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CLASSIFICATIONS FOR INCONSISTENT THEORIES

JOHN GRANT

In [2] N. C. A. da Costa surveys some interesting results about
inconsistent formal systems. A formal system is said to be inconsistent if
there is a formula φ such that both φ and~<ρ are theorems. The approach
in [2] towards the study of inconsistent systems is basically syntactical. In
this paper we investigate inconsistent theories from a model-theoretical
point of view. However we do not analyze semanticaily the calculi pre-
sented in [2] as suggested on Page 508. Instead we define a notion of
structure which allows for the possibility of built-in inconsistencies.
These structures may then be models of inconsistent theories. We classify
theories in 3 different ways. Intuitively, the higher a theory is in a classi-
fication, the more inconsistent it is. This way we obtain measures of
inconsistency for theories.

1 Terminology and Examples Since for the purposes of this paper it is
convenient to deviate somewhat from the standard terminology, we explain
our notations in this section. We deal with first-order languages of finite
type with equality and without function symbols. A type μ = (nl9 . . ., ft&) is
always finite and nonempty. We use j, k, m, n for integers or possibly ω;
α, β for infinite cardinals; φ, ψ for formulas (usually sentences); Γ for a
set of sentences. The cardinality of a set A is denoted by \A\. We differ-
entiate between equations and atomic formulas: an equation has the form
t{ = tj while an atomic formula has the form St(tl9 . . ., tn) where S, is an
Wt-ary relation symbol mentioned in μ, and the U are terms. We use the
connectives ~, Λ, V, and the quantifiers 3, V.

We give the following recursive definition of a formula:

1) Every equation, negation of equation, atomic formula, and negation of
atomic formula is a formula.
2) If φ and ψ are formulas then so are φ *ψ, φyψ, ~φ(3x)φy and (Vx)φ.
3) An expression is a formula only if it follows from a finite number of
applications of 1) and 2) that it is a formula.

Sometimes we may write an expression where negation is applied to
a formula which is neither an equation nor an atomic formula. Such an
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expression is not a formula according to our definition but it can be treated
as one since it can be transformed to a formula by applying to it the
following transformations (where appropriate): φ for ~~φ, (~φv~ψ) for
~(φλψ), (~φ Λ~ψ) for ~(φ vψ), (Vx)~φ for ~{3x)φ, and (3x)~φ for ~(Vx)φ.

The notion of structure that we use in this paper differs from the usual
notion of relational structure. Ordinarily if 51 is a relational structure then
it is consistent in the sense that for every atomic formula Si(au . . ., an) of
the diagram language exactly one of the following 2 conditions holds:

1) 21 NS/ίflx, . . .,an)
2) 21 \*~Si(aX9 . . .,«„).

We generalize the notion of relational structure to that of structure by
replacing the word "exactly" by the phrase "at least". We say that a
structure is consistent if it is a relational structure in the usual sense, and
inconsistent otherwise. Note that a structure must still be equationally
consistent in the sense that for any equation of the diagram language, either
it or its negation but not both hold.

The diagram language of a structure 21 contains a symbol for each
element of the universe of the structure, A. The diagram of a structure 21,
Diαg(2l), is the set of ail atomic formulas and negations of atomic formulas
of the diagram language which hold in 21. Satisfaction for formulas is then
defined by induction using the usual rules for Λ, v, 3, and V. We write
21 N φ if φ holds in 21, and 21 ψφ if φ does not hold in 21. Many model-
theoretical notions such as isomorphism, elementary equivalence, sub-
structure, and elementary substructure can be extended to structures.

A set of sentences Γ is called a theory. We write 21 N Γ if 21 1= φ for
every φeΓ. In this case we also write 21 e Mod(Γ). If 21 is consistent then
21 e Con Mod(Γ). A theory Γ is consistent if Con Mod(Γ) £ φ. If Γ = {φ} we
usually omit the braces.

Whenever S(a1, . . ., αw)eDiαg(2l) and ~S(aλ, . . ., βw)eDiαg(2l) we say
that 21 has an inconsistency. Otherwise 21 has a consistency. We write
lncon(2l) for the number of inconsistencies of 2f and Con(21) for the number
of consistencies of 21. So |Diαg(2l)| = Con(2l) + 2 lncon(2C). For any type μ
it is possible to write down sentences Ek, Fk, Pk, and Rk so that 21 )FEk iff
\A\ = k, 21 NFA iff |AI >k, 21 NP^ iff lncon(2l) ^ k, and 21 £Rk iff Con(2l) ^ k.
We use the term countable to stand for finite or denumerably infinite. A
finite set may be empty but a finite structure must have at least one
element. If 21 and 21' have the same universe A and type μ, we write 2I< $T
to indicate that Diαg(2l) ^ Diαg(2!'). C = the class of consistent structures.

