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MINIMALIZATION OF BOOLEAN POLYNOMIALS,
TRUTH FUNCTIONS, AND LATTICES

MITCHELL O. LOCKS

1 Introduction In 1952 W. V. Quine [l] published a landmark paper on the
minimalization of a Boolean polynomial or truth function. First, the
polynomial is fully expanded out to the "developed form", and then one
finds the "prime implicants" by employing a tabular representation to find
common indicators. In 1956 E. J. McCluskey published a sequel to Quine's
paper [2], in which a decimal coding scheme is employed on the binary-
number equivalents of the terms of the expanded polynomial, to facilitate
the simplification process. The Quine procedure, or Quine-McCluskey
procedure as it is sometimes referred to (see Phister [3] or Korfhage [4]),
is used in the logical design of digital computers and communications
equipment, to help reduce the number of logical circuits required. The
purpose of this paper is to develop a set-theoretic explanation for the
process of minimalization of a Boolean polynomial, with an algorithm for
minimalization which is simpler than that of Quine-McCluskey, in that a
full expansion of the polynomial and a tabular representation is not
necessary. Thus, the procedure is carried out algebraically, in a way
which is amenable to processing entirely by a digital computer. The
procedure also includes a test to determine whether a particular form is
minimal.

A Boolean polynomial for a system with n binary variables represents
a lattice within the universal set of 2n binary rc-tuple elements. Each term
(frequently called "minterm" of this polynomial is a monomial which
represents a "complete subset (sublattice)" of w-tuple elements identified
by m common-valued binary variables, m < n, which are used as indicators
for the subset.1 The objective in minimalization is to reduce the size of the
polynomial, as a description for the lattice, so that it has both the smallest
number of terms and the smallest average number of indicators per term.
This is achieved when you find the smallest number of complete sublattices
which cover the entire function. This is essentially the same thing as
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having the "largest" complete sublattices. To take an extreme example,
the universal set, which has 2n w-tuple elements, is a free Boolean algebra
with no fixed-valued indicators for any of the binary components, hence
there is no minimal polynomial for it.2 In other words, the larger the
sublattices are, the fewer the number of indicators per term, and the
smaller the number of terms used to represent all the ^-tuples in the
lattice. The results achieved this way are identical to Quine's "prime
implicants."

The essential difference between our minimalization algorithm and that
of Quine is that the latter requires first an expanded tabular representation
of all the n-tuples in the lattice, and then a simplification. In our
procedure, the initial expansion is unnecessary, as we proceed directly to
minimalize from any polynomial, by merging smaller sublattices (i.e., with
more indicators) into larger ones (with fewer indicators).3 Three types of
pairwise comparison operations are performed at each iteration:

(i) Merging partitioned subsets of the same size which differ by only the
value of a single indicator: example, abv ab = a (it is understood that b is
the complement of b).
(ii) Eliminating redundant terms: for example, "abva = α", since "ab" is
a subset of "a".
(iii) Eliminating redundant indicators: for example, "ab v b = av b", also
"aval = avb".

The three operations are performed successively at each iteration, in
any permutation, until no further apparent simplification is possible with
these operations. A "reversal test" is then used to determine whether
alternative or better minimal forms can be obtained. In this test, we
increase the number of indicators in the largest terms by partitioning, and
also, if necessary, the number of terms. If the only possible way to
minimalize the resulting expanded polynomial is the minimal form previ-
ously attained, it is unique. If a different minimal polynomial is obtained of
exactly the same size, both are equally good. If a smaller polynomial
results, however, the process continues until a decision is reached.

2 Terminology and definitions4

2.1 Systems A system which is represented by a Boolean polynomial is
generated by a set of specifications, propositions, statements, or states
which specify the interrelationships between and among n binary-valued
variables or components. For each component, the value " 1 " denotes that
the binary characteristic or signal corresponding to that particular
component is present, and the value " 0 " that the characteristic is absent.

2.2 Components, algebraic operations, and bounds Since there are n
components, a state of the system is a binary n-tuple; because the
components are binary, there are 2n states. The collection of these 2W

states is the universal set U, a free Boolean algebra with a unique zero
element (0, . . .,0), and a unique one element (1, . . ., 1), and which is
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subject to the usual component-by-component Boolean vector operations of
addition (0 + 0 = 0 , 1 + 0 = 1 + 1=1), multiplication (0 0 = 1 0 = 0, 1 1 = 1)
and complementation ( 0 = 1 , 1 = 0). Addition or multiplication of n-tuples
is performed either pairwise, denoted by " + " or "•", or in sequences,
denoted by "Σ" and " π " . An n-tuple which is the Boolean sum of two or
more elements of It is also their least upper bound, l.u.b., and the Boolean
product their greatest lower bound, g.l.b. The zero and unit elements are
respectively lower and upper bounds for all subsets of It, but not neces-
sarily the "greatest" lower bound or the ''least'' upper bound.

