Notre Dame Journal of Formal Logic Volume XIX, Number 3, July 1978 NDJFAM

## BINOMIAL PAIRS, SEMI-BROUWERIAN AND BROUWERIAN SEMILATTICES

# JÜRGEN SCHMIDT

This paper may be considered as a contribution to the axiomatization of intuitionistic logic, i.e., Brouwerian semilattices, within the wider realm of semi-Brouwerian semilattices. The latter occurred first within a purely algebraic context, as congruence lattices of semilattices (whose characterization as abstract lattices, cf. Grätzer [14], Problem 21, is, in a sense, still an open problem). As observed here for the first time, semi-Brouwerian semilattices form an equational class, an additional equation making them Brouwerian (Proposition 2.1). These equations have indeed a structural meaning that is fully investigated in section 1. In section 3, further conditions are given that make a semi-Brouwerian semilattice Brouwerian, some distributivity condition (Theorem 3.3) and the classical deduction theorem (Theorem 3.7) among them. Between Brouwerian and semi-Brouwerian semilattices, there is also a relationship similar to that between abelian groups and all groups (Theorem 3.6).

**1** Binomial pairs Let S be a partially ordered set. A closure operator in S is a mapping  $\beta$ :  $S \rightarrow S$  such that

(1.1) 
$$\begin{cases} \beta(\beta(z)) = \beta(z), \\ z \leq \beta(z) \end{cases}$$

for each  $z \in S$ , moreover, for each y,  $z \in S$ ,

(1.2) whenever 
$$y \leq z$$
, then  $\beta(y) \leq \beta(z)$ .

There is a well-known one-to-one correspondence between closure operators  $\beta$  and certain subsets  $B \subseteq S$ , established by

(1.3) 
$$B = \beta(S), \ \beta(z) = \min \left\{ b \in B \mid z \leq b \right\} (z \in S).$$

The subsets B occurring here are exactly those for which all those minima in (1.3) exist. The dual of a closure operator is a *kernel operator*.

A weak closure operator will be a mapping  $\beta: S \to S$  just satisfying (1.1), (1.2) being no longer required. It is no longer determined by its image  $\beta(S)$ . E.g., in the semilattice

Received January 1, 1977



there are two weak closure operators with image  $\{a, b\}$ . However, a weak closure operator  $\beta$  is still determined by the induced equivalence relation  $\rho = \beta^{-1} \circ \beta$ . We will call an equivalence relation a *monomial equivalence* (*relation*) once every equivalence class has a maximum (for congruences of a join-semilattice, *cf.* E. T. Schmidt [27], Definition 4.7).

Theorem 1.1 In a partially ordered set S, there is a one-to-one correspondence between weak closure operators  $\beta$  and monomial equivalences  $\rho$ , established by

(1.4) 
$$\rho = \beta^{-1} \circ \beta, \ \beta(z) = \max \left\{ y \in S | (y, z) \in \rho \right\} (z \in S).$$

Dually,  $\rho$  is a comonomial equivalence once every equivalence class has a minimum. (Katriňák [18], Definition 3.4, used "comonomial" for certain monomial congruences of a meet-semilattice.) We get the dual one-to-one correspondence between weak kernel operators and comonomial equivalences. For a nice example of a weak kernel operator, consider Tarski's function cf. in the class of ordinals (or in any well-ordered set).

We now call  $\rho$  a *binomial equivalence* once  $\rho$  is both monomial and comonomial. A *binomial pair* is an ordered pair  $(\alpha, \beta)$  of mappings  $\alpha, \beta: S \to S$  so that

(1.5) 
$$\begin{cases} \alpha^{-1} \circ \alpha = \beta^{-1} \circ \beta, \\ \alpha \circ \alpha = \alpha, \ \beta \circ \beta = \beta \end{cases}$$

and

(1.6) 
$$\alpha(z) \leq z \leq \beta(z)$$

for each  $z \in S$ . I.e.,  $\alpha$  is a weak kernel operator,  $\beta$  a weak closure operator, and both induce the same equivalence relation.

Corollary 1.2 In a partially ordered set S, there is a one-to-one correspondence between binomial pairs  $(\alpha, \beta)$  and binomial equivalences  $\rho$ , established by

(1.7) 
$$\begin{cases} \rho = \alpha^{-1} \circ \alpha = \beta^{-1} \circ \beta, \\ \alpha(z) = \min \{y \in S \mid (y, z) \in \rho\}, \\ \beta(z) = \max \{y \in S \mid (y, z) \in \rho\} \ (z \in S). \end{cases}$$

Clearly, each member of a binomial pair determines its partner:

Corollary 1.3 Let S be a partially ordered set,  $\alpha$  and  $\beta$  mappings of S into itself. Then  $(\alpha, \beta)$  is a binomial pair iff

(1.8) 
$$\begin{cases} \alpha(z) = \min \{ y \in S | \beta(y) = \beta(z) \}, \\ \beta(z) = \max \{ y \in S | \alpha(y) = \alpha(z) \} \end{cases}$$

for each  $z \in S$ .

For if  $(\alpha, \beta)$  is a binomial pair, (1.8) holds as an immediate consequence of (1.7). Conversely, (1.8) makes  $\alpha$  the weak kernel operator corresponding to the comonomial equivalence  $\beta^{-1} \circ \beta$ , so that  $\alpha^{-1} \circ \alpha = \beta^{-1} \circ \beta$ . (1.8) also makes  $\beta$  the weak closure operator corresponding to the monomial equivalence  $\alpha^{-1} \circ \alpha$ , so that again  $\beta^{-1} \circ \beta = \alpha^{-1} \circ \alpha$ . So this equivalence is binomial and  $(\alpha, \beta)$  the corresponding binomial pair.