Lemma 1 (a) 7/21 is consistent and 2l< 21' then 21' is inconsistent.
(b) 7/21 N Γ and 21 < 2f' then 21' N Γ.

Proposition 1 There is no theory Γ such that C = Mod(Γ).

Proof: By Lemma 1.
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Example 1 It is possible to have Con Mod (φ) = Con Mod(ψ), but Moό(φ) ^
Mod(ψ). Suppose that μ = (1) and let φ = (3X)(S(X)A~S(X)), ψ = (VX)(S(X)Λ

~S(x)). Then Con Moά(φ) = 0 = Con Mod.(ψ). Now let $1 be the following
structure: A = {aly a2}, Diαg(SI) = {S(«i), ~S(«i), S(a2)}. Then W \= φ but

2 The 3 Classifications In this section we present 3 methods for clas-
sifying theories via structures. As we show in the next section it suffices
to consider countable structures only. So in this section every structure is
countable.

Definition 1 I\ < Γ2 if Mod(Γ2) Q MocKΓJ.

We call the ordering of theories given in Definition 1 the relative
ordering. It follows that if I\ < Γ2 then Con Mod(Γ2) C Con Mod(Γ\). Note
that in Example 1 φ < ψ even though Con Mod(φ) - Con Mod (ψ).

Example 2 It is possible to have φ 4 ψ and ψ 4 φ even though Con Mod (φ) =
Con Mod (ψ). Suppose that μ = (1) and let φ = ~E3 Λ(3#) (S(x) Λ ~S{x)),
ψ = ~E2Λ (3x) (S(ΛΓ)Λ~S(AΓ)). Then Con Mod(^) = 0 = Con Mod(ψ). Now let 31
be the structure: A = {al9 a2], Diαg(̂ l) = {S(aλ)9 "SiaJ, S(a2)} and let 53 be the
structure: B = {δ1? &2, δ3}, Diαg(53) = {SφJ, -SφJ, S(b2), S(b3)}. Then SI h <p,

It should be noted that the relative ordering of theories is a global
concept since ail of the countable models of a theory are considered. The
second classification that we next introduce is called the level of incon-
sistency of a theory. The idea here is that lev(Γ1) ^lev(Γ2) if for every
countable n a least inconsistent model of Γ\ of cardinal n is not more
inconsistent than a least inconsistent model of Γ2 of cardinal n. Thus the
concept of level of inconsistency is global in the sense that all countable
cardinals are considered, but is local in the sense that essentially only one
model is considered in every cardinal.

Definition 2 lev(Γ) = (C,f,g) where C Q (ω - {θ}) U {ω}, f:C — ω U {ω},
g:C -> ω U {ω} and C = the set of countable cardinals in which Γ has
models, f(n) = ϊnf {lncon(SI)ISI NΓ and \A\ = n}, g(n) = sup {Con(SI)ISI NΓ and
\A\ = n\

Definition 3 If ux and u2 are levels, say ux = {Clffι,g^ and u2 = (C2,f2yg2)
then ux ^ u2 if C2 c cι and for every ne C2, fλ(n) ^ f2(n) and gι(n) ^ g2(n)

In the third and last classification that we now introduce we define the
degree of inconsistency of a theory. This concept is local if the theory has
a least inconsistent model. The idea is that deg(r\) < deg(Γ2) if for every
model 51 of Γ2 there is a model of Γι which is not more inconsistent than SI1.
First we define the degree of inconsistency of a structure.

Definition 4 deg(SI) = (a,b,c) where a = lncon(Sί), b = Con (SI), and c= |Diαg(SI)l.

Next we define a total ordering on degrees of structures. Our idea is
that the ordering of degrees of structures should be based on the ratio a/c.
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Thus in genera l if (a19b19c^ and (a2,b2,c^ a r e d e g r e e s and a1/c1 < a2/c2, we

would like to have (al9bl9c^ < (a2,b2,Cz). As long a s c i s finite t h e r e i s no

problem, but when c = ω we need specia l r u l e s . We p lace d e g r e e s of

s t r u c t u r e s in 6 s e t s Do - D5 so that if deg($I)e/)/, deg(33)eZ>; and i < j then

deg($l) < degOB). T h e r e is a fur ther o r d e r i n g within the s e t s Du D2, and D4.

