct a_{1}, \ldots, a_{n} in $X, \mathfrak{A} \models \varphi(a_{1}, \ldots, a_{n})$. Malitz and Magidor [2] and Badger [1] have established many deep and interesting results concerning these languages. In [1], page 91, Badger gave a list of unsolved problems about the languages \mathcal{L}_{α}^{n} . There he raised the question whether $\mathcal{L}_{\alpha}^{n+1}$ is a proper extension of \mathcal{L}_{α}^{n} . In this paper I answer this question affirmatively for all $n \ge 1$ and all $\alpha > \omega$ by exhibiting two structures \mathfrak{A} and \mathfrak{B} of the same similarity type such that \mathfrak{A} and \mathfrak{B} satisfy the same sentences in \mathcal{L}_{α}^{n} but do not satisfy the same sentences in $\mathcal{L}_{\alpha}^{n+1}$.

Let *n* be any fixed positive integer and let α be any fixed uncountable cardinal. \mathcal{L} will be a first-order language with equality whose only nonlogical symbol is an (n + 1)-ary predicate symbol *R*.

Definition 1: If \mathfrak{A} is an \mathcal{L} -structure, γ is a finite subset of $|\mathfrak{A}|$, $\sigma \in S_{n+1}$, and $t_1, \ldots, t_{n+1} \in \gamma \cup \{x_1, \ldots, x_k, y_1, \ldots, y_k\}$ then $\sigma(t_1, \ldots, t_{n+1})$ is the (n + 1)-tuple $(t_{\sigma(1)}, \ldots, t_{\sigma(n+1)})$ and $\sigma R(t_1, \ldots, t_{n+1})$ is the $\mathcal{L}(|\mathfrak{A}|)$ -formula $R(t_{\sigma(1)}, \ldots, t_{\sigma(n+1)})$.

^{1.} For $a = \omega_1$, this result was obtained independently by Andreas Baudisch under the assumption \Diamond_{ω_1} .

Definition 2: Suppose \mathfrak{A} is an \mathcal{L} -structure, γ is a finite subset of $|\mathfrak{A}|$, and $1 \leq m \leq n$. An *m*-type *p* over γ is a set of $\mathcal{L}(|\mathfrak{A}|)$ -formulas such that

(1) all elements of p are of the form $\tau R(x_{\sigma(1)}, \ldots, x_{\sigma(j)}, a_1, \ldots, a_{n-j+1})$ where $1 \leq j \leq m$, $\sigma \in S_m$, $\tau \in S_{n+1}$, and a_1, \ldots, a_{n-j+1} are distinct elements of γ ,

(2) if $1 \leq j \leq m$, $\tau \in S_{n+1}$, $\sigma \in S_m$, $\tau' \in S_{n+1}$, $\sigma' \in S_m$, and $\tau R(x_{\sigma(1)}, \ldots, x_{\sigma(j)}, a_1, \ldots, a_{n-j+1}) \in p$ then $\tau' R(x_{\sigma'(1)}, \ldots, x_{\sigma'(j)}, a_1, \ldots, a_{n-j+1}) \in p$.

Definition 3: Suppose \mathfrak{A} is an \mathcal{L} -structure, γ is a finite subset of $|\mathfrak{A}|$, and $1 \le m \le n$. A proper *m*-type *p* over γ is a set of $\mathcal{L}(|\mathfrak{A}|)$ -formulas such that

all elements of p are of the form τR(x₁, ..., x_m, a₁, ..., a_{n-m+1}) where τ ∈ S_{n+1} and a₁, ..., a_{n-m+1} are distinct elements of γ,
if τ ∈ S_{n+1}, τ' ∈ S_{n+1}, and τR(x₁, ..., x_m, a₁, ..., a_{n-m+1}) ∈ p then τ'R(x₁, ..., x_m, a₁, ..., a_{n-m+1}) ∈ p.

Clearly, a proper *m*-type p is just an *m*-type in which all of the variables x_1, \ldots, x_m occur in every formula in p.

Definition 4: If \mathfrak{A} is an \mathcal{L} -structure, γ is a finite subset of $|\mathfrak{A}|$, p is an *m*-type over γ , and $b_1, \ldots, b_m \epsilon |\mathfrak{A}|$ then (b_1, \ldots, b_m) realizes p if and only if

$$\mathfrak{A} \models \tau R(b_{\sigma(1)}, \ldots, b_{\sigma(j)}, a_1, \ldots, a_{n-j+1}) \leftrightarrow \tau R(x_{\sigma(1)}, \ldots, x_{\sigma(j)}, a_1, \ldots, a_{n-j+1}) \in p$$

for all $1 \le j \le m, \tau \in S_{n+1}, \sigma \in S_m$, and $a_1, \ldots, a_{n-j+1} \in \gamma$.

These notions are all borrowed from the customary model-theoretic definitions of type, realization, etc. It can be shown that types as they have been defined here correspond exactly to quantifier-free types in the usual sense with respect to a certain first-order theory. But it does not seem to simplify the exposition to use this fact so I will just ignore it.

Now I proceed to construct two \mathcal{L} -structures $\mathfrak{A} = \langle A, R^{\mathfrak{A}} \rangle$ and $\mathfrak{B} = \langle B, R^{\mathfrak{B}} \rangle$. First, for each $\beta < \alpha$ a structure $\mathfrak{A}_{\beta} = (A_{\beta}, R^{\mathfrak{A}_{\beta}})$ will be constructed. Let $A_0 = \{1, 2, \ldots, n+1\}, R^{\mathfrak{A}_0} = \{\sigma(1, 2, \ldots, n+1) \mid \sigma \in S_{n+1}\}$. If β is a limit ordinal let $A_{\beta} = \bigcup_{\delta < \beta} R_{\delta}, R^{\mathfrak{A}_{\beta}} = \bigcup_{\delta < \beta} R^{\mathfrak{A}_{\delta}}$. If $\beta = \delta + 1$ where δ is even, then let a_{β} be any element such that $a_{\beta} \notin A_{\delta}$ and let $A_{\beta} = A_{\delta} \cup \{a_{\beta}\}$ and

$$R^{\mathfrak{U}_{\beta}} = R^{\mathfrak{U}_{\beta}} \cup \{ \sigma(a_1, \ldots, a_n, a_{\beta}) \mid \sigma \in S_{n+1}, a_1, \ldots, a_n \in A_{\delta} \bigwedge_{\substack{s \neq t \\ 1 \leq s, t \leq n}} a_s \neq a_t \}.$$

