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BINOMIAL PAIRS, SEMI-BROUWERIAN AND
BROUWERIAN SEMILATTICES

JURGEN SCHMIDT

This paper may be considered as a contribution to the axiomatization
of intuitionistic logic, i.e., Brouwerian semilattices, within the wider realm
of semi-Brouwerian semilattices. The latter occurred first within a purely
algebraic context, as congruence lattices of semilattices (whose charac-
terization as abstract lattices, cf. Gratzer [14], Problem 21, is, in a sense,
still an open problem). As observed here for the first time, semi-
Brouwerian semilattices form an equational class, an additional equation
making them Brouwerian (Proposition 2.1). These equations have indeed a
structural meaning that is fully investigated in section 1. In section 3,
further conditions are given that make a semi-Brouwerian semilattice
Brouwerian, some distributivity condition (Theorem 3.3) and the classical
deduction theorem (Theorem 3.7) among them. Between Brouwerian and
semi-Brouwerian semilattices, there is also a relationship similar to that
between abelian groups and all groups (Theorem 3.6).

1 Binomial pairs Let S be a partially ordered set. A closure operator
in S is a mapping β: S -* S such that

(Λ u ίβ(β(*)) = β(z),
[ Λ ) I z*β(z)

for each z e S, moreover, for each y, z e S,

(1.2) whenever y ^ z, then β(y) ̂  β(z).
There is a well-known one-to-one correspondence between closure opera-
tors β and certain subsets B c S, established by

(1.3) B = β(S), β(z) = m\n { b e B \ z ^ b } ( z e S ) .

The subsets B occurring here are exactly those for which all those minima
in (1.3) exist. The dual of a closure operator is a kernel operator.

A weak closure operator will be a mapping β: S —• S just satisfying
(1.1), (1.2) being no longer required. It is no longer determined by its
image β(S). E.g., in the semilattice
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there are two weak closure operators with image {a, b}. However, a weak
closure operator β is still determined by the induced equivalence relation
p = β'1 o β. We will call an equivalence relation a monomial equivalence
(relation) once every equivalence class has a maximum (for congruences of
a join-semilattice, cf. E. T. Schmidt [27], Definition 4.7).

Theorem 1.1 In a partially ordered set S, there is a one-to-one cor-
respondence between weak closure operators β and monomial equivalences
p, established by

(1.4) p = j3"1oj3, β(z) = max{yeS\(yfz)6p}(zeS).

Dually, p is a comonomial equivalence once every equivalence class
has a minimum. (Katrinak [18], Definition 3.4, used "comonomial" for
certain monomial congruences of a meet-semilattice.) We get the dual
one-to-one correspondence between weak kernel operators and comonomial
equivalences. For a nice example of a weak kernel operator, consider
Tarski's function cf. in the class of ordinals (or in any well-ordered set).

We now call p a binomial equivalence once p is both monomial and
comonomial. A binomial pair is an ordered pair (α, β) of mappings
αr, β: S — S so that

(15) ί « " l o α = ^ l o f t
v # y \aoa = a, β o β = β

and

(1.6) a(z)<z<β(z)

for each ze S. I.e., a is a weak kernel operator, β a weak closure operator,
and both induce the same equivalence relation.

Corollary 1.2 In a partially ordered set S, there is a one-to-one cor-
respondence between binomial pairs (a, β) and binomial equivalences p,
established by

I p = a~ιoa = β~ι oj3,

a(z) = min {yeS\(y,z)ep},
β(z) = max {y eS\(y,z)e p} (ze S).

Clearly, each member of a binomial pair determines its partner:

Corollary 1.3 Let S be a partially ordered set, a and β mappings of S into
itself. Then (a, β) is a binomial pair iff

(Λ Λ x ί <*(*)= min \yeS\β(y) = β(z)},
U ' \β(z) = maxbeS\a(y) = a(z)}

for each z e S.
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For if (a, β) is a binomial pair, (1.8) holds as an immediate con-
sequence of (1.7). Conversely, (1.8) makes a the weak kernel operator
corresponding to the comonomial equivalence /3"xo β, so that a~1oa = β'^Ό β.
(1.8) also makes β the weak closure operator corresponding to the
monomial equivalence a~1oa, so that again β~λo β = α ^ o α . So this equiva-
lence is binomial and (a, β) the corresponding binomial pair.