The setup is such that intuitively if deg($l) < deg(φ) then $1 is l e s s incon-

s is tent than Φ. Now we d e s c r i b e the s e t s Do - D5.

Definition 5

Do: a = 0.

Ώγ\ a £ 0, a finite, b = c = co. (k9ω,ω) < (m9ω,ω) if k <m.

D2: a,b,c al l finite, a ^ 0, b / 0. (alybl9cx) < {a29b2,c^ if αj/Cj. < « 2 / c 2

J93: « = δ = c = co.

D 4 : a = ω9 b ^ 09 b finite, c = co. (ω9k9ω) < (ω,m9ω) if m < k.

D5: 6 = 0.

Now we are ready to define the degree of a theory Γ.

Definition 6 deg(Γ) = inf {deg(9f)|f( N Γ}.
We say that όeg(Γ)eDi if Γ has a model $ϊ such that deg(fl)e A but has

no model © such that deg(Q)εi)y with j <. i. If Γ has no models then we say
that deg(Γ)e£6.

In the next 2 examples μ = (2) and lev(<ρ) = (C,f,g).

Example 3 φ = (Vx)(Vy)(S(x,y)*~S(x,y)). Then deg,(<p)eD5 and C = (ω - {θ}) U
M , /(^) = fe2, ̂ ) = 0, f(ω) = co, *(ω) = 0.

Example 4 <̂ = (Vx)(3y)(S(x,y)*~S(x,y)). Then deg(^) eZ)2 and C= (co - {θ}) U
{co}, f(k) = fef ̂ (« = k2 - k, f(ω) = co, g(ω) = co.

Theorem 1 T&e 3 classifications for theories are compatible with each
other (i.e., if Γ\ is less than Γ2 m one classification then Γ2 zs not less
than Γx m another classification).

Prtfo/: Note first that if I\ = Γ2 then levίΓJ = lev(Γ2) and if levίΓj = lev(Γ2)
then degίΓJ = deg(Γ2). Now assume that Γ\ < Γ2. It follows from the
definitions that lev(Γx) ^ lev(Γ2) and deg(Γ\) < deg(Γ2). Next assume that
levίΓJ < lev(Γ2). It follows from the above that Γ2 < Γx. Similarly if
degίΓJ < deg(Γ2) then Γ2 <f Γx and lev(Γ2) << lev(rx). Finally assume that
lev(ΓJ < lev(Γ2). We show that in this case deg^ΓJ ^ deg(Γ2). For suppose
that deg(Γ2) = ϊnf{deg(«,-)lie/}. Then find {©f lze/} such that », N Tu

\B{\ = \Ai\ and deg(^) ^ deg(f|t ) for each iel. So deg(Γ1) ^ inf {deg (»,-) lie/} ^
inf{dβg(»f.)|t€/}= deg(Γ2).

We now give some examples to show that the results obtained in the
proof of Theorem 1 are best possible. In these examples μ = (1).

Example 5 φ = (VΛΓ) (X = x)9 ψ = (3x)S(x). Then φ < ψ but lev((̂ ) = \ev(ψ)
and deg(^) = deg(ψ).
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Example 6 φ = (Vx)S(x), ψ = ~E2V(3X)(S(X)Λ~S(X)). Then \ev(φ) < lev(ψ)
but φ 4 ψ, ψ 4 φ, and deg((^) = deg(ψ).

Example 7 <p = (V*) S(x) Λ (~£ 2 v (V*)~S(#)), ψ = (3AT) (S(ΛΓ) A ~S(#)). Then
deg(<p) < deg(ψ), but φ 4 ψ, ψ 4 <p, lev(<p) 4 lev(ψ), lev(ψ) 4 lev(<p).

Question: What is the level of field theory?

3 L'όwenheim-Skolem and Compactness Theorems In this section we
give some extensions of the Lδwenheim-Skolem and compactness theorems
to structures. First we show that there is no loss of generality in the
definitions of the 3 classifications given in the previous section where only
countable structures are considered. Although Definition 4 was given for
countable structures only, the same definition can also be used for uncount-
able structures.

Proposition 2

a) If Γ has a model of degree (i,a,a) then Γ has a model of degree (i,ω,ω).
b) If Γ has a model of degree (a, β, a + β) then Γ has a model of degree

c) // Γ has a model of degree (a,i,a) then Γ has a model of degree (ω,i,ω).