Now suppose that $\beta = \delta + 1$ where δ is odd. For each finite subset γ of A_{δ} and each *n*-type *p* over γ let $X_{\gamma,p}^{\beta}$ be a set of cardinality α such that $X_{\gamma,p}^{\beta} \cap A_{\delta} = \emptyset$ and if $\gamma \neq \gamma'$ or $p \neq p'$ then $X_{\gamma,p}^{\beta} \cap X_{\gamma',p'}^{\beta} = \emptyset$. Let $A_{\beta} = A_{\delta} \cup \bigcup_{\gamma,p} X_{\gamma,p}^{\beta}$. For each *n*-tuple (b_1, \ldots, b_n) of distinct elements of $X_{\gamma,p}^{\beta}$ let

$$p(b_1, \ldots, b_n) = \{ \tau(b_{\sigma(1)}, \ldots, b_{\sigma(j)}, a_1, \ldots, a_{n-j+1}) \mid \tau R(x_{\sigma(1)}, \ldots, x_{\sigma(j)}, a_1, \ldots, a_{n-j+1}) \in p \}.$$

Let

$$R^{\mathfrak{U}_{\beta}} = R^{\mathfrak{U}_{\delta}} \cup \bigcup_{\gamma, p} \bigcup \left\{ p(b_1, \ldots, b_n) \mid b_1, \ldots, b_n \in X^{\beta}_{\gamma, p} \bigwedge_{\substack{s \neq t \\ 1 \leq s, t \leq n}} b_s \neq b_t \right\}$$

Finally, let $\mathfrak{U} = \langle A, R^{\mathfrak{U}} \rangle$ where $A = \bigcup_{\beta \leq \alpha} A_{\beta} R^{\mathfrak{U}} = \bigcup_{\beta \leq \alpha} R^{\mathfrak{U}_{\beta}}.$

B is constructed in a similar manner. For each $m < \omega$ a structure \mathfrak{B}_m $\mathfrak{B}_m = \langle B_m, R^{\mathfrak{B}_m} \rangle$ will be constructed as follows. Set $B_0 = \{1, 2, \ldots, n+1\} R^{\mathfrak{B}_0} = \{\sigma(1, 2, \ldots, n+1) \mid \sigma \in S_{n+1}\}$. If \mathfrak{B}_m has been constructed, then for each finite $\gamma \subseteq B_m$ and each n-type p over γ pick a set $\overline{X}_{\gamma,p}^{m+1}$ of cardinality α such that $B_m \cap \overline{X}_{\gamma,p}^{m+1} = \emptyset$ and if $\gamma \neq \gamma'$ or $p \neq p'$ then $\overline{X}_{\gamma,p}^{m+1} \cap \overline{X}_{\gamma',p'}^{m+1} = \emptyset$. Let $B_{m+1} = B_m \cup \bigcup_{\gamma,p} \overline{X}_{\gamma,p}^{m+1}$. Define $p(b_1, \ldots, b_n)$ as before and let

$$R^{\mathfrak{B}_{m+1}} = R^{\mathfrak{B}_m} \cup \bigcup_{\gamma,p} \bigcup \left\{ p(b_1, \ldots, b_n) \mid b_1, \ldots, b_n \in \overline{X}_{\gamma,p}^{m+1} \bigwedge_{\substack{s \neq t \\ 1 \leq s, t \leq n}} b_s \neq b_t \right\}.$$

Finally, define $\mathfrak{B} = \langle B, R^{\mathfrak{B}} \rangle$ where $B = \bigcup_{m < \omega} B_m, R^{\mathfrak{B}} = \bigcup_{m < \omega} R^{\mathfrak{B}_m}$.

It is important to make four simple observations about these structures:

(1*) if $\delta < \beta < \alpha$ then $\mathfrak{A}_{\delta} \subseteq \mathfrak{A}_{\beta}$ and if $m < k < \omega$ then $\mathfrak{B}_m \subseteq \mathfrak{B}_k$;

(2*) if $\mathfrak{A} \models R(a_1, \ldots, a_{n+1})$ then $\mathfrak{A} \models \bigwedge_{\substack{s \neq t \\ 1 \leq s, t \leq n+1}} a_s \neq a_t$ and if $\mathfrak{B} \models R(b_1, \ldots, b_{n+1})$ then $\mathfrak{B} \models \bigwedge_{\substack{s \neq t \\ 1 \leq s, t \leq n+1}} b_s \neq b_t$;

(3*) if $\beta < \alpha$, $\beta = \delta + 1$ where δ is odd, γ is a finite subset of A_{δ} and p is an *n*-type over γ then each *n*-tuple of distinct elements of $X_{\gamma,p}^{\beta}$ realizes p, and an analogous statement holds for \mathfrak{B} ;

(4*) both $R^{\mathfrak{A}}$ and $R^{\mathfrak{B}}$ are symmetric, i.e., if $\sigma \in S_{n+1}$ and $\mathfrak{A} \models R(a_1, \ldots, a_{n+1})$ then $\mathfrak{A} \models \sigma R(a_1, \ldots, a_{n+1})$ and if $\mathfrak{B} \models R(b_1, \ldots, b_{n+1})$ then $\mathfrak{B} \models \sigma R(b_1, \ldots, b_{n+1})$.

These statements are all proved by quite simple inductive arguments. Using these facts, I can now prove the following lemma which contains the easy half of the main result of this paper.

Lemma 1 $\mathfrak{A} \models Q_{\alpha}^{n+1} x_1 \ldots x_{n+1} R(x_1, \ldots, x_{n+1})$ and $\mathfrak{B} \models \neg Q_{\alpha}^{n+1} x_1 \ldots x_{n+1} R(x_1, \ldots, x_{n+1})$.