There is also an axiomatic, in fact, equational description of the partner. To that end, note that the purely set-theoretic conditions (1.5) are equivalent with the equations

(1.9) 
$$\alpha \circ \beta = \alpha, \ \beta \circ \alpha = \beta.$$

For (1.5) makes z,  $\alpha(z)$ , and  $\beta(z)$  equivalent under  $\alpha^{-1} \circ \alpha = \beta^{-1} \circ \beta$ , where  $\alpha(\beta(z)) = \alpha(z)$  and  $\beta(\alpha(z)) = \beta(z)$ . Conversely, (1.9) implies  $\alpha^{-1} \circ \alpha = \beta^{-1} \circ \beta$ , also  $\alpha \circ \alpha = \alpha \circ \beta \circ \alpha = \alpha \circ \beta = \alpha$ . With that, we have

Corollary 1.4 Let S be a partially ordered set and  $\alpha: S \to S$  a unary operation such that  $\alpha(z) \leq z$  for each  $z \in S$ . Then the unary operation (if it exists)  $\beta: S \to S$  that makes  $(\alpha, \beta)$  a binomial pair is characterized by these three equations, holding for every  $z \in S$ :

(1.10) 
$$\begin{cases} \alpha(\beta(z)) = \alpha(z), \\ \beta(\alpha(z)) = \beta(z), \\ \beta(z) \wedge z = z. \end{cases}$$

An equivalence  $\rho$  is a *convex equivalence* once each equivalence class is a convex subset of S. Note that each order-preserving mapping of S into any partially ordered set T induces a convex equivalence in S since, more generally, the preimage of any convex subset of T will be a convex subset of S. For a convex binomial equivalence  $\rho$ , the equivalence class of  $z \in S$ will be the closed interval  $[\alpha(z), \beta(z)]$ , where  $(\alpha, \beta)$  is the corresponding *convex binomial pair*. The convex binomial equivalences actually correspond one-to-one to the decompositions of S into closed intervals.

**Proposition 1.5** Let  $\alpha$ ,  $\beta$  be mappings of S into itself. Then  $(\alpha, \beta)$  is a convex binomial pair iff one of the following equivalent conditions holds, for each y,  $z \in S$ :

(1.11) 
$$\begin{cases} \alpha(y) = \alpha(z) \text{ iff } \alpha(z) \leq y \leq \beta(z), \\ \beta(y) = \beta(z) \text{ iff } \alpha(z) \leq y \leq \beta(z). \end{cases}$$

For the first equivalence of (1.11) makes  $\alpha(z)$  the minimum,  $\beta(z)$  the maximum of all elements y such that  $\alpha(y) = \alpha(z)$ . So  $\rho = \alpha^{-1} \circ \alpha$  becomes a binomial equivalence and  $(\alpha, \beta)$  the corresponding binomial pair. (1.11) also makes each equivalence class convex, so that  $(\alpha, \beta)$  is a convex binomial pair.

For a neat example from universal algebra, let  $\langle A, F \rangle$  be an algebra with finitary operations, S its congruence lattice,  $S = \theta(A, F)$ . We call the congruences y,  $z \in S$  equivalent with respect to  $a \in A$  provided that their congruence classes of a coincide,

(1.12) 
$$(y,z) \in \rho_a \text{ iff } a/y = a/z.$$

 $\rho_a$  is a convex binomial equivalence.

The better known pairings of functions  $\alpha$ ,  $\beta: S \to S$  are the *adjoint* situations  $(\alpha, \beta)$ , alias Galois connections of mixed type. They are characterized by the condition:

(1.13) 
$$\alpha(y) \leq z \text{ iff } y \leq \beta(z)$$

for each y,  $z \in S$ . (Cf. Benado [4]; J. Schmidt [29]; Nöbeling [23]; also Blythe and Janowitz [7].) This is the case iff both  $\alpha$  and  $\beta$  are order-preserving,  $\beta \circ \alpha$  a closure operator,  $\alpha \circ \beta$  a kernel operator. Another equivalent description:

(1.14) 
$$\begin{cases} \alpha(y) = \min \{z \in S \mid y \leq \beta(z)\},\\ \beta(z) = \max \{y \in S \mid \alpha(y) \leq z\}, \end{cases}$$

for each y,  $z \in S$ .

Proposition 1.6 Let S be a partially ordered set and  $\alpha$  and  $\beta$  mappings of S into itself. The following are equivalent:

(i)  $(\alpha, \beta)$  is a binomial pair  $\alpha$  and  $\beta$  are order-preserving;

(ii)  $(\alpha, \beta)$  is a Galois connection of mixed type,  $\alpha$  is a kernel operator (or  $\beta$  a closure operator).

*Proof:* (i)  $\Rightarrow$  (ii): It suffices to show only one half of (1.13). Let  $\alpha(y) \leq z$ . We get  $y \leq \beta(y) = \beta(\alpha(y)) \leq \beta(z)$ . (ii)  $\Rightarrow$  (i):  $\alpha \circ \beta$  is a kernel operator and  $\alpha(\beta(S)) = \alpha(S)$ . If  $\alpha$  is a kernel operator too, then  $\alpha \circ \beta = \alpha$ , hence  $\beta = \beta \circ \alpha \circ \beta = \beta \circ \alpha$ : (1.9) holds. Also  $z \leq \beta(\alpha(z)) = \beta(z)$ : (1.6) holds, making  $(\alpha, \beta)$  a binomial pair.