Proof: The Downward Lδwenheim-Skolem Theorem ([1] Pages 80-81) in-
cludes a) with i = 0. The proof is analogous to the one given there.

Corollary // I\ ̂  Γ2 then Mod(Γ2) C Mod(I\).

Proof: The statement is Definition 1 for countable structures. So suppose
that $1 is uncountable and % N Γ2. As in the proof of Proposition 2 construct
a countable 93 such that 53 -3 31. Then 53 t= Γ2, so 53 |= Γ\ and therefore
21 NΓ1 (

Ultraproducts of structures can be formed in the usual way ([l] Pages
87-89) and Los's Theorem can be extended to structures. In the following
F is an ultrafilter.

Lemma 2

a) i) // lncon(«lf ) ^ k for every iel then lncon(Π*I,/F) ^k.

and

ii) Substitute >for ^ in i).

b) i) and ii) Substitute Con for Incon in a).

Proposition 3

a) deg(Γ) ^(z,ω,ω) iff for every finite Γo c Γ, deg(Γ0) ^(z,ω,ω).

b) όeg{T)eD6iff for some finite Γo c Γ, deg(Γ0)eD6.

Proof: The Compactness Theorem ([1] Page 102) is a) with i = 0. The
proof is analogous to the one given there with an additional use of Prop-
osition 2 and Lemma 2.
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Corollary // lev(Γ) = {C,f,g) then ne C iff ne Co for each finite Γo c Γ where
lev(Γo) = (Co,fo,go).

Theorem 2 TjΠev(Γ) = (C,f,g) and C is infinite then

a) ωeC,

b) f(ω) ^ lim inf {f(ri)\ne C,n-* ω},

and

c) g(ω) ^ lim suρ{g(n)\neC,n-* ω}.

Proof: a) Construct an appropriate ultraproduct of finite models of Γ and
apply Proposition 2. b) Suppose that lim inf {f(n)\neC,n —> ω} = k < ω. Then
J = {n\f(ή) - k} is infinite. Construct an appropriate uitraproduct of models
of Γ whose cardinal e J. Now apply Lemma 2 and Proposition 2. c) Similar
to the proof of b).

We close this section by investigating ievelcompact theories.

Definition 7 A theory Γ is called Ievelcompact if there is a finite Γo c Γ
such that lev(Γ) = lev(Γ0).

Proposition 4 Suppose that lev(Γ) = (C,f,g) and ω - C is not finite. Then Γ
is Ievelcompact iff C is finite and ω^C.

Proof. If C = φ. then by Proposition 3 Γ is ievelcompact. If C ̂  0, C finite
and ω\C then there is a φeΓ which implies ~Fk for some k. For each neC
there is a finite set of sentences which express f(n) and g(n). So Γ is
Ievelcompact. Finally if ω e C and ω - C is infinite then there are sentences
equivalent to ~Ek for infinitely many k in Γ. So Γ is not Ievelcompact.

Corollary // Γ is finite then*άeg(Γ)$D3.

4 The Realizable Degrees and Levels In this section we show which of
the possible levels and degrees are actually realizable by theories.

Theorem 3 The set of realizable degrees has the order type ω + l + λ + l +
ω*.

Proof. We indicate how to obtain theories whose degrees are progressively
higher. We show that as ordered sets Do U Dλ has order type ω, D2 has
order type 1 + λ, D3 has order type 1, and ΰ 4 U D5 U D6 has order type ω*.
If Γ is consistent then deg(Γ)eA) Next, deg(P^) = (k,ω,ω) eDγ.

Now let deg(Γ)€D2. Then deg(Γ) -r where r is a real number such
that 0 ^ r < 1. For every such r we construct a theory Γr such that
deg(Γr) = r. If r is rational and £ 0, say r - k/m, k £ 0, then let Γr =
{Em, i\f. Otherwise let {ki/πii 11 ̂  i < ω} be a descending sequence of
fractions such that both {&,} and {πii} are increasing sequences and
lim {ki/nϊi\i -~* ω} - r. Now choose

Γr = {Fmi}u{Fm.+1vPki\l<i<ω}.

Next we let Γ = {F, | l ^ i < ω} U {py | l *zj < ω}. Then deg(Γ)e-D3. Now
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if Γk = RkU {Fi\l ^i < ω] then deg(Γ^)eD4. Finally if φ = (Vx)(P(x)*~P(x))
then 6eg(φ)eD5 and if ψ = (3 AT) (AT ̂  A:) then deg (ψ) ei) 6 .

