AWKWARD AXIOM-SYSTEMS

BOLES£AW SOBOCIŃSKI

As far as I know a notion of the awkward axiom-systems, which is introduced in this note, was never previously discussed in the appropriate literature in which the theory of the well-formed axiomatizations is investigated. I define the notion mentioned above as follows:

Let T be an axiomatizable theory with the rules of procedure \mathcal{R}. Let \mathbb{I} be a finite or infinite axiom-system of T based on the rules \mathcal{R} which satisfies the following conditions:
(1) The axioms belonging to \mathfrak{z} are mutually independent.
(2) The set of the axioms belonging to \mathcal{F} can be divided into two subsets Γ and Δ having no common elements and such that

$$
\mathfrak{T}=\bigcup\{\Gamma, \Delta\}
$$

where Γ is a finite set, and Δ can be either finite or infinite.
(3) There is a finite set θ of formulas which are the consequences of the set of axioms Γ obtained from Γ by the applications of the rules \mathcal{R}, but without the use of the axioms belonging to Δ and such
(a) that θ is a proper subsystem of Γ,
and
(b) that the theses belonging to the set $\bigcup\{\theta, \Delta\}$ are mutually independent.

Then, if on the base of the rules \mathbb{R} system $\bigcup\{\theta, \Delta\}$ is inferentially equivalent to $\bigcup\{\Gamma, \Delta\}$, the axiom-system $\mathfrak{\Sigma}$ is awkward.

Clearly, although from the points of view of the other requirements concerning the well-formed axiomatizations, the awkward axiom-systems are entirely correct, it is self-evident that in such axiomatizations there are accepted some axioms (belonging to Γ) which are stronger than needed and, on the other hand, the deductive power of the other axioms (belonging to Δ) is not used. Hence, the awkward axiom-systems can be considered as not especially elegant axiomatizations. There are several theories, mostly
in the field of the extended Boolean systems, e.g., the closure algebras and the cylindric algebras, whose classical axiomatizations are awkward, $c f .[5],[6],[7]$, and [8].

In order to present the discussed notion in an elementary way I shall use a very simple example. In [1] Flagg has proved that the following set of the mutually independent theses:

A1 $\quad c p C q p$
A2 \quad CcpCqrCCpqCpr
B1 CNpCpq
B2 CCpqCCNpqq
together with the rules of substitution and detachment for implication can be accepted as an axiom-system of the complete classical propositional calculus. It will be shown below that Flagg's axiomatic is awkward.

Proof: In all deductions given below only the rules of substitution and detachment for implication will be used. Obviously, the set $\{A 1, A 2, B 1, B 2\}$ can be divided into two subsets $\Gamma=\{A 1, A 2\}$ and $\Delta=\{B 1, B 2\}$ which have no common elements. Now, we shall proceed as follows:

1 Let us assume $A 1$ and $A 2$, i.e., the well-known axiom-system of the positive propositional calculus, cf., e.g., [3], p. 217, and the deductions presented there. Then:

A3 CsCCpCqrCCpqCpr [A1, p/CCpCqrCCpqCpr, q/s; A2]
A4 CCqrCCpqCpr
[A2, $p / C q r, q / C p C q r, r / C C p q C p r ; A 3, s / C q r ; A 1, p / C q r, q / p]$
A5 \quad CrcpCqp
$[A 1, p / C p C q p, q / r ; A 1]$
A6 CCCpqrCqr [A2, p/CCpqr, q/CqCpq,r/Cqr;A4,p/q,q/Cpq; $A 5, p / q, q / p, r / C C p q r]$
A7 CCpCqrCqCpr [A4, p/CpCqr, q/CCpqCpr, r/CqCpr; A6, r/Cpr; A2]
C1 CCpqCCqrCpr
$[A 7, p / C q r, q / C p q, r / C p r ; A 4]$
D1 cpp
A8 CtCCpqCCqrCpr
$[A 7, q / C p C q p, r / p ; A 1, q / C p C q p ; A 1]$
A9 CCpqCtCCqrCpr
$[A 1, p / C C p q C C q r C p r, q / t ; C 1]$
D2 CCpqCCqrCtCpr
[C1, p/Cpq, q/CtCCqrCpr, r/CCqrCtCpr; A9; A7, p/t, q/Cqr, r/Cpr]
Hence, the theses $A 1, C 1, D 1$, and $D 2$ are the consequences of the axioms $A 1$ and $A 2$.