We may call such a pair  $(\alpha, \beta)$  consisting of a (strong) kernel operator  $\alpha$  and a (strong) closure operator  $\beta$  inducing the same equivalence  $\rho$  a strong binomial pair and  $\rho$  a strong binomial equivalence. Note that  $(\alpha, \beta)$  and  $\rho$  are then convex.

Corollary 1.7 Let S be a partially ordered set,  $\alpha$  a kernel operator. Then the unary operation (if it exists)  $\beta$ : S  $\rightarrow$  S that makes ( $\alpha$ ,  $\beta$ ) a strong binomial pair is characterized by the condition that  $\beta$  be order-preserving and

(1.15) 
$$\alpha(\beta(z)) \leq z \leq \beta(\alpha(z))$$

for each  $z \in S$ .

For these conditions simply make  $(\alpha, \beta)$  a Galois connection of mixed type.

In the sequel, we will always work in a (meet-) semilattice S. Congruences will be meet-congruences (they are convex!), homomorphisms will be meet-homomorphisms.

**Proposition 1.8** Let S be a semilattice  $\alpha: S \to S$  a mapping. Then the following are equivalent:

(i)  $\alpha$  is idempotent and  $\alpha^{-1} \circ \alpha$  a congruence;

(ii)  $\alpha(y \land z) = \alpha(\alpha(y) \land \alpha(z))$  for each y,  $z \in S$ ;

(iii)  $\alpha(y \wedge z) = \alpha(y \wedge \alpha(z))$  for each y,  $z \in S$ .

*Proof:* (i)  $\Rightarrow$  (iii)  $\Rightarrow$  (ii)  $\Rightarrow$  (i): evident.

Corollary 1.9 Let S be a semilattice,  $\alpha$  a weak kernel operator. Then  $\alpha$  is a kernel operator iff  $\alpha$  satisfies one of the conditions of Proposition 1.8.

It is well-known that a kernel operator satisfies (ii). If  $\alpha$  is a weak kernel operator satisfying (ii), we get  $\alpha(y \wedge z) \leq \alpha(y) \wedge \alpha(z)$  which makes  $\alpha$  order-preserving.

So a weak kernel operator  $\alpha$  is order-preserving iff  $\alpha^{-1} \circ \alpha$  is a subsemilattice of  $S \times S$ . It is well-known that a kernel operator  $\alpha$  is meet-preserving iff  $\alpha(S)$  is a subsemilattice of S. For a closure operator  $\beta$ , however,  $\beta(S)$  is a subsemilattice of S anyway.

Corollary 1.10 Let S be a semilattice,  $\beta$  a closure operator. Then  $\beta$  is meet-preserving iff  $\beta^{-1} \circ \beta$  is a congruence.

If  $\beta$  is an endomorphism,  $\beta^{-1} \circ \beta$  is certainly a congruence (a subsemilattice of  $S \times S$ ). Since  $\beta$  is order-preserving, we have  $\beta(y \wedge z) \leq \beta(y) \wedge \beta(z)$ anyway. If  $\beta^{-1} \circ \beta$  is a congruence, (ii) of Proposition 1.8 yields  $\beta(y \wedge z) \geq \beta(y) \wedge \beta(z)$ .

Ward [33] claims that every closure operator has the property of Proposition 1.8. For a study of meet-preserving closure operators, cf. Bergmann [5], Cignoli [8], R. E. Johnson [15], Varlet [32], also J. Schmidt [30]. In addition to Proposition 1.6, we now have

Corollary 1.11 Let S be a semilattice  $(\alpha, \beta)$  a binomial pair. Then  $(\alpha, \beta)$  is a strong binomial pair iff  $\beta$  is meet-preserving.

# *Proof:* Corollaries 1.9 and 1.10.

Actually, one can say much more about  $\alpha$ ,  $\beta$ , and  $\rho$  in the strong case. For as a well-known property of arbitrary Galois connections of mixed type,  $\alpha$  preserves arbitrary joins (as far as they exist),  $\beta$  arbitrary meets. Correspondingly, a strong binomial equivalence  $\rho$  is compatible, in an obvious sense, with aribtrary joins and meets. For a convex (weak) binomial pair ( $\alpha$ ,  $\beta$ ), these statements still hold in a somewhat restricted form, expressing the fact that each closed interval is closed under joins and meets of non-empty subsets.

2 Weak relative pseudo-complements We apply the general observations of section 1 to the meet-preserving kernel operator  $\alpha: S \to S$  defined by  $\alpha(z) = a \land z \ (z \in S)$ , where a is any element of S. Of course, a is uniquely determined by the image of  $\alpha$ , the principal ideal (a]. The element a is also uniquely determined by the comonomial congruence  $\rho = \alpha^{-1} \circ \alpha$  simply because the kernel operator  $\alpha$  is determined by  $\rho$  (Theorem 1.1). Note also that the principal filter [a), the congruence class of a, is the greatest element of the factor semilattice  $S/\rho$  and the only element of  $S/\rho$  that is a filter. The congruence class of  $z \in S$  is convex, with least element  $a \wedge z$ . Suppose now its greatest element

$$(2.1) a \to z = \max \{ y \in S \mid a \land y = a \land z \}$$

exists too. I.e., the congruence class  $z/\rho$  is the closed interval  $[a \wedge z, a \rightarrow z]$ ,

