Notre Dame Journal of Formal Logic Volume XIX, Number 2, April 1978 NDJFAM

Let

1 Introduction

ON THE INDEPENDENCE OF THE BIGOS-KALMÁR AXIOMS FOR SENTENTIAL CALCULUS

ROBERT C. FLAGG

$$\begin{split} \mathbf{K}_1 &= \{CpCqp, \ CCpCqrCCpqCpr\}, \\ \mathbf{K}_2 &= \mathbf{K}_1 \cup \{CNpCpq\}, \\ \mathbf{K}_3 &= \mathbf{K}_2 \cup \{CpNNp, \ CpCNqNCpq\}, \\ \mathbf{B} &= \mathbf{K}_2 \cup \{CCpqCCNpqq\}, \\ \mathbf{M} &= \mathbf{K}_3 \cup \{CCpqCCNpqq\}, \\ \mathbf{K} &= \mathbf{M} \cup \{CpCqKpq, \ CNqNKpq, \ CNpNKpq, \ CpApq, \ CqApq, \ CNpCNqNApq, \\ CpCqEpq, \ CpCnqNEpq, \ CNpCqNEpq\}. \end{split}$$

By Kalmár's Lemma we mean the inference rule denoted as Hilfssatz 3 in Kalmár [2] and as Lemma 1.12 in Mendelson [3]. The proof of Kalmár's Lemma given by Kalmár [2] uses all of the tautologies in K. In turn the proof of Kalmár's Lemma given by Mendelson [3] makes use of only the subset M of K. Following Kalmár and Mendelson, Pogorzelski [4] proves the following theorems.

Lemma 1 For any sentential calculus \mathcal{L} , if \mathbf{K}_1 is a subset of the theorems of \mathcal{L} , then the Deduction Theorem is a derived inference rule of \mathcal{L} .

Lemma 2 For any sentential calculus \mathcal{L} , if \mathbf{K}_3 is a subset of the theorems of \mathcal{L} , then Kalmár's Lemma is a derived inference rule of \mathcal{L} .

Theorem 3 For any sentential calculus \mathcal{L} , if M is a subset of the theorems of \mathcal{L} , then \mathcal{L} is complete.

With respect to Theorem 3, Pogorzelski asked if M forms an independent system of axioms for a sentential calculus. In turn Yvonne Bigos [1] gave a proof of the following theorem, which we introduce in section 2.

Theorem I Tautologies CpNNp and CpCNqNCpq are redundant in axiom system **M** for a sentential calculus.

Lastly, the author proves the following:

Received June 23, 1977

Theorem II The set **B** forms an independent system of axioms for a sentential calculus.

It follows from Theorem II that K_3 and M can be replaced by **B** in the preceding Lemma 2 and Theorem 3.

2 Theorem of Bigos By $\mathcal{L}(\mathbf{B})$ we mean the sentential calculus obtained by taking the tautologies of **B** as axioms and using, for inference rules, modus ponens and substitution. Within a given proof in $\mathcal{L}(\mathbf{B})$ we will use L_i to denote the wff on the *i*'th line of the proof. An application of one of the two inference rules is denoted as follows:

(a) Substitution Rule. $SR(x): p_1/P_1, \ldots, p_n/P_n \vdash L_k$, where x denotes a theorem of $\mathcal{L}(\mathbf{B})$ or it denotes $L_i(i \le k)$, and L_k denotes the wff obtained by replacing in x the sentential variable p_i by the wff P_i $(i = 1, 2, \ldots, n)$. (b) Modus ponens. $MP(x, y) \vdash L_k$, where x and y denote theorems of $\mathcal{L}(\mathbf{B})$ or

with L_i , L_j $(i, j \le k)$, and y is of the form CxL_k .

An application of the Deduction Theorem, which we will prove in Lemma 4, will be abbreviated as:

$$\mathbf{H} \vdash L_k, \, \mathrm{DT}(L_k, \, L_i) \vdash CL_kL_i,$$

where $H \vdash L_k$ denotes that L_k is a hypothesis and L_j is the wff of proof line j > k.

We denote the tautologies of **B** by:

- B1. CpCqp,
- B2. CCpqCCNpqq,
- B3. CNpCpq,
- B4. CCpCqrCCpqCpr.

Lemma 4 The Deduction Theorem is a derived inference rule of $\mathcal{L}(\mathbf{B})$.

Proof: Since $\mathbf{K} \subseteq \mathbf{B}$, Lemma 4 follows immediately from Lemma 1.

Lemma 5 Cpp is a theorem of $\mathcal{L}(\mathbf{B})$.

Proof: 1. SR(B2): $q/Cpp \vdash CCpCppCCNpCppCpp$. 2. SR(B1): $q/p \vdash CpCpp$. 3. MP(L_2, L_1) $\vdash CCNpCCppCpp$. 4. SR(B3): $q/p \vdash CNpCpp$. 5. MP(L_4, L_3) $\vdash Cpp$.

Lemma 6 CpNNp is a theorem of $\mathcal{L}(\mathbf{B})$.

Proof: 1. H⊢p. 2. SR(B1): $q/Np \vdash CpCNpp$. 3. MP(L_1, L_2) $\vdash CNpp$. 4. SR(B2): p/NNp, $q/NNp \vdash CCNNpNNpCCNNNpNNp$. 5. SR(Lemma 5): $p/NNp \vdash CNNpNnp$. 6. MP(L_5, L_4) $\vdash CCNNnpNNp$. 7. SR(L_3): $p/NNp \vdash CNNNpNNp$. 8. MP(L_7, L_6) $\vdash NNp$. 9. DT(L_1, L_8) $\vdash CpNNp$.

