Notre Dame Journal of Formal Logic
Volume XIX, Number 3, July 1978 NDJFAM

$$
\mathrm{S} 4.1 .4=\mathrm{S} 4.1 .2 \text { and } \mathrm{S} 4.021=\mathrm{S} 4.04
$$

WOLFGANG LENZEN

In [2], modal systems S 4.1 .4 and S 4.021 have been introduced as the result of restricting the proper axioms of $S 4.4$ and S 4.04 , i.e.,

$$
\mathbf{R 1} p \supset(M L p \supset L p)
$$

$$
\mathbf{L 1} p \supset(L M L p \supset L p),
$$

to
R1.3 $(p \supset L p) \supset(M L(p \supset L p) \supset L(p \supset L p))$
L1.3 $(p \supset L p) \supset(L M L(p \supset L p) \supset L(p \supset L p))$
respectively. Since R1.3 could be proven to be logically weaker than R1, the author thought it "very probable that L1.3 [would similarly] not entail L1"' ([2], p. 162). Also, since $S 4.021$ could be proven to contain the strongest proper subsystem of 54.04 , viz. S4.02, properly, the author thought (though rather diffidently) that S4.1.4 might likewise contain the strongest proper subsystem of S4.4, viz. S4.1.2, properly. The aim of this note is to disprove these two assumptions.

As chance would have it, the former assumption which seemed to be the more likely one turned out to be somewhat easier to refute than the latter. The following rather straight-forward derivation shows that, even in the field of S2, L1.3 entails L1:

(1) $(\urcorner p \supset L\urcorner p) \supset(L M L(\neg p \supset L\urcorner p) \supset L(\urcorner p \supset L\urcorner p))$	L1.3, $p / \neg p$
(2) $p \supset(\urcorner p \supset L\urcorner p)$	PC
(3) $L M L p \supset L M L(\urcorner p \supset L\urcorner p)$	$\mathrm{S} 2^{\circ}$
(4) $p \supset(L M L p \supset L(\urcorner p \supset L\urcorner p))$	$(1)-(3)$
(5) $L(\urcorner p \supset L\urcorner p) \supset L(M p \supset p)$	$\mathrm{S} 1^{\circ}$
(6) $L(M p \supset p) \supset(L M p \supset L p)$	$\mathrm{S} 2^{\circ}$
(7) $L M L p \supset L M p$	S 2
L1 $p \supset(L M L p \supset L p)$	(4)-(7)

Hence $\mathrm{S} 4.021=\{\mathrm{S} 4 ; \mathbf{L 1 . 3}\} \rightleftarrows\{\mathrm{S} 4 ; \mathbf{L 1}\}=\mathrm{S} 4.04$.
With respect to R1.3, we obtain in an analogous way:
(8) $(\urcorner p \supset L\urcorner p) \supset(M L(\urcorner p \supset L\urcorner p) \supset L(\urcorner p \supset L\urcorner p))$

R1.3, $p / \neg p$
(9) $M L p \supset M L(\urcorner p \supset L\urcorner p)$
$S 2^{\circ}$
(10) $p \supset(M L p \supset L(\urcorner p \supset L\urcorner p))$
(8), (2), (9)
(11) $p \supset(M L p \supset(L M p \supset L p))$
(10), (5), (6)

But from (11) we cannot further infer R1, because, unlike $L M L p, M L p$ does not (in the field of S4) entail LMp. Formula (11) does, however, entail R1.3 itself! It is only necessary to note that
(12) $L M(p \supset L p)$
is a theorem of S4 and that
$(13)(p \supset L p) \supset(M L(p \supset L p) \supset(L M(p \supset L p) \supset L(p \supset L p)))$
follows from (11) by substituting $p / p \supset L p$. The conjunction of (12) and (13) trivially entails R1.3, which is thus seen to be inferentially equivalent, in the field of $S 4$, to (11).

Now, the proper axiom of S4.01,
$\Gamma 1 M L p \supset(L M p \supset L M L p)$,
has been shown by Goldblatt (cf. [1], p. 568) to follow from the proper axiom of S4.1,

N1 $L(L(p \supset L p) \supset p) \supset(M L p \supset p)$;
hence $\Gamma 1$ is a fortiori provable in $\mathrm{S} 4.1 .2=\mathrm{S} 4.1+\mathrm{L} 1$. But (11) follows immediately from L1 in conjunction with $\Gamma 1$; thus both (11) and R1.3 are theorems of S4.1.2. Since, conversely, R1.3 has been proven to entail both N1 and L1 (cf. [2], p. 161), it follows that S4.1.2 $=\{$ S4; N1; L1 $\} \rightleftarrows\{S 4 ;(11)\} \rightleftarrows$ $\{\mathrm{S4} ; \mathrm{R1.3}\}=$ S4.1.4. ${ }^{1}$

REFERENCES

[1] Goldblatt, R. I., "A new extension of S4," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 567-574.
[2] Lenzen, W., "On some substitution instances of R1 and L1," Notre Dame Journal of Formal Logic, vol. XIX (1978), pp. 159-164.
[3] Lenzen, W., "Beschränkte und unbeschränkte Reduktion von Konjunktionen von Modalitäten in S4," to appear in Zeitschrift für mathematische Logik und Grundlagen der Mathematik.

University of Regensburg
Regensburg, West Germany

[^0]
[^0]: 1. Another proof may be found in section 1 of [3] which presents a considerable generalization of the investigations made in [2]. Similar proofs that $\mathrm{S} 4+\mathrm{R} 1.3=\mathrm{S} 4.1 .2$ and that $\mathrm{S} 4+\mathrm{L} 1.3=$ S4.04 have been reported to the author by Mr. Steven Schmidt in a letter of Feb. 5, 1978.