$$(2.2) a \wedge y = a \wedge z iff a \wedge z \leq y \leq a \to z$$

for each  $y \in S$  (cf. (1.11)). We call  $a \to z$  the weak (relative) pseudocomplement of a with respect to z (in S). Compare this with the definition of the usual (strong) relative pseudo-complement:

$$(2.3) a \to z = \max \{ y \in S \mid a \land y \leq z \}.$$

It is implicitly defined by the equivalence

$$(2.4) a \wedge y \leq z \text{ iff } y \leq a \to z,$$

to hold for each  $y \in S$  (cf. (1.13)). I.e., the principal ideal  $(a \to z]$  is the class of all elements  $y \in S$  such that  $y/\rho \leq z/\rho$  in the factor semilattice  $S/\rho$ . Clearly, a strong relative pseudo-complement is a weak one, the converse not being true in general. E.g., in the 3-semilattice of section 1, the weak  $a \to b$  exists, which fails to be strong. In the sequel,  $a \to z$  will always stand for the wider notion; any time it happens to be strong, we will say so. If S has a least element, 0, then, of course, the weak and the strong notion coincide for z = 0, and one calls the element  $a \to 0$  simply the *pseudo-complement of a*,

$$(2.5) \qquad \exists a = a \to 0 = \max \{ y \in S \mid a \land y = 0 \}.$$

Note that the weak pseudo-complement  $a \rightarrow z$  is nothing but the pseudocomplement of a in the principal filter  $[a \land z)$ :

$$(2.6) a \to z = \frac{1}{a \wedge z} a.$$

In particular,

$$(2.7) a \to z = \frac{1}{z}a, \text{ (if } z \leq a).$$

In [30], we called an element  $a \in S$  left Brouwerian provided that the strong form of  $a \to z$  exists for each  $z \in S$ . So we may call a weakly left Brouwerian provided that the weak  $a \to z$  exists for each  $z \in S$ , i.e., if  $\alpha = a \wedge$  is a partner of a (convex) binomial pair  $(\alpha, \beta)$ , where  $\beta = a \to .$  (Again,  $\beta$  determines the element a uniquely.) Note that a is (strongly) left Brouwerian iff our kernel operator  $\alpha$  is a partner of a Galois connection of mixed type  $(\alpha, \beta)$ , i.e., of a strong binomial pair  $(\alpha, \beta)$  (Proposition 1.6, (ii)).

**Proposition 2.1** Let S be a semilattice,  $a \in S$ . Then a is weakly left Brouwerian iff there is a unary operation—necessarily unique— $a \rightarrow : S \rightarrow S$ satisfying the following equations:

L1.  $a \land (a \rightarrow z) = a \land z$ ,

L2.  $a \rightarrow (a \land z) = a \rightarrow z$ , L3.  $(a \rightarrow z) \land z = z$ .

The element a is (strongly) left Brouwerian iff, in addition, the equation

L4.  $a \rightarrow (y \land z) = (a \rightarrow y) \land (a \rightarrow z)$ 

holds. (It suffices to assume  $a \rightarrow order$ -preserving.)

*Proof:* Corollaries 1.4 and 1.11.

For the weak case, we still have, as a substitute for L4, the equation

$$(2.8) a \to (y \land z) = a \to ((a \to y) \land (a \to z)),$$

due to Proposition 1.8.

A semilattice S is called *Brouwerian* if each element  $a \in S$  is left Brouwerian. L1-L4 are the defining equations for Brouwerian semilattices given for lattices by Monteiro in [21]; *cf.* also Rasiowa-Sikorski [25]. McKinsey and Tarski [20] had characterized Brouwerian lattices by the conditions that  $\beta = a \rightarrow$  be order-preserving and

$$(2.9) a \land (a \to z) \leq z \leq a \to (a \land z)$$

for each  $z \in S$ . This is just a short way of stating that  $(a \land, a \rightarrow)$  is a Galois connection of mixed type (*cf.* Corollary 1.7) and so characterizes (strongly) left Brouwerian elements *a* of a semilattice. For other axiomatizations of Brouwerian (semi)lattices, *cf.* Ribenboim [26] and Katriňák-Mitschke [19].

A semilattice S will be called *weakly Brouwerian* or *semi-Brouwerian* if each element  $a \in S$  is weakly left Brouwerian. L1-L3 are the defining equations for these semilattices. Papert [24] was the first to consider weak relative pseudo-complementation, in the case of congruence lattices  $S = \theta(J)$  of join-semilattices J. She restricted the operation  $a \rightarrow z$  to the case  $z \leq a$  and wrote a \* z. Varlet [31] was the first to consider abstract semi-Brouwerian lattices (the congruence lattices  $\theta(J)$  among them).

Let now S be an arbitrary semilattice and  $a \in S$ . The congruence class of a itself is the principal filter [a]. If a is weakly left Brouwerian,  $[a) = [a, a \rightarrow a]$ , which makes  $a \rightarrow a$  a maximal element of S (and each maximal element b can be so represented, e.g., as  $b \rightarrow b$ ). With that, we have the first part of

**Proposition 2.2** Let a be a weakly left Brouwerian element of the semilattice S. Then S has a greatest element, e, iff S is directed. In this case,

$$(2.10) \quad a \leq z \text{ iff } a \to z = e,$$

for each  $z \in S$ . In particular,

$$(2.11) \quad a \to a = a \to e = e.$$

If S is semi-Brouwerian, S has definitely a greatest element.

For suppose S semi-Brouwerian and  $a, b \in S$ . Since

 $(a \land b) \land a = (a \land b) \land b = (a \land b) \land (a \land b)$  and  $a, b \le (a \land b) \rightarrow (a \land b)$ ,

showing that S is directed.