There is also an axiomatic, in fact, equational description of the
partner. To that end, note that the purely set-theoretic conditions (1.5) are
equivalent with the equations

(1.9) aoβ = a, 0 o α = β.

For (1.5) makes z, a(z), and β(z) equivalent under a~ιoa = β~1oβ, where
a(β(z)) = a(z) and β(a(z)) = β(z). Conversely, (1.9) impl ies a~1oa = β'^β,

a l s o aoa = aoβoa = aoβ = a. W i t h t h a t , w e h a v e

Corollary 1.4 Let S be a partially ordered set and a: S —> S a unary
operation such that a(z) ^ z for each ze S. Then the unary operation (if it
exists) β: S —* S that makes (a, β) a binomial pair is characterized by these
three equations, holding for every z e S:

(a(β(z)) = a(z),

(1.10) \β(a(z)) = β(z),
[ β(z)Λ Z= Z.

An equivalence p is a convex equivalence once each equivalence class
is a convex subset of S. Note that each order-preserving mapping of S into
any partially ordered set T induces a convex equivalence in S since, more
generally, the preimage of any convex subset of T will be a convex subset
of S. For a convex binomial equivalence p, the equivalence class of z e S
will be the closed interval [a{z), β(z)\ where (a, β) is the corresponding
convex binomial pair. The convex binomial equivalences actually cor-
respond one-to-one to the decompositions of S into closed intervals.

Proposition 1.5 Let a, β be mappings of S into itself. Then (a,β) is a
convex binomial pair iff one of the following equivalent conditions holds, for
each y, ze S:

( v ί a(y) = a(z) iff a(z) ^ y ^ β(z),
U ' \β(y) = β(z)iffa(z)*y*β(z).

For the first equivalence of (1.11) makes a(z) the minimum, β(z) the
maximum of all elements y such that a(y) = a(z). So p = a"1o a becomes a
binomial equivalence and (a, β) the corresponding binomial pair. (1.11) also
makes each equivalence class convex, so that (en, β) is a convex binomial
pair.

For a neat example from universal algebra, let (A, F) be an algebra
with finitary operations, S its congruence lattice, S= θ(A,F). We call the
congruences y, zeS equivalent with respect to at A provided that their
congruence classes of a coincide,
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(1.12) (y,z)epaiffa/y=a/z.

pa is a convex binomial equivalence.

The better known pairings of functions a, β: S —> S are the adjoint
situations (α, β), alias Galois connections of mixed type. They are charac-
terized by the condition:

(1.13) a(y)^ziffy^β(z)

for each y, ze S. (Cf Benado [4]; J. Schmidt [29]; Nδbeling [23]; also Blythe
and Janowitz [7].) This is the case iff both a and β are order-preserving,
βoa a closure operator, aoβ a kernel operator. Another equivalent
description:

ίa(y) = m\n{zeS\y*β(z)},
U ' \β(z)= max\yeS\a(y)^z}9

for each y, z e S.

Proposition 1.6 Let S be a partially ordered set and a and β mappings of S
into itself The following are equivalent:

(i) (α, β) is a binomial pair a and β are order-pre s erving
(ii) (a, β) is a Galois connection of mixed type, a is a kernel operator {or β
a closure operator).

Proof: (i) =Mii): It suffices to show only one half of (1.13). Let a(y) ̂  z.
We get y ̂  β(y) = β(a(y)) ̂  β(z). (ii) =Mi): aoβ is a kernel operator and
a(β(S)) = a(S). If a is a kernel operator too, then αoβ = α, hence β =
βoaoβ = βoα: (1.9) holds. Also z ̂  β(a(z)) = β(z): (1.6) holds, making (α, β)
a binomial pair.

We may call such a pair (α, β) consisting of a (strong) kernel operator
a and a (strong) closure operator β inducing the same equivalence p a
strong binomial pair and p a strong binomial equivalence. Note that {a, β)
and p are then convex.

Corollary 1.7 Let S be a partially ordered set, a a kernel operator. Then
the unary operation (if it exists) β: S —> S that makes (a, β) a strong binomial
pair is characterized by the condition that β be order-preserving and

(1.15) a(β(z)) * z * β(a{z))

for each ze S.

For these conditions simply make (a, β) a Galois connection of mixed
type.