Theorem 4 Gzz en α type μ = (%, . . ., n£, a triple {C,f,g) can be the level
of a theory of type μ iff the following 6 conditions hold:

i) CQ (co - {θ}) U {co}, f:C — ω U {co}, g*:C — ω U {co}
ii) If C is infinite then ωeC.
iii) If C is infinite then f(ω) ̂  lim ϊnf {/(^z)lwe C,w —* ω}.
iv) // C zs infinite then g(ω) ^ lim sup {g(ή)\ne C,n -» ω}.

v) IfmeC,m^ω, then f(m) + g (wί) = S ^ W s .
vi) IfωeCthenf(ω)+g(ω) = ω. ^ s ^ k

Proof: The 6 conditions are necessary by Definition 2 and Theorem 2.
Now assume that the 6 conditions are satisfied for some (C,f,g) and μ. We
construct a theory Γ in type μ such that lev(Γ) = (C,ffg).

Case 1. C = 0. Let Γ = (3χ) (x £ x).

Case 2. C is finite, ω^C, say C = {^i, . . ., πij], f(πii) = tif g(mi) =
( ΣJ πiins\- tim Then let

Γ = {~EM\m < m] & m ̂  C} U f ^ / + 1 } U {-£„. vP,. ll ^ z^;}.

Case 3. C = {ω}.

a) /(ω) = k ί ω, g(ω) = ω. Let Γ = {pk} U {Fjl ^ z < ω}.

b) /(ω) = ω, ̂ (ω) = ω. Let Γ = {JP; 11 ̂  j < ω} U {F, | 1 ^ z < ω}.
c) f(ω) = co, ̂ (co) = k £ ω. Let Γ = {Rk} U {F{\l < z < co}.

Case 4. coeC and \c\ •£ 1. Now Γ may be obtained by a proper combination
of the constructions in Cases 2 and 3.

5 The lattice of realizable levels In this section we investigate the
partial ordering on realizable levels given in Definition 3. We assume that
the set of realizable levels refers to the levels realized by theories of
some fixed type μ.

Theorem 5 The set of realizable levels forms a complete nonmodular

lattice.

Proof: To show that it is complete we show how to obtain u = y{ui\iel} =
(C,f,g) and u' =A{ui\iel} = (C',/',g') given {m = {Cufi,gt)\i*l}. So let
C = ϊ){Ci\iel} and if C ̂  0 then f(n) = sup{fi(ή)\iel], g(n) = inf {gMliel}
for all neC. Next

I \J{d\iel} if this union is finite,

{co} U {Ciliel} otherwise.

If meC, m Φ co, then f\m) = ιnf{fi{m)\fi(m) is defined},

g'(m) = sup {gi(m)\gi(m) is defined},
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f'(ω) = min(inf{/t (co)|ie/}, Urn inf {f'(n)\n eC',n - co}),
g'(ω) = mαx(sup{^ (ω)|f e/}, lim sup {g'(ή)\ne C',n -> ω}).

Modularity means that

if ux ^ u3 then ux v (u2 Λ W3) = (% v u2) Λ W3.

So let u = &! v (w2 Λ w3) and w' = (wx v w2) Λ U3. NOW if we C - C2 and f^ri) < /3(n)
then /(n) = /3(n) ̂  /i(n) = fr(n). Thus in such a case u •£ ur.

An element u of a lattice L is said to be compact if whenever u <
V{Kf U*€ /} then there exists a finite / ' c / such that u ^ V W i e / ' } ([3] Page
21). In our case L is the lattice of realizable levels and u = (C,f,g).

Proposition 5 Mis compact iff one of the following conditions holds:

i) C is finite and ω$C.
ii) ω - C zs /mite and D = {neC\ f(ή) £ f(ω)} is finite.
iii) ω - C is finite and E = {neC\g(n) £ g(ω)} is finite.

Proof: There are 7 cases to consider. First we deal with the 3 cases
where u is compact. We assume that u ^y {uiliel}. By Theorem 5 this
means that Γl{CίUe/}c C, and for all neΓ\{Ci\iel}, f(n) ^ sup{/, (n)U'e/},
g(ή) ^ \nf{gi(n)\iel}.

i) C is finite and ω$C. In this case by Theorem 2 there is an ioel such
that d0 is finite. This implies compactness.

ii) ω - C is finite and D is finite. If some C{ is finite then just as in Case
i) we are through. So assume that each C, is infinite. Then ωe \\{Ci\iel}.
By Theorem 2 there is an i0 such that f(ω) ^ lim inf {fio(n)\n -* ω}. This
implies compactness.

iii) ω - C is finite and E is finite. This is similar to Case ii).