Note also that e exists once the strong  $a \rightarrow a$  exists for some a, which is the simplest reason why a Brouwerian semilattice has an identity. Let us also observe that e is always strongly left Brouwerian and

$$(2.12) e \to z = z,$$

for each  $z \in S$ .

Proposition 2.3 Let S be a semilattice. Then the following are equivalent:

(i) S is semi-Brouwerian;

(ii) each principal filter [z) is pseudo-complemented;

(iii) S has an identity, e, and each closed interval is pseudo-complemented.

*Proof:* (i)  $\Leftrightarrow$  (ii) is trivial, *cf.* (2.6) and (2.7). (iii)  $\Rightarrow$  (ii) is trivial. (i), (ii)  $\Rightarrow$  (iii): By Proposition 2.2, *S* has an identity. Clearly, a principal ideal [z, y] of a pseudo-complemented semilattice [z, e] is pseudo-complemented, the pseudo-complement of  $a \in [z, y]$  being  $y \wedge \overline{z_1} a$ , i.e.,  $y \wedge (a \rightarrow z)$ .

Katriňák [16], [17] considered the case that all principal ideals (y] = [0, y] are pseudo-complemented. In [18], Katriňák considered *semilattices with pseudo-complemented intervals* [z, y] as "segment-pseudo-complemented" (abschnittspseudokomplementär). Such semilattices may, of course, fail to have a largest element, hence fail to be semi-Brouwerian. Varlet [31], Théorème 2, and E. T. Schmidt [28], section 14, observed that a lattice with pseudo-complemented intervals is distributive iff it is modular. In fact, this is an immediate consequence of the existence, in a non-distributive modular lattice S, of a non-distributive (modular) sublattice of five elements. Dean and Oehmke [9], Theorems 6 and 8, proved this for the special case  $S = \theta(J)$  (J a join-semilattice). Simultaneously with Papert [24], Theorem 7, they found that  $\theta(J)$  is distributive iff J is a dual tree. This provides us with many examples of semi-Brouwerian semilattices which are not Brouwerian. For an intensive study of the semi-Brouwerian lattices  $\theta(J)$ , cf. Evans [10].

**3** Conditions making a semi-Brouwerian semilattice Brouwerian Such a condition has already been given in Proposition 2.1, where we axiomatized semi-Brouwerian semilattices by equations keeping the first argument of the binary operation  $\rightarrow$  fixed. Katriňák and Mitschke [19], 5.1, for the special case z = 0 also Balbes and Horn [3], Theorem 1.1, have given an equational characterization of Brouwerian or pseudo-complemented lattices respectively in which the second argument is kept fixed. We can say somewhat more. In [30], we called an element  $z \in S$  right Brouwerian provided that the strong form of  $a \rightarrow z$  exists for each  $a \in S$ . So we may again call z weakly right Brouwerian provided that the weak  $a \rightarrow z$  exists for each  $a \in S$ . We state without proof:

Proposition 3.1 Let S be a semilattice with identity e, let  $z \in S$ . Then z is right Brouwerian iff there is a unary operation  $\rightarrow z: S \rightarrow S$  satisfying the conditions:

R1.  $a \land (a \rightarrow z) = a \land z$ , R2.  $(a \land z) \rightarrow z = e$ , R3.  $b \land ((a \land b) \rightarrow z) = b \land (a \rightarrow z)$ .

Note that this operation determines z uniquely by virtue of (2.12). Assuming the above equations to hold for each  $z \in S$ , we get another equational characterization of Brouwerian semilattices indeed. Note that R1 (= L1) and R2 (*cf.* (2.10)) hold in every semi-Brouwerian semilattice. As observed by Katriňák, at least the following modification of R3 holds in a semi-Brouwerian semilattice:

$$\mathbf{R3}_{s} \cdot b \wedge ((a \wedge b) \to z) = b \wedge (a \to (b \wedge z)).$$

No longer is that an equation for  $\rightarrow z$ , where z is fixed. Recall also that the left equations L1-L3, L4 were inherited from section 1. Nothing of that sort seems to apply to the right equations.

We still may, for a fixed z, collect information about the weak  $\rightarrow z$ . As opposed to  $a \rightarrow$ , the operation  $\rightarrow z$  respects the order, in fact, reverses it:

$$(3.1) if a \leq b, then b \to z \leq a \to z.$$

For if  $a \le b$ , then  $a \land (b \to z) = a \land b \land (b \to z) = a \land b \land z = a \land z$ , where  $b \to z \le a \to z$ . In the strong case,  $\to z$  reverses all existing joins into meets. Nothing of that sort can be stated here. (3.1) makes the iterated function

(3.2) 
$$\gamma_z(a) = (a \rightarrow z) \rightarrow z$$

order-preserving:

(3.3) if 
$$a \leq b$$
, then  $\gamma_z(a) \leq \gamma_z(b)$ .