Proof: By construction of \mathfrak{A} , if $\beta = \delta + 1$ where $\delta < \alpha$ is even then $A_{\beta} = A_{\delta} \cup \{a_{\beta}\}$. Let $X = \{a_{\beta} | \beta < \alpha, \beta = \delta + 1, \delta$ even}. Then $c(X) = \alpha$. Any (n + 1)-tuple of distinct elements of X has the form $\sigma(a_{\beta_1}, \ldots, a_{\beta_{n+1}})$ where $\beta_1 < \ldots < \beta_{n+1}, \beta_i = \delta_i + 1, \delta_i$ even for $i = 1, \ldots, n + 1$, and $\sigma \in S_{n+1}$. The set $\{a_{\beta_1}, \ldots, a_{\beta_n}\}$ is contained in $A_{\delta_{n+1}}$ since $\beta_1 < \ldots < \beta_n < \delta_{n+1}$, so by construction of $\mathfrak{A} \sigma(a_{\beta_1}, \ldots, a_{\beta_{n+1}}) \in R^{\mathfrak{A}}$. This proves that $\mathfrak{A} \models \mathbb{Q}_{\alpha}^{n+1} x_1 \ldots x_{n+1} R(x_1, \ldots, x_{n+1})$.

Now suppose that $X \subseteq B$, $c(X) = \alpha$, and for all distinct $b_1, \ldots, b_{n+1} \in X$ $\mathfrak{B} \models R(b_1, \ldots, b_{n+1})$. Since $\omega < \alpha$ there must be some *m* such that $X \cap (B_{m+1} - B_m)$ is infinite. Let b_1, \ldots, b_{n+1} be distinct elements of $X \cap (B_{m+1} - B_m)$. By our assumption $\mathfrak{B} \models R(b_1, \ldots, b_{n+1})$. Suppose that $(b_1, \ldots, b_{n+1}) \in C$ $R^{\mathfrak{V}_{m+1}}$. Then there must be some $\gamma \subseteq B_m$, an *n*-type p over γ , and distinct elements c_1, \ldots, c_n in $\overline{X}_{\gamma,p}^{m+1}$ such that $R(b_1, \ldots, b_{n+1}) \in p(c_1, \ldots, c_n)$. But if $R(t_1, \ldots, t_{n+1}) \in p(c_1, \ldots, c_n)$ then at least one of the t_i must be an element of γ . This is an immediate consequence of the definition of an *n*-type. Since $\gamma \cap \{b_1, \ldots, b_{n+1}\} = \emptyset$, it must be that $(b_1, \ldots, b_{n+1}) \notin R^{\mathfrak{V}_{n+1}}$. But by observation (1*), $\mathfrak{V}_{n+1} \subseteq \mathfrak{V}$ so $(b_1, \ldots, b_{n+1}) \notin R^{\mathfrak{V}}$, i.e., $\mathfrak{B} \models \exists R(b_1, \ldots, b_{n+1})$. This is a contradiction. Therefore no such X can exist, i.e., $\mathfrak{B} \models \exists Q_a^{n+1} x_1 \ldots x_{n+1} R(x_1, \ldots, x_{n+1})$.

Now we move on to the more difficult part of the proof: showing that **A** and **B** satisfy the same sentences in \mathcal{L}_{α}^{n} . I adjoin two O-ary predicates **T** ("true") and **F** ("false") to \mathcal{L} and give them the obvious interpretation in any structure. They can be regarded as defined terms with the definitions $\mathbf{T} \equiv \forall x_1(x_1 = x_1)$ and $\mathbf{F} \equiv \exists x_1(x_1 \neq x_1)$. This expanded language is called $\mathcal{L}(\mathbf{T}, \mathbf{F})$.

Lemma 2 To each formula $\varphi(y_1, \ldots, y_k)$ of $\mathcal{L}(\mathsf{T}, \mathsf{F})^n_{\alpha}$ with free variables among y_1, \ldots, y_k one can effectively associate a quantifier-free formula $\psi(y_1, \ldots, y_k)$ of $\mathcal{L}(\mathsf{T}, \mathsf{F})$ with free variables among y_1, \ldots, y_k such that

$$\mathfrak{A} \models \forall y_1 \ldots \forall y_k \left[\varphi(y_1, \ldots, y_k) \leftrightarrow \psi(y_1, \ldots, y_k) \right]$$

and

$$\mathfrak{B} \models \forall y_1 \ldots \forall y_k [\varphi(y_1, \ldots, y_k) \leftrightarrow \psi(y_1, \ldots, y_k)].$$

Proof: By using induction on the length of the formula, the proof can be reduced to the consideration of two special cases.

Case 1: Suppose $\varphi(y_1, \ldots, y_k) \equiv \exists x_1 \eta(x_1, y_1, \ldots, y_k)$ where η is a conjunction of atomic formulas and negations of atomic formulas in $\mathcal{L}(\mathbf{T}, \mathbf{F})$.

(a) If $x_1 = y_j$ or $y_j = x_1$ is a conjunct in η for any j then it is easy to see that

$$\mathfrak{A} \models \forall y_1 \ldots \forall y_k \left[\exists x_1 \eta(x_1, y_1, \ldots, y_k) \leftrightarrow \eta(x_1/y_i, y_1, \ldots, y_k) \right]$$

and

$$\mathfrak{B} \models \forall y_1 \ldots \forall y_k [\exists x_1 \eta(x_1, y_1, \ldots, y_k) \leftrightarrow \eta(x_1/y_j, y_1, \ldots, y_k)]$$

where $\eta(x_1/y_j, y_1, \ldots, y_k)$ is the result of substituting y_j for every occurrence of x_1 in $\eta(x_1, y_1, \ldots, y_k)$.