Lemma 7 CCpqCCqrCpr is a theorem of $\mathcal{L}(\mathbf{B})$.

Proof: 1. H ⊢ Cpq. 2. H ⊢ Cqr. 3. H ⊢ p. 4. MP(L_3, L_1) ⊢ q. 5. MP(L_4, L_2) ⊢ r. 6. DT(L_3, L_5) ⊢ Cpr. 7. DT(L_2, L_6) ⊢ CCqrCpr. 8. DT(L_1, L_7) ⊢ CCpqCCqrCpr.

Lemma 8 CCpqCNqNp is a theorem of $\mathcal{L}(\mathbf{B})$.

Proof: 1. H⊢Cpq. 2. H⊢Nq. 3. SR(B3): p/q, q/Np⊢CNqCqNp. 4. MP(L₂, L₃)⊢CqNp. 5. SR(Lemma 7): r/Np⊢CCpqCCqNpCpNp. 6. MP(L₁, L₅)⊢ CCqNpCpNp. 7. MP(L₄, L₆)⊢CpNp. 8. SR(B2): q/Np⊢CCpNpCCNpNpNp. 9. MP(L₇, L₈)⊢CCNpNpNp. 10. SR(Lemma 5): p/Np⊢CNpNp. 11. MP(L₉, L₁₀)⊢Np. 12. DT(L₂, L₁₁)⊢CNqNp. 13. DT(L₁, L₁₂)⊢CCpqCNqNp.

Lemma 9 CpCNqNCpq is a theorem of $\mathcal{L}(\mathbf{B})$.

Proof: 1. $H \vdash p$. 2. $H \vdash Cpq$. 3. $MP(L_1, L_2) \vdash q$. 4. $DT(L_2, L_3) \vdash CCpqq$. 5. $SR(Lemma 8): p/Cpq \vdash CCCpqqCNqNCpq$. 6. $MP(L_4, L_5) \vdash CNqNCpq$. 7. $DT(L_1, L_6) \vdash CpCNqNCpq$.

Theorem I Tautologies CpNNp and CpCNqNCpq are redundant in axiom system \mathbf{M} for a sentential calculus.

Proof: Theorem I follows immediately from Lemma 6 and 9.

3 Independence of system B of Bigos-Kalmár Axioms The following independence proofs will consist of constructing truth-tables for the primitive connectives on the basis of two or more truth-values,

 $0, 1, \ldots, n,$

with 0 being called the *designated* truth-value.

Definition 1 We say a wff ξ is a *tautology* with respect to the given truthtables, if for every system of values for the variables of $\xi - 0, 1, \ldots, n$ being admissible values $-\xi$ is reducible to the designated truth-value.

If then the two inference rules have the property of preserving tautologies and every axiom but one is a tautology, it follows that the one axiom that is not a tautology is independent of the remaining. We further note that the inference rule of substitution trivially preserves tautologies regardless of the truth-tables under consideration.

Lemma 10 B1 is independent of the remaining axioms of **B**.

Proof: Consider the following tables:

Þ	NÞ	Cþq	0	1	2
0	2	0	0	2	2
1	2	1	0	2	2
2	0	2	0	0	0.

B2, *B3*, and *B4* are tautologies and *modus ponens* preserves this property. But, with p = 1 and q = 0, *B1* obtains the value 2, independence follows.

Lemma 11 B2 is independent of the remaining axioms of **B**.

Proof: Using the tables

Þ	NÞ	Cþq	0	1
0	1	0	0	1
1	1	1	0	0,

we find B1, B3, and B4 are tautologies, and modus ponens preserves tautologies. Since B2 obtains the value 1 for p = q = 1, it follows that it is independent of the remaining axioms of **B**.

Lemma 12 B3 is independent of the remaining axioms of **B**.

Proof: Consider the tables:

Þ	NÞ	Cpq	0	1
0	0	0	0	1
1	0	1	0	0.

Simple inspection will reveal that B1, B2, and B4 are tautologies and *modus* ponens preserves tautologies. But, for p = 0 and q = 1, B3 obtains the value 1, whence independence follows.

Lemma 13 B4 is independent of the remaining axioms of **B**.

Proof: Consider the tables¹:

Þ	NÞ	Cpq				
0	3 2 1 0	0	0 0 0 0	1	2	3
1	2	1	0	0	2	0
2	1	2	0	1	0	3
3	0	3	0	0	0	0.

B1, B2, and *B3* are tautologies with respect to these tables and *modus* ponens preserves this property. Hence, since *B4* reduces to the value 2 when p = 1, q = 3, and r = 2, *B4* is independent.

Theorem II The set **B** forms an independent system of axioms for a sentential calculus.

Proof: The theorem follows immediately from Lemmata 9-12.

REFERENCES

- [1] Bigos, Y., An Examination of the Axiom used in Kalmár's Proof of his Completeness Theorem, 1973, unpublished.
- [2] Kalmár, L., "Über die Axiomatisierbarkeit des Aussagenkalküls," Acta Mathematica (Hungary), vol. 7 (1935), pp. 222-243.
- [3] Mendelson, E., Introduction to Mathematical Logic, Van Nostrand Reinhold Co., New York, 1964.
- [4] Pogorzelski, H. A., Mathematical Logic, 1969, unpublished.

University of Maine at Orano Orano, Maine

288

^{1.} These tables are due to Prof. R. Tredwell.