Notre Dame Journal of Formal Logic Volume XIX, Number 2, April 1978 NDJFAM

ON THE INDEPENDENCE OF THE BIGOS-KALMÁR AXIOMS FOR SENTENTIAL CALCULUS

ROBERT C. FLAGG

1 Introduction Let

$\mathbf{K}_{1}=\{c p c q p, c C p C q r C C p q C p r\}$,
$\mathbf{K}_{2}=\mathbf{K}_{1} \cup\{c N p c p q\}$,
$\mathbf{K}_{3}=\mathbf{K}_{2} \cup\{c p N N p, C p C N q N C p q\}$,
$\mathbf{B}=\mathbf{K}_{2} \cup\{C C p q C C N p q q\}$,
$\mathbf{M}=\mathbf{K}_{\mathbf{3}} \cup\{C C p q C C N p q q\}$,
$\mathbf{K}=\mathbf{M} \cup\{C p C q K p q, C N q N K p q, C N p N K p q, C p A p q, C q A p q, C N p C N q N A p q$, CpCqEpq, CpCNqNEpq, CNpCqNEpq, CNpCNqEpq\}.

By Kalmár's Lemma we mean the inference rule denoted as Hilfssatz 3 in Kalmár [2] and as Lemma 1.12 in Mendelson [3]. The proof of Kalmár's Lemma given by Kalmár [2] uses all of the tautologies in K. In turn the proof of Kalmár's Lemma given by Mendelson [3] makes use of only the subset M of K. Following Kalmár and Mendelson, Pogorzelski [4] proves the following theorems.

Lemma 1 For any sentential calculus \mathcal{L}, if \mathbf{K}_{1} is a subset of the theorems of \mathcal{L}, then the Deduction Theorem is a derived inference rule of \mathcal{L}.

Lemma 2 For any sentential calculus \mathcal{L}, if \mathbf{K}_{3} is a subset of the theorems of \mathcal{L}, then Kalmár's Lemma is a derived inference rule of \mathcal{L}.
Theorem 3 For any sentential calculus \mathcal{L}, if \mathbf{M} is a subset of the theorems of \mathcal{L}, then \mathcal{K} is complete.

With respect to Theorem 3, Pogorzelski asked if \mathbf{M} forms an independent system of axioms for a sentential calculus. In turn Yvonne Bigos [1] gave a proof of the following theorem, which we introduce in section 2.

Theorem I Tautologies CpNNp and CpCNqNCpq are redundant in axiom system M for a sentential calculus.

Lastly, the author proves the following:

Theorem II The set B forms an independent system of axioms for a sentential calculus.

It follows from Theorem II that \mathbf{K}_{3} and \mathbf{M} can be replaced by \mathbf{B} in the preceding Lemma 2 and Theorem 3.

2 Theorem of Bigos By $\mathcal{L}(\mathbf{B})$ we mean the sentential calculus obtained by taking the tautologies of \mathbf{B} as axioms and using, for inference rules, modus ponens and substitution. Within a given proof in $\mathcal{L}(\mathbf{B})$ we will use L_{i} to denote the wff on the i 'th line of the proof. An application of one of the two inference rules is denoted as follows:
(a) Substitution Rule. $\operatorname{SR}(x): p_{1} / P_{1}, \ldots, p_{n} / P_{n} \vdash L_{k}$, where x denotes a theorem of $\mathcal{\Omega}(\mathbf{B})$ or it denotes $L_{i}(i<k)$, and L_{k} denotes the wff obtained by replacing in x the sentential variable p_{i} by the wff $P_{i}(i=1,2, \ldots, n)$.
(b) Modus ponens. $\operatorname{MP}(x, y) \vdash L_{k}$, where x and y denote theorems of $\mathcal{L}(\mathbf{B})$ or wffs $L_{i}, L_{j}(i, j<k)$, and y is of the form $C x L_{k}$.

An application of the Deduction Theorem, which we will prove in Lemma 4, will be abbreviated as:

$$
\mathrm{H} \vdash L_{k}, \mathrm{DT}\left(L_{k}, L_{j}\right) \vdash C L_{k} L_{i},
$$

where $\mathrm{H} \vdash L_{k}$ denotes that L_{k} is a hypothesis and L_{j} is the wff of proof line $j>k$.