In the sequel, we will always work in a (meet-) semilattice S. Con-
gruences will be meet-congruences (they are convex!), homomorphisms
will be meet-homomorphisms.

Proposition 1.8 Let S be a semilattice a: S —* S a mapping. Then the

following are equivalent:
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(i) a is idempotent and a'1 oot a congruence;
(ii) a(y A Z) = a(a(y) A a(z)) for each y, ze S;
(iii) a(y A Z) = a(y A a(z)) for each y, z e S.

Proof: (i) ==> (iii) ==> (ii) => (i): evident.

Corollary 1.9 Let S be a semilattice, a a weak kernel operator. Then a is
a kernel operator iffa satisfies one of the conditions of Proposition 1.8.

It is well-known that a kernel operator satisfies (ii). If a is a weak
kernel operator satisfying (ii), we get a(y A z) ^ a(y) A a(z) which makes a
order-preserving.

So a weak kernel operator a is order-preserving iff a~1oa is a
subsemilattice of S x S. It is well-known that a kernel operator a is
meet-preserving iff a(S) is a subsemilattice of S. For a closure operator
β, however, β(S) is a subsemilattice of S anyway.

Corollary 1.10 Let S be a semilattice, β a closure operator. Then β is
meet-pre serving iff β~ι oβ is a congruence.

If ]3 is an endomorphism, β~ιoβ is certainly a congruence (a subsemi-
lattice of S x S). Since β is order-preserving, we have β(y AZ) ^ β(y) A β(z)
anyway. If β~1oβ is a congruence, (ii) of Proposition 1.8 yields β(y A z) ^
β(y) Λ β{z).

Ward [33] claims that every closure operator has the property of
Proposition 1.8. For a study of meet-preserving closure operators, cf.
Bergmann [5], Cignoίi [8], R. E. Johnson [15], Varlet [32], also J. Schmidt
[30]. In addition to Proposition 1.6, we now have

Corollary 1.11 Let S be a semilattice (a,β) a binomial pair. Then (a, β) is
a strong binomial pair iff β is meet-preserving.

Proof: Corollaries 1.9 and 1.10.

Actually, one can say much more about a, β, and p in the strong case.
For as a well-known property of arbitrary Galois connections of mixed
type, a preserves arbitrary joins (as far as they exist), β arbitrary meets.
Correspondingly, a strong binomial equivalence p is compatible, in an
obvious sense, with aribtrary joins and meets. For a convex (weak)
binomial pair (a,β), these statements still hold in a somewhat restricted
form, expressing the fact that each closed interval is closed under joins
and meets of non-empty subsets.

2 Weak relative pseudo-complements We apply the general observations
of section 1 to the meet-preserving kernel operator a: S —> S defined by
a(z) = aAZ (zeS), where a is any element of 5. Of course, a is uniquely
determined by the image of a, the principal ideal («]. The element a is also
uniquely determined by the comonomial congruence p = α"1oα simply
because the kernel operator a is determined by p (Theorem 1.1). Note also
that the principal filter [a), the congruence class of a, is the greatest
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element of the factor semilattice S/p and the only element of S/p that is a
filter. The congruence class of z e S is convex, with least element a*z.
Suppose now its greatest element

(2.1) a —> z = max { y e S\a*y = a*z}

exists too. I.e., the congruence class z/p is the closed interval [CZΛZ,
a-> z\

(2.2) asy-a^ziffaNZ^y^a—^z

for each yeS {cf (1.11)). We call a -* z the weak {relative) pseudo-
complement of a with respect to z {in S). Compare this with the definition
of the usual {strong) relative pseudo-complement:

(2.3) a -> z = max { y e S\a*y ^ z}.

It is implicitly defined by the equivalence

(2.4) a Ay ^ z iff y ^ a -* z,

to hold for each yeS {cf. (1.13)). I.e., the principal ideal {a —> z] is the
class of all elements y e S such that y/p ^ z/p in the factor semilattice S/p.
Clearly, a strong relative pseudo-complement is a weak one, the converse
not being true in general. E.g., in the 3-semilattice of section 1, the weak
a —> b exists, which fails to be strong. In the sequel, a — z will always
stand for the wider notion; any time it happens to be strong, we will say so.
If S has a least element, 0, then, of course, the weak and the strong notion
coincide for z = 0, and one calls the element a —» 0 simply the pseudo-
complement of a,

(2.5) la = a —> 0 = max {ye S\a*y = θ}.