Now, if z is weakly right Brouwerian, then the principal filter [z) is certainly pseudo-complemented, with the restriction of  $\rightarrow z$  to [z) as pseudo-complementation. Hence the famous results of Glivenko [13] (extended to meet-semilattices by Frink [12]) hold: The restriction of  $\gamma_z$  to [z) is a closure operator in [z), whose closed elements form a Boolean lattice,  $B_z$ , which, as far as meets are concerned, is a subsemilattice of [z), hence of S, with the restriction of  $\rightarrow z$  to  $B_z$  as complementation and z as least element. Also, the restrictions to [z) of  $\rightarrow z$  and its threefold iteration coincide and their image is again  $B_z$ . Note that  $a \rightarrow z \in [z)$  anyway. With these observations, we have at least

$$(3.4) a \to z \leq ((a \to z) \to z) \to z = \gamma_z(a) \to z$$

for each  $a \in S$ , equality being guaranteed in case  $a \ge z$ , and

(3.5) 
$$\gamma_z(a) = \gamma_z(\gamma_z(a))$$

without restriction whatsoever. Hence in all of S,  $\gamma_z$  is still an orderpreserving idempotent operator, with image  $B_z$ . However,  $\gamma_z$  fails to be a closure operator in S since  $a \leq \gamma_z(a)$  is only guaranteed in [z]. Note that  $B_z$ is contained in the image of  $\rightarrow z$ , but this inclusion may be proper. We summarize these statements in

Theorem 3.2 Let S be a semilattice,  $z \in S$  be a weakly right Brouwerian element. Then  $\gamma_z: S \to S$  is an order-preserving idempotent operator onto a Boolean lattice  $B_z$  which is a subsemilattice of S, with the restriction of  $\rightarrow z$  as complementation and z as least element.

Note that the operator  $\gamma_z$  is not necessarily meet-preserving. All we know from (3.3) is

(3.6) 
$$\gamma_z(a \wedge b) \leq \gamma_z(a) \wedge \gamma_z(b).$$

Equality is only guaranteed here in case  $a, b \ge z$ , not globally.

An element z of a meet-semilattice, even a partially ordered set, S, is called *meet-distributive* provided that the following holds: whenever  $a \land b \leq z$ , one has  $a' \land b' = z$  for some  $a' \geq a$ ,  $b' \geq b$ . (If  $a \lor z$  and  $b \lor z$  exist, one may take these joins as a' and b' respectively.) S is *meet-distributive* if each element  $z \in S$  is. A meet-distributive lattice is distributive in the usual sense. (Balbes [1], Theorem 4.1, has shown that a meet-distributive meet-semilattice is join-distributive!)

Theorem 3.3 Let S be a semilattice, z a weakly right Brouwerian element. Then the following are equivalent:

(i) z is (strongly) right Brouwerian;

(ii) z is meet-distributive (in S);

(iii)  $\gamma_z: S \to S$  is a meet-preserving closure operator.

*Proof:* (i)  $\Rightarrow$  (iii) is well-known. Beyond (3.3) and (3.5), one shows

$$(3.7) a \leq \gamma_z(a)$$

for each  $a \in S$ . One also shows, beyond (3.6), Glivenko's equation

(3.8) 
$$\gamma_z(a \wedge b) = \gamma_z(a) \wedge \gamma_z(b)$$

for each  $a, b \in S$ . (iii)  $\Rightarrow$  (ii): Suppose  $a, b \leq z$ . Since  $\gamma_z$  is a closure operator with least fixed point  $z, \gamma_z(a \land b) = z$ . (3.8) yields  $\gamma_z(a) \land \gamma_z(b) = z$ . By virtue of (3.7),  $\gamma_z(a) \ge a$  and  $\gamma_z(b) \ge b$ . So z is meet-distributive. (ii)  $\Rightarrow$  (i): Suppose  $a \land x \le z$ . So  $b \land y = z$ , for some  $b \ge a, y \ge x$ . So  $b \land y = b \land z$  and  $x \le y \le b \rightarrow z \le a \rightarrow z$ . Since  $a \land (a \rightarrow z) \le z$  anyway, (2.3) holds.

Corollary 3.4 A meet-semilattice S is Brouwerian iff S is semi-Brouwerian and meet-distributive.

Combining this with Proposition 2.3, we get Katriňák's result [18], 2.9; for lattices, cf. also Varlet [31], Théorème 3. Recall that in the lattice case, distributivity may be weakened to modularity.

Note: In order to test the meet-distributivity of an element z, one may restrict oneself to elements a, b such that  $a \land b < z$ . Also, if S is directed, one may assume  $a, b \notin z, a$ , and b incomparable. Hence zero and the identity (whenever they exist) are meet-distributive. In the semi-Brouwerian (semi)lattice S of join-congruences of the Boolean lattice  $2^2$ ,



the meet-distributive (strongly right Brouwerian) elements are exactly those marked by •. Here,  $\gamma_d: S \to S$  is the closure operator associated with the subset  $\{d, e\}$ : (3.7) holds. So (3.8) cannot hold. Indeed,  $\gamma_d(c_1 \wedge c_2) = d$ , whereas  $\gamma_d(c_1) \wedge \gamma_d(c_2) = e \wedge e = e$ . On the other hand,  $\gamma_{a_1}: S \to S$  is no closure operator at all: (3.7) does not hold. Indeed,  $c_2 \not\leq \gamma_{a_1}(c_2) = d$ . However,  $\gamma_{a_1}$  is meet-preserving, i.e., satisfies (3.8). One may already find a counter-example of the second type in the non-modular 5-lattice. At any rate, (3.7) and (3.8) are logically independent.

Let us now look at the following "mixed" inequality ( $\rightarrow$  being considered here really as a function of two variables):

$$(3.9) a \to (y \to z) \leq (a \land y) \to z$$

Indeed,  $(a \wedge y) \wedge (a \rightarrow (y \rightarrow z)) = a \wedge y \wedge z$ , yielding (3.9). It is well-known that in the strong case equality takes place in (3.9). We even have

Proposition 3.5 A semi-Brouwerian semilattice S is Brouwerian iff the equation

$$(3.10) a \to (y \to z) = (a \land y) \to z$$

holds.