(b) Suppose that there is no j such that $y_j = x_1$ or $x_1 = y_j$ is a conjunct in η . Let Δ be the smallest set of quantifier-free formulas of $\mathcal{L}(\mathbf{T}, \mathbf{F})$ satisfying the following rules:

(1) **T** ∈ Δ

(2) $\rho(y_1, \ldots, y_k) \in \Delta$ where $\rho(y_1, \ldots, y_k)$ is the conjunction of all the conjuncts in η which do not contain x_1

(3) if $\sigma \in S_{n+1}$, $j \ge 1$, and $\sigma R(x_1, \ldots, x_1, y_{i_1}, \ldots, y_{i_{n-j}})$ is a conjunct in η , or if $x_1 \ne x_1$ is a conjunct in η , then $\mathbf{F} \in \Delta$

(4) if $\sigma \in S_{n+1}$ and $\sigma R(x_1, y_{i_1}, \ldots, y_{i_n})$ is a conjunct in η , then $\bigwedge_{\substack{s \neq t \\ 1 \leq s, t \leq n}} y_{i_s} \neq y_{i_t} \in \Delta$

(5) if $\tau_1 \in S_{n+1}, \tau_2 \in S_{n+1}$ and both $\tau_1 R(x_1, y_{i_1}, \ldots, y_{i_n})$ and $\exists \tau_2 R(x_1, y_{j_1}, \ldots, y_{j_n})$ are conjuncts in η , then $\bigvee_{s=1}^n \left(\bigwedge_{t=1}^n y_{i_s} \neq y_{j_t} \right) \in \Delta$.

Let $\psi(y_1, \ldots, y_k) \equiv \bigwedge_{\substack{\mu \in \Delta \\ \mu \neq \Delta}} \mu(y_1, \ldots, y_k)$. Then I claim that $\mathfrak{A} \models \forall y_1 \ldots$ $\forall y_k [\exists x_1 \eta(x_1, y_1, \ldots, y_k) \rightleftharpoons \psi(y_1, \ldots, y_k)]$ and $\mathfrak{B} \models \forall y_1 \ldots \forall y_k [\exists x_1 \eta(x_1, y_1, y_1, \ldots, y_k)]$ $\dots, y_k \leftrightarrow \psi(y_1, \dots, y_k)$]. The proofs for **A** and **B** are essentially identical, so I will confine my attention to \mathfrak{A} . So suppose that (a_1, \ldots, a_k) is any k-tuple of elements of A, and suppose that $\mathfrak{A} \models \exists x_1 \eta(x_1, a_1, \ldots, a_k)$. Then for some $a \in A$, $\mathfrak{A} \models \eta(a, a_1, \ldots, a_k)$. For each $\mu \in \Delta$ I will show that $\mathfrak{A} \models \mu(a_1, \ldots, a_k)$. Any μ in Δ must be placed there according to one of the rules (1)-(5). So I consider each rule in turn. If $\mu \equiv \mathbf{T}$ then there is nothing to prove since $\mathfrak{A} \models \mathbf{T}$ is always valid. If $\mu(y_1, \ldots, y_k) \equiv \rho(y_1, \ldots, y_k)$ then since ρ is a conjunction of conjuncts in η and $\mathfrak{A} \models \eta(a, a_1, \ldots, a_k)$ we have $\mathfrak{A} \models \rho(a_1, \ldots, a_k)$. μ cannot be put into Δ according to rule (3) since in that case either $x_1 \neq x_1$ or something of the form $\sigma R(x_1, \ldots, x_1, y_{i_1}, \ldots, y_{i_{n-i}})$ $(\sigma \in S_{n+1}, j \ge 1)$ would be a conjunct in η . It would follow that either $\mathfrak{A} \models a \ne j$ a, which is impossible or $\mathfrak{A} \models \sigma R(a, \ldots, a, a_{i_1}, \ldots, a_{i_{n-j}})$ which is impossible by observation (2*). Next suppose μ arises via rule (4). Then $\bigwedge_{\substack{s \neq i \\ i \leq r}} y_{i_s} \neq y_{i_t} \text{ and for some } \sigma \in S_{n+1}, \ \sigma R(x_1, y_{i_1}, \ldots, y_{i_n}) \text{ is a conjunct in}$ μ ≡

 η . Therefore $\mathfrak{A} \models \sigma R(a, a_{i_1}, \ldots, a_{i_n})$ and by observation (2*), this implies that $\mathfrak{A} \models \bigwedge_{\substack{s \neq i \\ 1 \leq s, i \leq n}} a_{i_s} \neq a_{i_i}$. Finally suppose μ arises from rule (5). Then μ is

of the form $\bigvee_{s=1}^{n} \left(\bigwedge_{i=1}^{n} y_{i_{s}} \neq y_{j_{i}} \right)$ and for some $\tau_{1} \in S_{n+1}$, $\tau_{2} \in S_{n+1}$ both $\tau_{1}R(x_{1}, y_{i_{1}}, \ldots, y_{i_{n}})$ and $\neg \tau_{2}R(x_{1}, y_{j_{1}}, \ldots, y_{j_{n}})$ are conjuncts in η . Hence $\mathfrak{A} \models \tau_{1}R(a, a_{i_{1}}, \ldots, a_{i_{n}})$ and $\mathfrak{A} \models \neg \tau_{2}R(a, a_{j_{1}}, \ldots, a_{j_{n}})$. By observation (4*), $R^{\mathfrak{A}}$ is symmetric, so $\{a_{i_{1}}, \ldots, a_{i_{n}}\} \neq \{a_{j_{1}}, \ldots, a_{j_{n}}\}$. By observation (2*) $a_{i_{1}}, \ldots, a_{i_{n}}$ are distinct, so in fact $\{a_{i_{1}}, \ldots, a_{i_{n}}\} \not\in \{a_{j_{1}}, \ldots, a_{j_{n}}\}$. This implies that $\mathfrak{A} \models \bigvee_{s=1}^{n} \left(\bigwedge_{i=1}^{n} a_{i_{s}} \neq a_{j_{i}} \right)$.