2 The matrix, cf. [4], p. 47,

* | C | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 2 |
| 2 | 1 | 1 | 1 |

in which 1 is the designated value, verifies the theses $A 1, C 1, D 1$, and $D 2$, but falsifies $A 2$ for $p / 0, q / 0$, and $r / 2: \quad C C 0 C 02 C C 00 C 02=C C 00 C 10=$ $C 10=0$.

Therefore, obviously, it follows from the sections 1 and 2 of the Proof that each of the sets $\{A 1, C 1\}$ and $\{D 1, D 2\}$ is a subsystem of $\{A 1, A 2\}$.

3 In order to establish the mutual independency of the theses $A 1, C 1, B 1$, and $B 2$, and the mutual independency of the theses $D 1, D 2, B 1$, and $B 2$ we use the following matrices, $c f$. [1], Lemmas 10-13:

M2

$*$| C | 0 | 1 | 2 | N |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 1 | 2 | 2 |
| 1 | 2 | 1 | 2 | 2 |
| 2 | 1 | 1 | 1 | 1 |

913

C	0	1	2	3	N
0	1	1	2	1	2
1	0	1	2	3	3
2	0	1	1	3	0
3	1	1	1	1	1

924

$*$| C | 0 | 1 | N |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 |

$\mathfrak{M 5}$

$*$| C | 0 | 1 | N |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |

In each of these matrices, 1 is the designated value.
Since: (a) Mi2 verifies $C 1, D 2, B 1$, and $B 3$, but falsifies $A 1$ for $p / 0$ and $q / 0$: $C 0 C 00=C 02=2$, and falsifies $D 1$ for $p / 0 ; C 00=2$; (b) 973 verifies $A 1, D 1$, $B 1$, and $B 2$, but falsifies $C 1$ for $p / 0, q / 3$, and $r / 2$: $C C 03 C C 32 C 02=C 1 C 12=$ $C 12=2$, and falsifies $D 2$ for $p / 0, q / 3, r / 2$, and $t / 1: C C 03 C C 32 C 1 C 02=$ $C 1 C 1 C 12=C 1 C 12=C 12=2$; (c) 924 verifies $A 1, D 1, C 1, D 2$, and $B 2$, but falsifies $B 1$ for $p / 1$ and $q / 0: C N 1 C 10=C 10=0 ; 915$ verifies $A 1, D 1, C 1$, $D 2$, and $B 1$, but falsifies $B 2$ for $p / 0$ and $q / 0: C C 00 C C N 000=C 1 C C 000=$ $C 1 C 10=C 10=0$, the mutual independency of $A 1, C 1, B 1$, and $B 2$, and the mutual independency of $D 1, D 2, B 1$, and $B 2$ are proven.

4 Now, let us assume $A 1, C 1, B 1$, and $B 2$. Then:

C2 CCCpqrCqr
C3 CCCCqrCprsCCpqs
C4 CCpCqrCCsqCpCsr

C5 CCCpqrCNpr
C6 Cpp
C7 CCNppp
C8 \quad CCCpqpp
C9 \quad ccpcpqcpq
C10 CCCqrqCCqrv
C11 CpCCpqq
C12 CCpCqrCqCpr
C13 CpCNpq
$[C 3, q / C q r, r / C s r, s / C C s q C p C s r ; C 3, p / s, s / C p C s r]$
$[C 1, p / q, q / C p q ; A 1, p / q, q / p]$
$[C 1, p / C p q, q / C C q r C p r, r / s ; C 1]$
$[C 1, p / N p, q / C p q, B 1]$
$[B 2, q / C p p ; A 1, q / p ; B 1, q / p]$ $[B 2, q / p ; C 6]$
$[C 1, p / C C p q p, q / C N p p, r / p ; C 5, r / p ; C 7]$
$[C 3, q / C p q, r / q, s / C p q ; C 8, p / C p q]$
$[C 3, p / C q r, s / C C q r r ; C 9, p / C q r, q / r]$ $[C 2, p / C p q, q / p, r / C C p q q ; C 10, q / p, r / q]$ $[C 4, p / q, q / C q r, s / p ; C 11, p / q, q / r]$
$[C 12, p / N p, q / p, r / q ; B 1]$