*Proof:* Suppose  $y \le z$ . (3.10) yields

$$(a \rightarrow y) \rightarrow (a \rightarrow z) = (a \land (a \rightarrow y)) \rightarrow z) = (a \land y) \rightarrow z = e,$$

where  $a \rightarrow y \leq a \rightarrow z$ . By Proposition 2.1, S is Brouwerian.

As in the Brouwerian case (Rasiowa-Sikorski [25], Ch.I, 13.1), the filters of a semi-Brouwerian semilattice can still be characterized as those subsets F containing e and closed under *modus ponens*:

$$(3.11) if a, a \to z \in F, then z \in F.$$

In fact, let F be a filter and,  $a, a \to z \in F$ . Then  $a \wedge z = a \wedge (a \to z) \in F$ , where  $z \in F$ . Conversely, let  $e \in F$  and (3.11) hold. Suppose  $a \in F$  and  $a \leq z$ . So

 $a \to z = e \in F$  and  $z \in F$ . Suppose  $a, b \in F$ . Since  $b \wedge a = b \wedge (a \wedge b), a \leq b \to (a \wedge b)$ , where  $b \to (a \wedge b) \in F$ . By (3.11), we get  $a \wedge b \in F$ .

In any meet-semilattice with identity, we define the congruence mod F, where F is a filter, by

$$(3.12) y \equiv z \mod F \text{ iff } a \land y \equiv a \land z \text{ for some } a \in F.$$

mod F is the least congruence with *kernel* (= congruence class of the identity) F. The congruences of the form mod F may be called *filter* congruences. It is well-known that in a Brouwerian semilattice, the filter congruences are exactly the congruences of the algebra  $\langle S, \wedge, \rightarrow \rangle$ . This turns out to be characteristic for Brouwerian semilattices in the larger variety of semi-Brouwerian semilattices. A meet-congruence of a semi-Brouwerian semilattice will be called a *left (right) congruence* once it is compatible with each of the left (right) "translations"  $a \rightarrow$  (respectively  $\rightarrow z$ ).

Theorem 3.6 Each left (right) congruence  $\equiv$  of a semi-Brouwerian semilattice  $\langle S, \wedge, \rightarrow \rangle$  is a filter congruence. S is Brouwerian iff each filter congruence (it suffices: each congruence modulo a principal filter) is a left congruence (right congruence). As a matter of fact, each filter congruence is then a congruence of  $\langle S, \wedge, \rightarrow \rangle$ .

*Proof:* Let = be a left congruence.  $F = \{x \in S | x \equiv e\}$  is then a filter. If  $y \equiv z$ , then  $a = y \leftrightarrow z \in F$ , where

$$(3.13) y \leftrightarrow z = (y \to z) \land (z \to y).$$

Indeed,  $y \to z \equiv y \to y = e \in F$ , whence  $y \to z \in F$ . Likewise,  $z \to y \in F$ , whence  $y \leftrightarrow z \in F$ . We arrive at the same conclusion if  $\equiv$  is a right congruence. But  $(y \leftrightarrow z) \land y = y \land z = (y \leftrightarrow z) \land z$  anyway. Hence  $y \equiv z \mod F$ , making  $\equiv$  the filter congruence mod F. Suppose now that each (meet-) congruence mod [b]  $(b \in S)$  is a right congruence. Since  $a \land b \equiv a \mod [b]$ , we get  $(a \land b) \to z \equiv a \to z \mod [b]$ , which is R3, making S Brouwerian. If each congruence mod [b] is a left congruence, we conclude that  $a \to (b \land z) \equiv a \to z \mod [b]$ , i.e.,

$$b \wedge (a \rightarrow (b \wedge z)) = b \wedge (a \rightarrow z).$$

 $R3_s$  holding in a semi-Brouwerian semilattice anyway, we get R3: S is again Brouwerian.

We may say that in the variety of all semi-Brouwerian semilattices, the subvariety of Brouwerian semilattices behaves somewhat like the subvariety of ableian groups in the variety of all groups.

Let us denote by  $\langle M \rangle$  the filter generated by M.

Theorem 3.7 Let S be a semi-Brouwerian semilattice. Then S is Brouwerian iff the "deduction theorem" holds:

$$(3.14) \qquad \langle M \cup \{a\} \rangle = \{z \in S \mid a \to z \in \langle M \rangle \}$$

for each  $M \subseteq S$ ,  $a \in S$ .

*Proof:* It is well-known that  $z \in \langle M \cup \{a\}\rangle$  iff  $a \land y \leq z$  for some  $y \in M$ . In the Brouwerian case, the latter is equivalent with  $a \to z \in \langle M \rangle$ . Conversely, suppose (3.14) holds. Let  $a \land y \leq z$ . So  $z \in \langle [y] \cup \{a\}\rangle$  and  $a \to z \in [y)$ , i.e.,  $y \leq a \to z$ . Since  $a \land (a - z) \leq z$  anyway, (2.3) holds.

For the role of the deduction theorem in Brouwerian semilattices, cf. also Fajtlowicz-Schmidt [11], Proposition 2.1.