Conversely, suppose $\mathfrak{A} \models \bigwedge_{\mu \in \Delta} \mu(a_1, \ldots, a_k)$. I will show that $\mathfrak{A} \models \exists x_1 \eta(x_1, a_1, \ldots, a_k)$. Let $\gamma = \{a_1, \ldots, a_k\}$. Pick some $\delta < \alpha$ such that δ is odd and $\gamma \subseteq A_{\delta}$. Let $p = \{\tau R(x_{\sigma(1)}, a_{i_1}, \ldots, a_{i_n}) \mid \sigma \in S_n, \tau \in S_{n+1}, \text{ and for some } \tau' \in S_{n+1}, \tau' R(x_1, y_{i_1}, \ldots, y_{i_n}) \text{ is a conjunct in } \eta\}$. I claim that p is an n-type over γ . First, if $\tau R(x_{\sigma(1)}, a_{i_1}, \ldots, a_{i_n}) \in p$ for some $\tau \in S_{n+1}, \sigma \in S_n$ then by definition of $p \tau' R(x_1, y_{i_1}, \ldots, y_{i_n})$ is a conjunct in η for some $\tau' \in S_{n+1}$ and hence, again by definition of $p, \tau'' R(x_{\sigma''(1)}, a_{i_1}, \ldots, a_{i_n}) \in p$ for any $\tau'' \in S_{n+1}$ and $\sigma'' \in S_n$. This shows that p satisfies the second condition in the definition of an n-type. Now suppose again that $\tau R(x_{\sigma(1)}, a_{i_1}, \ldots, a_{i_n}) \in p$. Then for some $\tau' \in S_{n+1}, \tau' R(x_1, y_{i_1}, \ldots, y_{i_n})$ is a conjunct in η . Hence $\bigwedge_{\substack{s \neq i \\ s \neq i}} y_{i_s} \neq y_{i_t} \in \Delta$. Then since $\mathfrak{A} \models \bigwedge_{\mu \in \Delta} \mu(a_1, \ldots, a_k)$ we have $\mathfrak{A} \models \bigwedge_{\substack{s \neq i \\ 1 \leq s, t \leq n}} a_{i_s} \neq a_{i_t}$. This

proves that p satisfies the first condition in the definition of an n-type.

Take any *n*-tuple (c_1, \ldots, c_n) of distinct elements of $X_{\gamma,p}^{\geq +1}$. By observation (3*), (c_1, \ldots, c_n) realizes *p*. I claim that $\mathfrak{A} \models \eta(c_1, a_1, \ldots, a_k)$.

I consider each conjunct in η separately. For conjuncts in η which do not contain x_1 it is sufficient to note that they are also conjuncts in ρ , and since $\rho \in \Delta$ we have by assumption, $\mathfrak{A} \models \rho(a_1, \ldots, a_k)$. Also, by hypothesis, η has no conjunct of the form $x_1 = y_i$ or $y_i = x_1$. If $x_1 \neq y_i$ or $y_i \neq x_1$ is a conjunct in η , then $\mathfrak{A} \models c_1 \neq a_i$ ($\mathfrak{A} \models a_i \neq c_1$) since $c_1 \in A_{\delta+1} - A_{\delta}$ but $a_i \in A_{\delta}$. Nothing of the form $\sigma R(x_1, \ldots, x_1, y_{i_1}, \ldots, y_{i_{n-j}})$ where $\sigma \in S_{n+1}$ and $j \ge 1$ can be a conjunct in η since if it were then $F \in \Delta$ and so we could not have $\mathfrak{A} \models$ $\bigwedge \mu(a_1, \ldots, a_k)$. For the same reason $x_1 \neq x_1$ is not a conjunct in η . A conjunct of the form $x_1 = x_1$ is trivially satisfied. If $\tau R(x_1, y_{i_1}, \ldots, y_{i_n})$ is a conjunct in η where $\tau \in S_{n+1}$, then $\tau R(x_1, a_{i_1}, \ldots, a_{i_n}) \in p$ and since (c_1, \ldots, c_n) realizes p, we have $\mathfrak{A} \models \tau R(c_1, a_{i_1}, \ldots, a_{i_n})$. If $\tau \in S_{n+1}, j \ge 1$ and $\exists \tau R(x_1, \ldots, x_1, y_{i_1}, \ldots, y_{i_{n-j}})$ is a conjunct in η , then $\mathfrak{A} \models \exists \tau R(c_1, \ldots, q_{i_{n-j}})$ $c_1, a_{i_1}, \ldots, a_{i_{n-i}}$ by observation (2*). Finally suppose $\exists \tau R(x_1, y_{i_1}, \ldots, y_{i_n})$ is a conjunct in η . I claim that $\tau R(x_1, a_{i_1}, \ldots, a_{i_n}) \notin p$. If it were in p, then there would have to be some $\sigma \in S_{n+1}$, $\tau' \in S_{n+1}$, and j_1, \ldots, j_n such that $\sigma R(x_1, y_{j_1}, \ldots, y_{j_n})$ is a conjunct in η and $\tau R(x_1, a_{j_1}, \ldots, a_{j_n})$ is identical with $\tau R(x_1, a_{i_1}, \ldots, a_{i_n})$. That would imply $\{a_{j_1}, \ldots, a_{j_n}\} = \{a_{i_1}, \ldots, a_{i_n}\}$. But since both $\sigma R(x_1, y_{j_1}, \ldots, y_{j_n})$ and $\neg \tau R(x_1, y_{i_1}, \ldots, y_{i_n})$ are conjuncts in η , we would have $\bigvee_{s=1}^{n} \left(\bigwedge_{t=1}^{n} y_{j_s} \neq y_{i_t} \right) \in \Delta$ and hence $\mathfrak{A} \models \bigvee_{s=1}^{n} \left(\bigwedge_{t=1}^{n} a_{j_s} \neq a_{i_t} \right)$. That means that $\{a_{i_1}, \ldots, a_{i_n}\} \neq \{a_{i_1}, \ldots, a_{i_n}\}$. This contradiction proves that $\tau R(x_1, a_{i_1}, \ldots, a_{i_n}) \notin p$. Then since (c_1, \ldots, c_n) realizes p, we have $\mathfrak{A} \models$ $\exists \tau R(c_1, a_{i_1}, \ldots, a_{i_n})$. This covers all possibilities, so we have proved $\mathfrak{A} \models \eta(c_1, a_1, \ldots, a_k) \text{ and therefore } \mathfrak{A} \models \exists x_1 \eta(x_1, a_1, \ldots, a_k).$ Case 2: Suppose $\varphi(y_1, \ldots, y_k)$ is of the form $\mathbb{Q}^n_{\alpha} x_1 \ldots x_n \bigvee_{i=1}^n \eta_i(x_1, \ldots, x_n, x_n)$

 y_1, \ldots, y_k) where each η_i is a conjunction of atomic formulas and negations of atomic formulas in $\mathcal{L}(\mathsf{T}, \mathsf{F})$. For each $1 \le i \le m$ I define Δ_i to be the smallest set of quantifier-free formulas in $\mathcal{L}(\mathsf{T}, \mathsf{F})$ satisfying the following rules:

(1) $\mathbf{T} \in \Delta_i$

(2) $\rho_i \in \Delta_i$ where ρ_i is the conjunction of all the conjuncts in η_i which do not contain any of the variables x_1, \ldots, x_n

(3) if $\sigma R(x_j, \ldots, x_j, x_{i_1}, \ldots, x_{i_s}, y_{i_{s+1}}, \ldots, y_{i_{n-h}})$ is a conjunct in η_i for any j, $\sigma \in S_{n+1}$ and $h \ge 1$, or if anything of the following forms: $x_j = x_h (j \ne h)$, $y_j = x_h, x_h = y_j, x_j \ne x_j$ is a conjunct in η_i , then $\mathbf{F} \in \Delta_i$

(4) if $\tau \in S_{n+1}$, $\sigma \in S_n$, $1 \le h \le n$ and $\tau R(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, y_{i_1}, \ldots, y_{i_{n-h+1}})$ is a conjunct in η_i then

$$\bigwedge_{\substack{s\neq t\\1\leqslant s,\,t\leqslant n-h+1}}y_{i_s}\neq y_{i_t}\in \Delta_i$$

(5) if $\tau \in S_{n+1}$, $\sigma \in S_n$, $\tau' \in S_{n+1}$, $\sigma' \in S_n$ $1 \le h \le n$ and both $\tau R(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, y_{i_1}, \ldots, y_{i_{n-h+1}})$ and $\tau \tau' R(x_{\sigma'(1)}, \ldots, x_{\sigma'(h)}, y_{j_1}, \ldots, y_{j_{n-h+1}})$ are conjuncts in η_i then

$$\bigvee_{s=1}^{n-h+1} \left(\bigwedge_{t=1}^{n-h+1} y_{i_s} \neq y_{j_t} \right) \epsilon \Delta_i.$$

Now I claim that

$$\mathfrak{A} \models \forall y_1 \ldots \forall y_k \left[\mathbb{Q}_{\alpha}^n x_1 \ldots x_n \left(\bigvee_{i=1}^m \eta_i (x_1, \ldots, x_n, y_1, \ldots, y_k) \right) \\ \longleftrightarrow \bigvee_{i=1}^m \left(\bigwedge_{\mu \in \Delta_i} \mu(y_1, \ldots, y_k) \right) \right]$$

and

$$\mathfrak{B} \models \forall y_1 \ldots \forall y_k \left[\mathbb{Q}^n_{\alpha} x_1 \ldots x_n \left(\bigvee_{i=1}^m \eta_i (x_1, \ldots, x_n, y_1, \ldots, y_k) \right) \\ \longleftrightarrow \bigvee_{i=1}^m \left(\bigwedge_{\mu \in \Delta_i} \mu(y_1, \ldots, y_k) \right) \right].$$

Again I give the proof only for \mathfrak{A} since the proof for \mathfrak{B} is virtually identical. Take any *k*-tuple (a_1, \ldots, a_k) of elements of *A* and suppose first that $\mathfrak{A} \models \mathbb{Q}_{\alpha}^n x_1 \ldots x_n \left(\bigvee_{i=1}^m \eta_i(x_1, \ldots, x_n, a_1, \ldots, a_k) \right)$. Then there is a set $X \subseteq A$ such that $c(X) = \alpha$ and for all distinct c_1, \ldots, c_n in X, $\mathfrak{A} \models \bigvee_{i=1}^m (\eta_i(c_1, \ldots, c_n, a_i, \ldots, a_k))$. Let $\gamma = \{a_1, \ldots, a_k\}$. For each proper *n*-type *p* over γ let $X_p = \{\{c_1, \ldots, c_n\} \in [X]^n \mid \text{ for all } \tau \in S_{n+1} \text{ and all}$ $a \in \gamma \mathfrak{A} \models \tau R(c_1, \ldots, c_n, a) \leftrightarrow \tau R(x_1, \ldots, x_n, a) \in p\}$.

 X_p is well-defined since $R^{\mathfrak{A}}$ is symmetric, and p is closed under permutations. Furthermore, for any $\{c_1, \ldots, c_n\} \in [X]^n$ if $p = \{\tau R(x_1, \ldots, x_n, a) \mid \tau \in S_{n+1}, a \in \gamma$, and $\mathfrak{A} \models \tau R(c_1, \ldots, c_n, a)\}$ then p is a proper *n*-type over γ and $\{c_1, \ldots, c_n\} \in X_p$. Therefore, $\{X_p \mid p \text{ is a proper$ *n* $-type over <math>\gamma\}$ is a finite partition of $[X]^n$ and so by Ramsey's theorem there is an infinite set $X_1 \subseteq X$ and a proper *n*-type p over γ such that for all $\{c_1, \ldots, c_n\} \in [X_1]^n \{c_1, \ldots, c_n\} \in X_p$. Now for any proper (n - 1)-type p over γ let

$$(X_1)_p = \{\{c_1, \ldots, c_{n-1}\} \in [X_1]^{n-1} | \text{ for all } \tau \in S_{n+1} \text{ and all } a_{i_1}, a_{i_2} \in \gamma \\ \mathfrak{A} \models \tau R(c_1, \ldots, c_{n-1}, a_{i_1}, a_{i_2}) \leftrightarrow \tau R(x_1, \ldots, x_{n-1}, a_{i_1}, a_{i_2}) \in p\}$$

Then as above we obtain an infinite set $X_2 \subseteq X_1$ and a proper (n - 1)-type p over γ such that $[X_2]^{n-1} \subseteq (X_1)_p$. Continuing in this fashion we finally obtain an infinite set $Y \subseteq X$ and a sequence p_1, \ldots, p_n such that each p_j is a proper *j*-type over γ and for all distinct c_1, \ldots, c_j in Y and all $a_{i_1}, \ldots, a_{i_{n-j+1}}$ in γ and all $\tau \in S_{n+1}$

$$\mathfrak{A} \models \tau R(c_1, \ldots, c_j, a_{i_1}, \ldots, a_{i_{n-j+1}}) \leftrightarrow \tau R(x_1, \ldots, x_j, a_{i_1}, \ldots, a_{i_{n-j+1}}) \in p_j.$$