We denote the tautologies of \mathbf{B} by:
B1. $C p C q p$,
B2. CCpqCCNpqq,
B3. $C N p C p q$,
B4. CCpCqrCCpqCpr.
Lemma 4 The Deduction Theorem is a derived inference rule of $\mathcal{L}(\mathbf{B})$.
Proof: Since K \subset B, Lemma 4 follows immediately from Lemma 1.
Lemma 5 Cpp is a theorem of $\mathcal{L}(\mathbf{B})$.
Proof: 1. $\mathrm{SR}(B 2): q / C p p \vdash C C p C p p C C N p C p p C p p .2 . \mathrm{SR}(B 1): q / p \vdash C p C p p$. 3. $\operatorname{MP}\left(L_{2}, L_{1}\right) \vdash C C N p C C p p C p p$. 4. $\mathrm{SR}(B 3): q / p \vdash C N p C p p$. 5. $\operatorname{MP}\left(L_{4}, L_{3}\right) \vdash$ Cpp.

Lemma 6 CpNNp is a theorem of $\mathcal{L}(\mathbf{B})$.
Proof: 1. $\mathrm{H} \vdash p$. 2. $\mathrm{SR}(B 1): q / N p \vdash C p C N p p$. 3. $\mathrm{MP}\left(L_{1}, L_{2}\right) \vdash C N p p$. 4. $\mathrm{SR}(B 2)$: $p / N N p, q / N N p \vdash C C N N p N N p C C N N N p N N p N N p$. 5. SR(Lemma 5): $p / N N p \vdash$ $C N N p N N p .6 . \operatorname{MP}\left(L_{5}, L_{4}\right) \vdash C C N N N p N N p N N p .7 . \mathrm{SR}\left(L_{3}\right): p / N N p \vdash C N N N p N N p$. 8. $\operatorname{MP}\left(L_{7}, L_{6}\right) \vdash N N p .9 . \mathrm{DT}\left(L_{1}, L_{8}\right) \vdash C p N N p$.

Lemma 7 CCpqCCqrCpr is a theorem of $\mathcal{L}(\mathbf{B})$.
Proof: 1. $\mathrm{H} \vdash C p q$. 2. $\mathrm{H} \vdash \mathrm{Cqr}$. 3. $\mathrm{H} \vdash$. $.4 . \operatorname{MP}\left(L_{3}, L_{1}\right) \vdash$. 5. $\operatorname{MP}\left(L_{4}, L_{2}\right) \vdash$ r. 6. $\mathrm{DT}\left(L_{3}, L_{5}\right) \vdash C p r$. 7. $\mathrm{DT}\left(L_{2}, L_{6}\right) \vdash C C q r C p r . ~ 8 . ~ D T\left(L_{1}, L_{7}\right) \vdash$ CCpqCCqrCpr.

Lemma 8 CCpqCNqNp is a theorem of $\mathcal{L}(\mathbf{B})$.
Proof: 1. $\mathrm{H} \vdash C p q$. 2. $\mathrm{H} \vdash N q$. 3. $\mathrm{SR}(B 3): p / q, q / N p \vdash C N q C q N p$. 4. $\operatorname{MP}\left(L_{2}\right.$, $\left.L_{3}\right) \vdash C q N p$. 5. SR(Lemma 7): $r / N p \vdash C C p q C C q N p C p N p$. 6. $\operatorname{MP}\left(L_{1}, L_{5}\right) \vdash$ $C C q N p C p N p .7 . \operatorname{MP}\left(L_{4}, L_{6}\right) \vdash C p N p .8 . \mathrm{SR}(B 2): q / N p \vdash C C p N p C C N p N p N p$. 9. $\operatorname{MP}\left(L_{7}, L_{8}\right) \vdash C C N p N p N p$. 10. $\operatorname{SR}\left(\right.$ Lemma 5): $p / N p \vdash C N p N p$. 11. $\operatorname{MP}\left(L_{9}\right.$, $\left.L_{10}\right) \vdash N p$. 12. DT $\left(L_{2}, L_{11}\right) \vdash C N q N p$. 13. DT $\left(L_{1}, L_{12}\right) \vdash C C p q C N q N p$.