Since it is proved above that the theses $A 1, C 1, B 1$, and $B 2$ infer $C 1$, $C 7$, and C13, i.e., Łukasiewicz's celebrated axiom-system of the classical propositional calculus, $c f$. [2], it is self-evident that

$$
\{A 1, A 2, B 1, B 2\} \rightleftarrows\{A 1, C 1, B 1, B 2\}
$$

and, therefore, it follows from this result and the discussions presented in sections 1, 2, and 3 of the Proof that the system $\{A 1, A 2, B 1, B 2\}$ is awkward. On the other hand, it is clear, cf. sections 3 and 4 above, that the system $\{A 1, C 1, B 1, B 2\}$ can be accepted as an axiom-system of the classical propositional calculus.

Remark: In section 3 above it was proved that the theses belonging to the set $\{D 1, D 2, B 1, B 2\}$ are mutually independent. In fact, these theses constitute an adequate axiomatization of the classical propositional calculus, but the required deductions are rather difficult. Namely, let us assume D1, D2, B1, and B2. Then:
D3 CtCpp [D2, q/p,r/p;D1, D1]
D4 CCNppp $\quad[B 2, q / p ; D 1]$
D5 CCCpqrCtCNpr [D2, $p / N p, q / C p q ; B 1]$
D6 CCCCNpqqrCtCCpqr
[$D 2, p / C p q, q / C C N p q q ; B 2]$
D7 CCpqCtCNNpq
[D6, r/CtCNNpq, $t / C p p ; D 5, p / N p, r / q ; D 1]$
D8 CCCtCNNpqrCvCCpqr [D2, p/Cpq, q/CtCNNpq, $t / v ; D 7]$
D9 CCpqCNNpq [D8, t/NCNNpq, r/CNNpq,v/Cpp; D4, p/CNNpq; D1]

D10 CCCNNpqrCtCCpqr
D11 CCNpqCtCCpqq
D12 ССрСрqСрq
D13 CCpqCCqrCpr
D14 CCCCqrCprsCCpqs
D15 CCpCqrCCsqCpCsr
[D14, q/Cqr, r/Csr, s/CCsqCpCsr; D14, p/s, s/CpCsr]
D16 CCNpqCCpqq
[D13, p/CNpq, q/CCpqCCpqq, r/CCpqq; D11, t/Cpq; D12, p/Cpq]
D17 CNNpCCpqq
D18 CNpCCNpqq
[D5, p/Np, r/CCpqq, $t / C p p ; D 16 ; D 1]$
D19 CCsCNpqCNpCsq
D20 CNp $\mathrm{C} t \mathrm{~N} p$
D21
D22 СрССрqq
D23 CCpCqrCqCpr
D24 CpCNpq
[D2, $p / C p q, q / C N N p q ; D 9]$
[D6, p/Np, r/CtCCpqq, $t / C p p ; D 10, r / q ; D 1]$
[D11, p/Cpq, $t / C p p ; B 1 ; D 1]$
[D2, p/Cpq, q/CCqrCCqrCpr, r/CCqrCpr, $/$ /Cpp; D2, $t / C q r ; D 12, p / C q r, q / C p r ; D 1]$
$[D 13, p / C p q, q / C C q r C p r, r / s ; D 13]$
[D5, r/CNpqq, $t / C p p ; B 2 ; D 1]$
[D15, $p / N p, q / C N p q, r / q ; D 18]$
$[D 19, q / N p, s / t ; D 3, p / N p]$
[D16, p/Np, q/CpNNp; D2O, p/Np, t/p; B1, q/NNp] [D13, q/NNp, r/CCpqq; D21; D17]
[D15, $p / q, q / C q r, s / p ; D 22, p / q, q / r]$

Since $D 13, D 24$, and $D 4$ are the consequences of $D 1, D 2, B 1$, and $B 2$, the proof is complete, cf. [2]. It is worth-while to remark that among many axiom-systems of the classical propositional calculus, which I know and which are not artificially constructed, the system $\{D 1, D 2, B 1, B 2\}$ is the only one in which the thesis $C p p$ occurs as an axiom.