This implies that for any $1 \le j \le n$ and any two *j*-tuples (c_1, \ldots, c_j) , (b_1, \ldots, b_j) of distinct elements of *Y*, any $\sigma \in S_{n+1}$ and any $a_{i_1}, \ldots, a_{i_{n-j+1}} \in \gamma$,

$$\mathfrak{A} \models \sigma R(c_1, \ldots, c_j, a_{i_1}, \ldots, a_{i_{n-j+1}}) \longleftrightarrow \mathfrak{A} \models \sigma R(b_1, \ldots, b_j, a_{i_1}, \ldots, a_{i_{n-j+1}}).$$

Now take any *n* distinct elements c_1, \ldots, c_n from $Y - \gamma$. Since $Y \subseteq X$, $\mathfrak{A} \models \bigvee_{i=1}^m \eta_i(c_1, \ldots, c_n, a_1, \ldots, a_k)$. Pick some *i* such that $\mathfrak{A} \models \eta_i(c_1, \ldots, c_n, a_1, \ldots, a_k)$. I claim that $\mathfrak{A} \models \bigwedge_{\mu \in \Delta_i} \mu(a_1, \ldots, a_k)$. I consider in turn each of the rules according to which μ may be put into Δ_i . If $\mu \equiv \mathbf{T}$ or $\mu \equiv \rho_i$ then just as in Case 1, $\mathfrak{A} \models \mu(a_1, \ldots, a_k)$. μ cannot be put into Δ_i according to rule (3) since otherwise η_i would have a conjunct of the form $x_j = x_h(j \neq h)$, $x_j = y_h$, $y_h = x_j$, $x_j \neq x_j$, or $\sigma R(x_j, \ldots, x_j, x_{i_1}, \ldots, x_{i_s}, y_{i_{s+1}}, \ldots, y_{i_{n-h}})(\sigma \in$ $S_{n+1}, h \ge 1$). Hence, it would be true that $\mathfrak{A} \models c_j = c_h (j \neq h), \mathfrak{A} \models c_j = a_h,$ $\mathfrak{A} \models a_h = c_j, \mathfrak{A} \models c_j \neq c_j$, or $\mathfrak{A} \models \sigma R(c_j, \ldots, c_j, c_{i_1}, \ldots, c_{i_s}, a_{i_{s+1}}, \ldots, a_{i_{n-h}})$ $(h \ge 1)$. The first is impossible since c_1, \ldots, c_n are chosen to be distinct, the second and third are impossible since $c_j \in Y - \gamma$, the fourth is always impossible, and the fifth cannot be true because of observation (2*). If μ gets in Δ_i by way of rule (4) then μ has the form $A_{i \le i \le n-h+1} y_{i_s} \neq y_{i_t}$ where

 $1 \leq h \leq n, \text{ and for some } \tau \in S_{n+1}, \sigma \in S_n, \tau R(x_{\sigma(1)}, \dots, x_{\sigma(h)}, y_{i_1}, \dots, y_{i_{n-h+1}})$ is a conjunct in η_i . Therefore $\mathfrak{A} \models \tau R(c_{\sigma(1)}, \dots, c_{\sigma(h)}, a_{i_1}, \dots, a_{i_{n-h+1}})$ so by observation (2*) $\mathfrak{A} \models \bigwedge_{\substack{s \neq i \\ 1 \leq s, t \leq n-h+1}} a_{i_s} \neq a_{i_t}$. Finally, suppose μ is put into Δ_i according to rule (5). Then μ has the form $\bigvee_{s=1}^{n-h+1} \left(\bigwedge_{t=1}^{n-h+1} y_{i_s} \neq y_{j_t} \right)$ where $1 \leq h \leq n$, and for some $\tau, \tau' \in S_{n+1}, \sigma, \sigma' \in S_n$ both $\tau R(x_{\sigma(1)}, \dots, x_{\sigma(h)}, y_{i_1}, \dots, y_{i_{n-h+1}})$ are conjuncts in η_i . Hence

$$\mathfrak{A} \models \tau R(c_{\sigma(1)}, \ldots, c_{\sigma(h)}, a_{i_1}, \ldots, a_{i_{n-h+1}})$$

and

$$\mathfrak{A} \models \exists \tau' R(c_{\sigma'(1)}, \ldots, c_{\sigma'(h)}, a_{j_1}, \ldots, a_{j_{n-h+1}}).$$

Since $R^{\mathfrak{A}}$ is symmetric, we also have $\mathfrak{A} \models \tau' R(c_{\sigma(1)}, \ldots, c_{\sigma(h)}, a_{i_1}, \ldots, a_{i_{n-h+1}})$. But $(c_{\sigma(1)}, \ldots, c_{\sigma(h)})$ and $(c_{\sigma'(1)}, \ldots, c_{\sigma'(h)})$ are both *h*-tuples of distinct elements of *Y*, and consequently $\mathfrak{A} \models \tau' R(c_{\sigma'(1)}, \ldots, c_{\sigma'(h)}, a_{i_1}, \ldots, a_{i_{n-h+1}})$. Therefore $\{a_{i_1}, \ldots, a_{i_{n-h+1}}\} \neq \{a_{j_1}, \ldots, a_{j_{n-h+1}}\}$. But by observation (2*) $a_{i_1}, \ldots, a_{i_{n-h+1}}$ are distinct, so $\{a_{i_1}, \ldots, a_{i_{n-h+1}}\} \notin \{a_{j_1}, \ldots, a_{j_{n-h+1}}\}$. Therefore, $\mathfrak{A} \models \bigvee_{s=1}^{n-h+1} \left(\bigwedge_{l=1}^{n-h+1} a_{i_s} \neq a_{j_l}\right)$.