Note that the weak pseudo-complement a —* z is nothing but the pseudo-
complement of a in the principal filter [a Λ Z) :

(2.6) a-+z= ^ a .

In particular,

(2.7) a -» z = -^α, (if z < a).

In [30], we called an element aeS left Brouwerian provided that the
strong form of a -* z exists for each zeS. So we may call a weakly left
Brouwerian provided that the weak a —» z exists for each zeS, i.e., if
a = #Λ is a partner of a (convex) binomial pair (α, β), where β = a —».
(Again, β determines the element a uniquely.) Note that a is (strongly) left
Brouwerian iff our kernel operator a is a partner of a Galois connection of
mixed type {a, β), i.e., of a strong binomial pair {a, β) (Proposition 1.6, (ii)).

Proposition 2.1 Let S be a semilattice, aeS. Then a is weakly left
Brouwerian iff there is a unary operation—necessarily unique—a —*: S —> S
satisfying the following equations:

Ll. a*{a -* z) = at^z,
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L2. a —» (aΛZ) -a —> z9

L3. (a -* Z)ΛZ = z.

The element a is (strongly) left Brouwerian iff, in addition, the equation

L4. a -* (y ΛZ) = (a -* y) *(a -* z)

holds. (It suffices to assume a —* order-pre serving.)

Proof: Corollaries 1.4 and 1.11.

For the weak case, we still have, as a substitute for L4, the equation

(2.8) a — (y A Z) = a - ({a - y) A (a -^ z)),

due to Proposition 1.8.

A semilattice S is called Brouwerian if each element ae S is left
Brouwerian. L1-L4 are the defining equations for Brouwerian semilattices
given for lattices by Monteiro in [21]; cf. also Rasiowa-Sikorski [25].
McKinsey and Tar ski [20] had characterized Brouwerian lattices by the
conditions that β = a —» be order-preserving and

(2.9) a Λ (a —> z) ^ z ^ a —» (a ΛZ)

for each ze S. This is just a short way of stating that (aA, a —>) is a Galois
connection of mixed type (cf. Corollary 1.7) and so characterizes (strongly)
left Brouwerian elements a of a semilattice. For other axiomatizations of
Brouwerian (semi)lattices, cf. Ribenboim [26] and Katrinak-Mitschke [19].

A semilattice S will be called weakly Brouwerian or semi-Brouwerian
if each element aeS is weakly left Brouwerian. L1-L3 are the defining
equations for these semilattices. Papert [24] was the first to consider weak
relative pseudo-complementation, in the case of congruence lattices
S = θ(J) of join-semilattices J. She restricted the operation a —» z to the
case z ^ a and wrote a*z. Varlet [31] was the first to consider abstract
semi-Brouwerian lattices (the congruence lattices θ(J) among them).

Let now S be an arbitrary semilattice and ae S. The congruence class
of a itself is the principal filter [a). If a is weakly left Brouwerian,
[a) = [a, a —> a], which makes a —* a SL maximal element of S (and each
maximal element b can be so represented, e.g., as b —* b). With that, we
have the first part of

Proposition 2.2 Let a be a weakly left Brouwerian element of the semi-

lattice S. Then S has a greatest element, e, iffS is directed. In this case,

(2.10) a^ziffa-*z = e,

for each zeS. In particular,

(2.11) a-^a = a—>e = e.

If S is semi-Brouwerian, S has definitely a greatest element.

For suppose S semi-Brouwerian and a, b e S. Since
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(a Λ b) Λ a = (a A b) A b = (a A b) A (α Λ b) and α, b *^ (a Ab) —> (a A δ),

showing that S is directed.

Note also that e exists once the strong a —» α exists for some α, which
is the simplest reason why a Brouwerian semilattice has an identity. Let
us also observe that e is always strongly left Brouwerian and

(2.12) e -» z = z,

for e a c h zeS.

Proposition 2.3 Let S be a semilattice. Then the following are equivalent:

(i) S is semi-Brouwerian;

(ii) each principal filter [z) is pseudo-complemented;
(iii) S has an identity, e, and each closed interval is pseudo-complemented.