#### REFERENCES

- [1] Balbes, A., "A representation theory for prime and implicative semilattices," *Transactions* of the American Mathematical Society, vol. 136 (1969), pp. 261-267.
- [2] Balbes, A., and Ph. Dwinger, *Distributive lattices*, University of Missouri Press, Columbia, Missouri, 1974.
- [3] Balbes, R., and A. Horn, "Stone lattices," Duke Mathematical Journal, vol. 38 (1970), pp. 537-545.
- [4] Benado, M., "Nouveaux théorèmes de décomposition at d'intercalation à la normalité α," Comptes Rendues de l'Académie des Sciences, Paris, vol. 228 (1949), pp. 529-531.
- [5] Bergmann, G., "Multiplicative closures," *Portugaliae Mathematica*, vol. 11 (1952), pp. 169-172.
- [6] Birkhoff, G., Lattice theory, American Mathematical Society Colloquium Publications, vol. 25, third ed., Providence, 1967.
- [7] Blythe, T. S., and M. F. Janowitz, *Residuation theory*, Pergamon Press, Oxford-New York-Toronto-Sydney-Braunschweig, 1972.
- [8] Cignoli, R., "Boolean multiplicatives closures, I, II," Proceedings of the Japan Academy, vol. 42 (1966), pp. 1168-1174.
- [9] Dean, R. A., and R. H. Oehmke, "Idenpotent semigroups with distributive right congruence relations," *Pacific Journal of Mathematics*, vol. 14 (1964), pp. 1187-1209.
- [10] Evans, E., On the congruence lattice of a semilattice, Dissertation, University of Houston, 1975.
- [11] Fajtlowicz, S., and J. Schmidt, "Bézout families, join-congruences, and meet-irreducible ideals," Colloquia Mathematica Societatis János Bolyai, vol. 14, Lattice theory, North-Holland Publishing Company, Amsterdam-Oxford-New York, 1974, pp. 51-76.
- [12] Frink, O., "Pseudo-complements in semi-lattices," Duke Mathematical Journal, vol. 29 (1962), pp. 505-514.
- [13] Glivenko, V., "Sur quelques points de la logique de M. Brouwer," Bulletin de l'Académie des Sciences Belgique, vol. 15 (1929), pp. 183-189.
- [14] Grätzer, G., Lattice theory, First concepts and distributive lattices, W. H. Freeman and Company, San Francisco, 1971.
- [15] Johnson, R. E., "Structure theory of faithful rings, I, Closure operations in lattices," *Transactions of the American Mathematical Society*, vol. 84 (1957), pp. 508-522.
- [16] Katriňák, T., "Pseudokomplementäre Halbverbände," Matematický Časopis, Slovenskej Akadémie Vied, vol. 18 (1968), pp. 121-143.

### JÜRGEN SCHMIDT

- [17] Katriňák, T., "Charakterisierung der verallgemeinerten Stoneschen Halbverbände," Matematický Časopis, Slovenskej Akadémie Vied, vol. 19 (1969), pp. 235-247.
- [18] Katriňák, T., "Die Kennzeichnung der distributiven pseudokomplementären Halbverbände," Journal für die reine und angewandte Mathematik, vol. 241 (1970), pp. 160-179.
- [19] Katriňák, T., and A. Mitschke, "Stonesche Verbände der Ordnung n und Postalgebren," Mathematische Annalen, vol. 199 (1972), pp. 13-30.
- [20] McKinsey, J. C. C., and A. Tarski, "On closed elements in closure algebras," Annals of Mathematics, vol. 47 (1946), pp. 122-162.
- [21] Monteiro, A. A., "Axiomes indépendants pur les algèbres de Brouwer," Revista Union Matematica Argentina, vol. 17 (1955), pp. 149-160.
- [22] Nemitz, W. C., "Implicative semilattices," *Transactions of the American Mathematical Society*, vol. 117 (1965), pp. 128-142.
- [23] Nöbeling, G., "Topologie der Vereine und Verbände," Archiv der Mathematik, vol. 1 (1948), pp. 154-159.
- [24] Papert, D., "Congruence relations in semi-lattices," Journal of the London Mathematical Society, vol. 39 (1964), pp. 723-729.
- [25] Rasiowa, H., and R. Sikorski, *The mathematics of metamathematics*, Polska Akademia Nauk, Monografie Matematyczne, vol. 41, Państwowe Wydawnictwo Naukowe, Warszawa, 1963.
- [26] Ribenboim, P., "Characterization of the sup-complement in a distributive lattice with last element," *Summa Brasiliensis Mathematicae*, vol. 2 (1949), pp. 43-49.
- [27] Schmidt, E. T., "Zur Characterisierung der Kongruenzverbände der Verbände," Matematický Časopis, Slovenskej Akadémie Vied, vol. 18 (1968), pp. 3-20.
- [28] Schmidt, E. T., Kongruenzrelationen algebraischer Strukturen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1969.
- [29] Schmidt, J., "Beiträge zur Filtertheorie, II," Mathematische Nachrichten, vol. 10 (1953), pp. 197-232.
- [30] Schmidt, J., "Quasi-decompositions, exact sequences, and triple sums of semigroups," Colloquia Mathematica Societatis János Bolyai, vol. 17, General algebraic systems, North-Holland Publishing Company, Amsterdam-Oxford-New York, 1975, pp. 365-397; 399-428.
- [31] Varlet, J., "Congruences dans les demis-lattis," Bulletin de la Société Royale des Sciences, Liège, vol. 34 (1965), pp. 231-240.
- [32] Varlet, J., "Fermetures multiplicatives," Bulletin de la Société Royale des Sciences, Liège, vol. 38 (1969), pp. 101-115.
- [33] Ward, M., "The closure operators of a lattice," Annals of Mathematics, vol. 43 (1942), pp. 191-196.

University of Houston Houston, Texas