Lemma 9 CpCNqNCpq is a theorem of $£(\mathbf{B})$.
Proof: 1. Hトp. 2. HトCpq. 3. $\mathrm{MP}\left(L_{1}, L_{2}\right) \vdash q . ~ 4 . ~ \mathrm{DT}\left(L_{2}, L_{3}\right) \vdash C C p q q$.
5. $\mathrm{SR}\left(\right.$ Lemma 8): $p / C p q \vdash C C C p q q C N q N C p q$. 6. $\operatorname{MP}\left(L_{4}, L_{5}\right) \vdash C N q N C p q$. 7. $\mathrm{DT}\left(L_{1}, L_{6}\right) \vdash C p C N q N C p q$.

Theorem I Tautologies CpNNp and CpCNqNCpq are redundant in axiom system \mathbf{M} for a sentential calculus.
Proof: Theorem I follows immediately from Lemma 6 and 9.
3 Independence of system B of Bigos-Kalmár Axioms The following independence proofs will consist of constructing truth-tables for the primitive connectives on the basis of two or more truth-values,

$$
0,1, \ldots, n,
$$

with 0 being called the designated truth-value.
Definition 1 We say a wff ξ is a tautology with respect to the given truthtables, if for every system of values for the variables of $\xi-0,1, \ldots, n$ being admissible values $-\xi$ is reducible to the designated truth-value.

If then the two inference rules have the property of preserving tautologies and every axiom but one is a tautology, it follows that the one axiom that is not a tautology is independent of the remaining. We further note that the inference rule of substitution trivially preserves tautologies regardless of the truth-tables under consideration.

Lemma $10 \quad B 1$ is independent of the remaining axioms of \mathbf{B}.
Proof: Consider the following tables:

p	$N p$
0	2
1	2
2	0

$C p q$	0	1	2
0	0	2	2
1	0	2	2
2	0	0	0.

$B 2, B 3$, and $B 4$ are tautologies and modus ponens preserves this property. But, with $p=1$ and $q=0, B 1$ obtains the value 2 , independence follows.

Lemma 11 B2 is independent of the remaining axioms of \mathbf{B}.
Proof: Using the tables

p	$N p$
0	1
1	1

$c p q$	0	1
0	0	1
1	0	0,

we find $B 1, B 3$, and $B 4$ are tautologies, and modus ponens preserves tautologies. Since $B 2$ obtains the value 1 for $p=q=1$, it follows that it is independent of the remaining axioms of B.

Lemma 12 B3 is independent of the remaining axioms of \mathbf{B}.
Proof: Consider the tables:

p	$N p$
0	0
1	0

$c p q$	0	1
0	0	1
1	0	0.

Simple inspection will reveal that $B 1, B 2$, and $B 4$ are tautologies and modus ponens preserves tautologies. But, for $p=0$ and $q=1, B 3$ obtains the value 1 , whence independence follows.

Lemma $13 \quad B 4$ is independent of the remaining axioms of \mathbf{B}.
Proof: Consider the tables ${ }^{1}$:

p	$N p$
0	3
1	2
2	1
3	0

$C p q$	0	1	2	3
0	0	1	2	3
1	0	0	2	0
2	0	1	0	3
3	0	0	0	0.

$B 1, B 2$, and $B 3$ are tautologies with respect to these tables and modus ponens preserves this property. Hence, since $B 4$ reduces to the value 2 when $p=1, q=3$, and $r=2, B 4$ is independent.

Theorem II The set B forms an independent system of axioms for a sentential calculus.

Proof: The theorem follows immediately from Lemmata 9-12.

REFERENCES

[1] Bigos, Y., An Examination of the Axiom used in Kalmár's Proof of his Completeness Theorem, 1973, unpublished.
[2] Kalmár, L., "Über die Axiomatisierbarkeit des Aussagenkalküls," Acta Mathematica (Hungary), vol. 7 (1935), pp. 222-243.
[3] Mendelson, E., Introduction to Mathematical Logic, Van Nostrand Reinhold Co., New York, 1964.
[4] Pogorzelski, H. A., Mathematical Logic, 1969, unpublished.
University of Maine at Orano
Orano, Maine

[^0]
[^0]: 1. These tables are due to Prof. R. Tredwell.