Proof: (i)#=>(ii) is trivial, cf. (2.6) and (2.7). (iii) =#>(ii) is trivial,
(i), (ii) =φ(iii): By Proposition 2.2, S has an identity. Clearly, a principal
ideal [z, y] of a pseudo-complemented semilattice [z, e] is pseudo-
complemented, the pseudo-complement of ae[z, y] being y*-z\a, i.e.,
y A (a —» z).

Katrinak [16], [17] considered the case that all principal ideals
(y] = [θ,y] are pseudo-complemented. In [18], Katrinak considered semi-
lattices with pseudo-complemented intervals [z,y] as "segment-pseudo-
complemented" (abschnittspseudokomplementar). Such semilattices may,
of course, fail to have a largest element, hence fail to be semi-Brouwerian.
Varlet [31], Thέorέme 2, and E. T. Schmidt [28], section 14, observed that
a lattice with pseudo-complemented intervals is distributive iff it is
modular. In fact, this is an immediate consequence of the existence, in a
non-distributive modular lattice S, of a non-distributive (modular) sub-
lattice of five elements. Dean and Oehmke [9], Theorems 6 and 8, proved
this for the special case S = Θ(J) (J & join-semilattice). Simultaneously with
Papert [24], Theorem 7, they found that θ(j) is distributive iff J is a dual
tree. This provides us with many examples of semi-Brouwerian semi-
lattices which are not Brouwerian. For an intensive study of the semi-
Brouwerian lattices 0(J), cf. Evans [10].

3 Conditions making a semi-Brouwerian semilattice Brouwerian Such a
condition has already been given in Proposition 2.1, where we axiomatized
semi-Brouwerian semilattices by equations keeping the first argument of
the binary operation —> fixed. KatriMk and Mitschke [19], 5.1, for the
special case z = 0 also Balbes and Horn [3], Theorem 1.1, have given an
equational characterization of Brouwerian or pseudo-complemented lattices
respectively in which the second argument is kept fixed. We can say
somewhat more. In [30], we called an element zeS right Brouwerian
provided that the strong form of a —* z exists for each a e S. So we may
again call z weakly right Brouwerian provided that the weak a —> z exists
for each a e S. We state without proof:
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Proposition 3.1 Let S be a semίlattice with identity e, let zeS. Then z is

right Brouwerian iff there is a unary operation —* z: S —> S satisfying the

conditions:

Rl. a*(a —> z) = a* z,

R2. {a^z) —» z = e,

R3. bΛ((aΛb) -> z) = bΛ(a-> z).

Note that this operation determines z uniquely by virtue of (2.12).

Assuming the above equations to hold for each zeS, we get another

equational characterization of Brouwerian semilattices indeed. Note that

Rl (= LI) and R2 (cf (2.10)) hold in every semi-Brouwerian semilattice.

As observed by KatriMk, at least the following modification of R3 holds in

a semi-Brouwerian semilattice:

R 3 S . b Λ ((a Λ b) -> z) = b Λ (a — {b Λ Z)).

No longer is that an equation for —•> z, where z is fixed. Recall also that the

left equations L1-L3, L4 were inherited from section 1. Nothing of that

sort seems to apply to the right equations.

We still may, for a fixed z, collect information about the weak —» z. As

opposed to a —->, the operation —» z respects the order, in fact, reverses it:

(3.1) ifa^b, then b -» z ^ a -* z.

F o r i f a < b, t h e n a λ(b —> z) = aλb *(b —* z) = a/\b AZ = a Λ Z , w h e r e b —* z <

a -* z. In the strong case, —* 2 reverses all existing joins into meets.

Nothing of that sort can be stated here. (3.1) makes the iterated function

(3.2) γz(a) = (a->z)-*z

order-preserving:

(3.3) ifa^b, then γz(a) ̂  γz(b).

Now, if z is weakly right Brouwerian, then the principal filter [z) is

certainly pseudo-complemented, with the restriction of -» z to [z) as

pseudo-complementation. Hence the famous results of Glivenko [13]

(extended to meet-semilattices by Frink [12]) hold: The restriction of γz to

[z) is a closure operator in [z), whose closed elements form a Boolean

lattice, Bz, which, as far as meets are concerned, is a subsemilattice of

[z), hence of S, with the restriction of -* z to Bz as complementation and z

as least element. Also, the restrictions to [z) of —» z and its threefold

iteration coincide and their image is again Bz. Note that a —* z e [z) anyway.