Final Note: It should be noticed that there can be the awkward axiomsystem of the given theory T which in some respect are more elegant than some axiomatizations of T which are not awkward. For example, consider the following axiom-systems of the classical propositional calculus:

System A. As the axioms assume A1, A2 and

E1 CCNpNqCqp,

i.e., the well-known Łukasiewicz's axiomatization of the considered theory, $c f$. [9], p. 136, footnote 8.

System B. Let us assume E1 and

F1 CCCpqrCsCCqCrtCqt

Since $F 1$ is Meredith's single axiom of the positive implicational calculus, $c f$. [11], it is self-evident that $\{A 1 ; A 2\} \rightleftarrows\{F 1\}$. Therefore, systems A and B are inferentially equivalent. Moreover, it is easy to prove that each of these systems is not awkward.

System C. Let us assume E1 and

G1 CCCpqrCCrpCsp,

i.e., Łukasiewicz's single axiom of the implicational calculus, $c f$. [10] and additionally [14] and [13]. Obviously, $\{G 1\} \rightarrow\{F 1\}$, but not otherwise. Hence, $\{E 1 ; F 1\} \rightleftarrows\{E 1 ; G 1\}$, but, it is self-evident, that system \mathbf{C} is awkward.

On the other hand, since $\{E 1 ; G 1\}$ is shorter than $\{E 1 ; F 1\}$ and the latter system is shorter than $\{A 1 ; A 2 ; E 1\}$, from the point of view that a shorter axiomatization is better than a longer one, system \mathbf{C} is more elegant than \mathbf{B} and system B than A.

Finally, let us consider system D of the bi-valued propositional calculus based on single axiom of Meredith, $c f$. [12],

H1 CCCCCpqCNrNsrtCCtpCsp

System D is shorter than each of the systems A, B and C, and, on the other hand, clearly it is not awkward.

REFERENCES

[1] Flagg, R. C., "On the independence of Bigos-Kalmar axioms for sentential calculus," Notre Dame Journal of Formal Logic, vol. XIX (1978), pp. 285-288.
[2] Łukasiewicz, J., Elements of Mathematical Logic, Pergamon Press, Oxford, England (1963).
[3] Łukasiewicz, J., "On the history of the logic of propositions," in Jan Łukasiewicz: Selected Works. Edited by L. Borkowski. North-Holland Publishing Co., Amsterdam-London (1970).
[4] Sobociński, B., "Axiomatization of a partial system of three-valued calculus of propositions," The Journal of Computing Systems, vol. 1 (1952), pp. 23-55.
[5] Sobociński, B., "Solution to the problem concerning the Boolean bases for cylindric algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 529-545.
[6] Sobociński, B., "Remark about the Boolean parts in the postulate-systems of closure, derivative and projective algebras," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 111-117.
[7] Sobociński, B., "Note about the Boolean parts of the extended Boolean algebras," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 419-422.
[8] Sobociński, B., "Concerning the quantifier algebras in the sense of Pinter," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 547-553.
[9] Łukasiewicz, J., and A. Tarski, "Investigations into the sentential calculus," in Jan Łukasiewicz; Selected Works. Edited by L. Borkowski. North-Holland Publishing Co., AmsterdamLondon (1970).
[10] Łukasiewicz, J., "The shortest axiom of the implicational calculus of propositions," in Jan Łukasiewicz: Selected Works. Edited by L. Borkowski. North-Holland Publishing Co., Amsterdam-London (1970).
[11] Meredith, C. A., "A single axiom of positive logic," The Journal of Computing Systems, vol. 1 (1953), pp. 169-170.
[12] Meredith, C. A., "Single axioms for the systems $(C ; N),(C ; O)$ and $(A ; N)$ of the two-valued propositional calculus," The Journal of Computing Systems, vol. 1 (1953), pp. 155-164.
[13] Thomas, I., "Final word on a shortest implicational calculus," Notre Dame Journal of Formal Logic, vol. XI (1970), p. 16.
[14] Tursman, R., "The shortest axioms of the implicational calculus," Notre Dame Journal of Formal Logic, vol. IX (1968), pp. 351-358.

University of Notre Dame
Notre Dame, Indiana