Suppose that, for some i, $\mathfrak{A} \models \bigwedge_{\mu \in \Delta_i} \mu(a_1, \ldots, a_k)$. Then I will show that $\mathfrak{A} \models \mathbb{Q}^n_{\alpha} x_1 \ldots x_n \eta_i(x_1, \ldots, x_n, a_1, \stackrel{\mu \in \Delta_i}{\ldots}, a_k)$ and consequently $\mathfrak{A} \models \mathbb{Q}^n_{\alpha} x_1 \ldots x_n \left(\bigvee_{i=1}^n \eta_i(x_1, \ldots, x_n, a_1, \ldots, a_k) \right)$. Let

 $p = \{\tau R(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, a_{i_1}, \ldots, a_{i_{n-h+1}}) \mid 1 \le h \le n, \ \tau \in S_{n+1}, \ \sigma \in S_n \text{ and for some } \tau' \in S_{n+1}, \ \sigma' \in S_n \ \tau' R(x_{\sigma'(1)}, \ldots, x_{\sigma'(h)}, y_{i_1}, \ldots, y_{i_{n-h+1}}) \text{ is a conjunct in } \eta_i \}.$

Let $\gamma = \{a_1, \ldots, a_k\}$. Then just as in Case 1 it can be proved that p is an *n*-type over γ . Pick $\delta < \alpha$ such that δ is odd and $\gamma \subset A_{\delta}$. Then by construction of \mathfrak{A} there is a set $X \subset A$ such that $X \cap A_{\delta} = \emptyset$, $c(X) = \alpha$, and all *n*-tuples of distinct elements of X realize p. Just set $X = X_{\gamma,p}^{\delta+1}$ and recall observation (3*). Now I claim that if (c_1, \ldots, c_n) is any *n*-tuple of distinct elements of X then $\mathfrak{A} \models \eta_i(c_1, \ldots, c_n, a_1, \ldots, a_k)$. I consider each

possible conjunct in η_i . First, any conjunct in η_i which does not contain any of the variables x_1, \ldots, x_n is satisfied by $(c_1, \ldots, c_n, a_1, \ldots, a_k)$ since $\rho_i \in \Delta_i$ and hence $\mathfrak{A} \models \rho_i(a_1, \ldots, a_k)$. Any conjunct of the form $x_j = x_j$ is trivially satisfied. Conjuncts of the forms $x_j \neq x_h$ $(j \neq h)$, $y_h \neq x_j$, $x_j \neq y_h$ are satisfied since $\mathfrak{A} \models c_j \neq c_h$ $(j \neq h)$ and $\mathfrak{A} \models c_j \neq a_h$, the first being true because c_1, \ldots, c_n are distinct by hypothesis, and the second because $c_1, \ldots, c_n \in X$ and $X \cap \gamma = \emptyset$. η_i cannot have any conjuncts of the forms $x_j = x_h$ $(j \neq h)$, $x_j = y_h$, $y_h = x_i$, $x_j \neq x_j$, or

$$\sigma R(x_j, \ldots, x_j, x_{i_1}, \ldots, x_{i_s}, y_{i_{s+1}}, \ldots, y_{i_{n-h}}) (\sigma \in S_{n+1}, h \ge 1)$$

because in those cases we would have $F \in \Delta_i$ and hence $\mathfrak{A} \not\models \bigwedge_{\mu \in \Delta_i} \mu(a_1, \ldots, a_k)$.

Finally, conjuncts in η_i of the forms

$$\tau R(x_{j_1}, \ldots, x_{j_1}, x_{i_1}, \ldots, x_{i_s}, y_{i_{s+1}}, \ldots, y_{i_{n-h}})(\tau \in S_{n+1}, h \ge 1)$$

$$\tau R(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, y_{i_1}, \ldots, y_{i_{n-h+1}})(1 \le h \le n, \tau \in S_{n+1}, \sigma \in S_n)$$

and

$$\tau R(x_{\sigma(1)}, \ldots, x_{\sigma(h)}, y_{i_1}, \ldots, y_{i_{n-h+1}}) (1 \le h \le n, \tau \in S_{n+1}, \sigma \in S_n)$$

can be proved to be satisfied by $(c_1, \ldots, c_n, a_1, \ldots, a_k)$ in almost exactly the same way as in Case 1. Therefore $\mathfrak{A} \models \eta_i(c_1, \ldots, c_n, a_1, \ldots, a_k)$ and $\mathfrak{A} \models Q_a^n x_1 \ldots x_n \eta_i(x_1, \ldots, x_n, a_1, \ldots, a_k)$. Q.E.D.

Corollary 1 **A** and **B** satisfy the same sentences in \mathcal{L}^n_{α} .

Proof: If φ is a sentence in \mathcal{L}^n_{α} then $\varphi \in \mathcal{L}(\mathsf{T}, \mathsf{F})^n_{\alpha}$ so there is a quantifierfree $\psi \in \mathcal{L}(\mathsf{T}, \mathsf{F})^n_{\alpha}$ such that $\mathfrak{A} \models \varphi \leftrightarrow \psi$ and $\mathfrak{B} \models \varphi \leftrightarrow \psi$. Since φ has no free variables, neither does ψ and therefore ψ is just a Boolean combination of T and F . So clearly either both $\mathfrak{A} \models \psi \leftrightarrow \mathsf{T}$ and $\mathfrak{B} \models \psi \leftrightarrow \mathsf{T}$ or both $\mathfrak{A} \models \psi \leftrightarrow \mathsf{F}$ and $\mathfrak{B} \models \psi \leftrightarrow \mathsf{F}$. In the first case, both $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \varphi$, and in the second case both $\mathfrak{A} \models \neg \varphi$ and $\mathfrak{B} \models \neg \varphi$. Q.E.D.

By putting together Lemma 1 and Corollary 1 we obtain

Theorem 1 For each $n \ge 1$ and each uncountable cardinal α there are \mathcal{L} -structures \mathfrak{A} and \mathfrak{B} such that \mathfrak{A} and \mathfrak{B} satisfy the same sentences of \mathcal{L}^n_{α} , but for some sentence $\varphi \in \mathcal{L}^{n+1}_{\alpha}$, $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$.

REFERENCES

- [1] Badger, L. W., "The Malitz quantifer meets its Ehrenfeucht game," Ph.D. dissertation, University of Colorado, Boulder (1975).
- [2] Magidor M., and J. Malitz, "Compact extensions of $\mathcal{L}(Q)$," to appear.

University of California at Berkeley Berkeley, California