With these observations, we have at least

(3.4) a-* z **((a-* z)-> z)-> z = γz(a) — z

for each aeS, equality being guaranteed in case a ^ z, and

(3.5) γz(a) = γz(γx(a))
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without restriction whatsoever. Hence in all of S, γz is still an order-
preserving idempotent operator, with image Bz. However, γz fails to be a
closure operator in S since a ^ γz(a) is only guaranteed in [z). Note that Bz

is contained in the image of —> z, but this inclusion may be proper. We
summarize these statements in

Theorem 3.2 Let S be a semilattice, zeS be a weakly right Brouwerian
element. Then y%\ S —> S is an order-preserving idempotent operator onto
a Boolean lattice Bz which is a subsemilattice of S, with the restriction of
—> z as complementation and z as least element.

Note that the operator γz is not necessarily meet-preserving. All we
know from (3.3) is

(3.6) yz(flAδ) ^γz(a)AΎz(b).

Equality is only guaranteed here in case a, b ^ z, not globally.

An element z of a meet-semilattice, even a partially ordered set, S, is
called meet-distributive provided that the following holds: whenever
a^b^z, one has ar *b' = z for some a' ^ a, br ^ b. (If avz and δv2 exist,
one may take these joins as a* and b' respectively.) S is meet-distributive
if each element zeS is. A meet-distributive lattice is distributive in the
usual sense. (Balbes [1], Theorem 4.1, has shown that a meet-distributive
meet-semilattice is join-distributive!)

Theorem 3.3 Let S be a semilattice, z a weakly right Brouwerian element.
Then the following are equivalent:

(i) z is (strongly) right Brouwerian;
(ii) z is meet-distributive [in S);

(iii) γz: S —> S is a meet-pre serving closure operator.

Proof; (i) =Φ (iii) is well-known. Beyond (3.3) and (3.5), one shows

(3.7) a^γz(a)

for each ae S. One also shows, beyond (3.6), Glivenko's equation

(3.8) Yz(a*b) = γz{a)ΛΎz(b)

for each a, beS. (iii) => (ii): Suppose a, b^z. Since γz is a closure
operator with least fixed point z, yz(a*b) = z. (3.8) yields γz(cή^γz(b) = z.
By virtue of (3.7), γz(a)^a and γz{b)^b. So z is meet-distributive.
(ii) =#>(i): Suppose a/^x^z. So b*y = z, for some b ^ a, y^x. So b*y =
b Λ2 and x ^ y ^ b —» z < a —> z. Since ah(a -^ z) ^ z anyway, (2.3) holds.

Corollary 3.4 A meet-semilattice S is Brouwerian iff S is semi-Brouwerian
and meet-distributive.

Combining this with Proposition 2.3, we get Katrifiak's result [18], 2.9;
for lattices, cf. also Varlet [31], TheΌreme 3. Recall that in the lattice
case, distributivity may be weakened to modularity.
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Note: In order to test the meet-distributjvity of an element z, one may
restrict oneself to elements a, b such that a*b < z. Also, if S is directed,
one may assume a, b ft z, a, and b incomparable. Hence zero and the
identity (whenever they exist) are meet-distributive. In the semi-Brou-
werian (semi)lattice S of join-congruences of the Boolean lattice 22,

e

0

the meet-distributive (strongly right Brouwerian) elements are exactly
those marked by . Here, γd: S —» S is the closure operator associated with
the subset {d, e}: (3.7) holds. So (3.8) cannot hold. Indeed, γd(clAC2) = d,
whereas γjici)A γd(c2) = e*e = e. On the other hand, γaγ\ S —> S is no
closure operator at all: (3.7) does not hold. Indeed, c2 ft γai(c2) = d.
However, γai is meet-preserving, i.e., satisfies (3.8). One may already
find a counter-example of the second type in the non-modular 5-lattice. At
any rate, (3.7) and (3.8) are logically independent.

Let us now look at the following "mixed" inequality (—> being con-
sidered here really as a function of two variables):

(3.9) a -> {y -» z) ^ (a*y) — z.