Next we consider the 4 cases where u is not compact. We construct
{ui\iel} such that u < y{ui\iel} but there is no finite V c / such that
u^ y{ui\ieΓ}.

iv) ω - C is infinite and ωeC. Let C, = (ω U {ω}) - {z,θ}, /, (ω) = /(ω),
^ ί ( ^ ) = g(ω)> fi(n) and ^-/(n) arbitrary otherwise satisfying the conditions of
Theorem 4.

v) ω - C is finite and f(ω) = £ (ω) = ω. Let C = {wf | l ^ i < ω} U {ω} and
Ct = C - {ni}9 fi(n) = mαx(/(w) - 1,0), //(ω) = co, ^ t (co) = ω, ^ t (w) satisfying
the conditions of Theorem 4.

vi) co - C is finite, /(co) is finite, and D is infinite. There is an infinite set
D' Q D such that if neD' then /(w) > /(co). Now let Z>' = (J {z^l 1 ^ i < co} and
D{ Π Dv = 0 if i ^ i'. Define C/ = £>' U {co}, /, (w) = f(m) if w?eD/, /f(wi) =
/(co) if m e C t - £>/, ^/(to) = ω = ^(co), ^(w?) satisfying the conditions of
Theorem 4.



CLASSIFICATIONS FOR INCONSISTENT THEORIES 443

vii) ω - C is finite, g(ω) is finite, and E is infinite. This is similar to

Case vi).

Corollary The lattice of realizable levels forms an algebraic lattice.

Proof: Recall that an algebraic lattice is a complete lattice in which every

element is a join of compact elements ([3], Page 21). The proof uses

Theorem 5 and Proposition 5. Cases iv), v), vi), and vii) of Proposition 5

must be considered.

6 Further examples and results We define semantical implication in

analogy with the usual definition, Γ N Γ' iff Mod(Γ) Ώ. Mod(Γ'). We let

T = {φ\T \=φ}.

Lemma 3

a) Γ = Γ. _

b) Γ < Γ and Γ ^ Γ\

c) Γ ^ Γ' iff T ^ T \

d) Γ^Γ'ί//ΓC Γ'.

Proposition 6 The relative ordering of theories forms a complete lattice.

Proof: Let V{l\-k'e/} = U{Γ*Ue/} and Λ{l\ |ze/} = Π{Γ, |ze/}. The result
then follows from Lemma 3.

Next we show that an extension of Proposition 6 to degrees and levels

does not hold.

Example 8 Let μ = (1,1) and φ = {3X)(S1(X)A^S1{X))9 ψ = (3X)(S2(X)Λ~S2(X)).

Now \ev(φ) = lev(ψ) = (C,f,g) where C = (ω - {θ}) U {ω} and f(n) = 1 for all

neC. Thus lev(< )̂ A \ev(ψ) = \ev(φ) = \ev(φ)v lev(ψ). But \ev(φ Π ψ) < lev(φ) <

\ev(φ U ψ). Similarly deg((̂ ) = deg(ψ) = (l,ω,ω) SO that όeg(φ) A άeg(ψ) =

όeg(φ) = 6eg(φ)v deg(ψ). But όeg(φ Π ψ) < deg(< )̂ < όeg(φ U ψ).

Finally we consider the notion of reduced model of a theory.

Definition 8 A model 51 of a theory Γ is a reduced model of Γ if $! N Γ but

there is no W < % such that W N Γ.

We give our results about reduced models by examples.

Example 9 Let μ = (1), Γ = {F^l ^ i < ω} U {P; | l ^ j < ω}. Γ has no re-

duced models.

Example 10 Let φ - ~E2vP1. Then φ is consistent but any reduced model

of φ of cardinal 2 is inconsistent.

Example 11 Let μ = (1,1) and

φ= (3X)(SMΛ~SM)

v (3x)(3y) (x ίy Λ S2(x) A ~S2(#) A S2(y) A ~S2{y))

Now lev(< )̂ = (C,f,g) where f(n) = 1 for all neC and C = (ω - {θ}) U {ω}.

Construct 5( as follows: A = {alfa2},
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DiαgQH) = {S^x) , S2(a1)9^S2{a1)9 S x(a2), S2(a2),~S2(a2)}.

Then $1 is a reduced model of Γ of cardinal 2 which has more than /(2)
inconsistencies.
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