Indeed, (aΛy) Λ (a -* (y -* z)) = a*y AZ, yielding (3.9). It is well-known that
in the strong case equality takes place in (3.9). We even have

Proposition 3.5 A semi-Brouwerian semilattice S is Brouwerian iff the
equation

(3.10) a— (y -> z) = (a*y) -> z

holds.

Proof: Suppose y ^ z. (3.10) yields

(a — y) -> (a -* z) = (aA (a -* y)) -> z) = (aAy) -* z = β,

where a -* y < a —• z. By Proposition 2.1, S is Brouwerian.

As in the Brouwerian case (Rasiowa-Sikorski [25], Ch.I, 13.1), the
filters of a semi-Brouwerian semilattice can still be characterized as
those subsets F containing e and closed under modus ponens:

(3.11) if a, a — zeF, then zeF.

I n f a c t , l e t F b e a f i l t e r a n d , a , a —» z e F . T h e n a Λ Z = a A ( a - ^ z ) e F , w h e r e
z e F . C o n v e r s e l y , l e t e e F a n d ( 3 . 1 1 ) h o l d . S u p p o s e a e F a n d a ^ z . S o
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a —» z = e e F and z e F. Suppose a, b eF. Since &Λα = 6 A ( « A 6 ) , a < b —>
(βΛδ), where b —» (CΛ b) e F. By (3.11), we get aΛ & e F.

In any meet-semilattice with identity, we define the congruence mod F,
where F is a filter, by

(3.12) y = z modFiff a*y = asz for some aeF.

mod F is the least congruence with kernel (= congruence class of the
identity) F. The congruences of the form moόF may be called filter
congruences. It is well-known that in a Brouwerian semilattice, the filter
congruences are exactly the congruences of the algebra (5, Λ,—•). This
turns out to be characteristic for Brouwerian semilattices in the larger
variety of semi-Brouwerian semilattices. A meet-congruence of a semi-
Brouwerian semilattice will be called a left {right) congruence once it is
compatible with each of the left (right) "translations ' ' a —> (respec-
tively -> z).

Theorem 3.6 Each left (right) congruence = of a semi-Brouwerian semi-
lattice (S, Λ, —») is a filter congruence. S is Brouwerian iff each filter
congruence {it suffices: each congruence modulo a principal filter) is a left
congruence (right congruence). As a matter of fact, each filter congruence
is then a congruence of (S, Λ, —>).

Proof: Let = be a left congruence. F = {xe S\x = e} i s then a f i l ter. If

y = z, then a = y<r->z e F, where

(3.13) y<^z = (y — z) Λ(Z — y).

Indeed, y -» z = y -* y = e eF, whence y —» zeF. Likewise, z —* yeF,
whence y<r^>z eF. We arrive at the same conclusion if = is a right con-
gruence. But (y<r->z)Λy = yAZ = (y<r->z) ΛZ anyway. Hence y = z modF,
making Ξ the filter congruence modi7. Suppose now that each (meet-)
congruence mod [b) (be S) is a right congruence. Since a*b = a mod [b), we
get (aΛb) -* z = a -* z mod [b), which is R3, making S Brouwerian. If each
congruence mod [b) is a left congruence, we conclude that a —» (bΛz) = a—>
z mod [b), i.e.,

b Λ (α -» (b ΛZ)) = b Λ (α —» z).

R3S holding in a semi-Brouwerian semilattice anyway, we get R3: S is
again Brouwerian.

We may say that in the variety of all semi-Brouwerian semilattices,
the subvariety of Brouwerian semilattices behaves somewhat like the
subvariety of ableian groups in the variety of all groups.

Let us denote by (M) the filter generated by M.

Theorem 3.7 Let S be a semi-Brouwerian semilattice. Then S is
Brouwerian iff the udeduction theorem" holds:

(3.14) (M U {a}) = {z e S \a -> z e <M)}

for each M c S, aeS.
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Proof: It is well-known that z e (M U {a}) iff a Ay < z for some y e M. In the

Brouwerian case, the latter is equivalent with a-^ze(M). Conversely,

suppose (3.14) holds. Let aAy^z. So ze ([y) U {a}) and a—>ze[y), he.,

y ^ a —> z. Since a A {a - z) ^ z anyway, (2.3) holds.

For the role of the deduction theorem in Brouwerian semilattices, cf.

also Fajtlowicz-Schmidt [11], Proposition 2.1.
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