2.3 Lattices and sublattices A lattice 8 is a nonempty subset of It, for
which every pair of elements has both a g.l.b. and an l.u.b. Since the
Boolean sum of every pair or sequence of elements in tt is the l.u.b. and
the Boolean product the g.l.b., U and every one of its subsets is also a
lattice. A closed lattice contains both its g.l.b. and l.u.b. β is complete if
it contains both the g.l.b. and the l.u.b. of every pair of elements in S.
Following Rutherford ([10], p. 9), a complete lattice, that is, any complete
subset of U, is referred to herein as a "sublattice". In Reference [5], it is
shown that there are 3n sublattices in U.

2.4 Boolean polynomials The Boolean polynomial for a sublattice is just a
single term (monomial) consisting of m common-valued binary indicators,
m < n> all of which have the same value in every one of the 2n~m states in
the set. This term, sometimes called the "meet", is frequently called a
"minterm". A lattice S, such as a "truth function", is an "inclusive or"
union of sublattices. The Boolean polynomial for S has a term for each
sublattice, "joined" by the logical symbol "v". In general, the configura-
tion of subsets is not unique, because there can be a very large combina-
torial number of alternative representations. A minimal form, however,
may be and frequently is unique. Even if the minimal form is not unique,
the number of alternative minimal representations is usually limited.

3 Minimalization of Boolean polynomials Minimalizing a Boolean polyno-
mial for S consists of finding the smallest number of largest sublattices,
none of them proper subsets of one another, which completely cover £.
The procedure is an iterative one in which smaller sublattices are merged
into larger ones in stages, by a series of pairwise comparisons of the
indicators. There are three possible types of steps at each iteration:

(i) merging partitioned sublattices of the same size which differ by only the
value of a single indicator,
(ii) eliminating redundant terms,
(iii) eliminating redundant indicators.

If operations (i), (ii), and (iii) cannot be performed any further at the
completion of a given iteration, a "reversal test" is performed to
determine whether any further simplification is possible.

3.1 Merging partitioned subsets For a system having only a single binary
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variable, α, let a denote the unit value and a the zero value. In this case,
the universal set is

a vά = U.

For a system having two variables, a and b, the join of partitioned
sublattices ab and ab is the sub lattice b\

ab vάb = b. (1)

Equation (1) is a prototype of this merging operation. For example,

abcdevάbcde = bcde.

3.2 Eliminating redundant terms When two terms differ only in that one is
longer than the other, the longer term denotes a subset of the shorter one.
For example, abc is a subset of a, or b, or c, or ab, or ac or be. Thus, we
have

abcva = a
adefvaef= aef

άbcv ab = ab.

3.3 Eliminating redundant indicators5 This operation is a combination of
the other two types of simplification. It involves reducing by one the
number of indicators in a longer term which represents a sublattice for
which there is a complementary sublattice which is a subset of a shorter
term. This type of simplification is performed when the longer term has
the same indicators as the shorter term, and the same values of the
indicators, except for one, which is complemented; this indicator is the one
which is deleted in the longer term. Consider the example given in the
introduction "ab vb = av b". This is proved as follows

ab v b = ab v ab v ab = a v b.

Likewise,

av ab = abvabvab = avb.

Also,

abede v ab = acde v ab,

bv abc = b v ac.

3.4 The reversal test Reversal is a kind of "perturbation", a temporary
expansion of the size of the polynomial, in order to determine whether
further simplification is possible. It is performed term by term, largest
terms first, whenever one of the three simplification operations cannot be
used. Either of three results is obtained:

(i) The original minimal polynomial is the only possible simplification, and
is therefore unique.
(ii) An alternative minimal form is obtained with the same number of terms
and the same average number of indicators per term. In this case either
the original form or the alternative is equally good.
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(iii) A smaller polynomial results; therefore, simplification continues until
a final decision is reached.

An example of proving uniqueness by reversal is ab v be. Upon
expanding the first term, we obtain abevbe. Simplifying, we have ab vbc;
therefore the polynomial is unique. An example of further simplification by
reversal is adapted from Korfhage [4], p. 30:
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which is unique. An example of obtaining an alternative solution by
reversal is adapted from Example 3-5c on p. 32 of Phister [11]

bcvacvacv bed = be v ac v ac v abed = be v ac v ac v abd.

4 Examples The following examples below of the simplification process
are all adapted from Quine's 1952 paper [l] on the minimization of Boolean
polynomials. Explanations are included where necessary.

Example 1 (from Quine [1], p. 525):

pqrs v pqrs v pars v pqrs v pars v pqrs
= pqs vpqrs vpqrs vprs
= pqs v pqrs v prs v prs
= pqs vpqrs vpr. (2)

Equation (2) is the unique minimal form. This can be ascertained by
reversal, expanding the largest free term "pqs" into pqrs vpqrs and trying
to simplify by some way other than merging these two back together again.
Since this cannot be done, the polynomial is unique.

Example 2 (identical with Example 2 from p. 523 of Quine [l]):

pq v pqr v pqr = pqv prv p'qr, since pq v pqr = pqv pr.

Quine obtained this result by proving through a logical argument that
the first appearance of q in this expression is superfluous; we obtained it
by a direct application of the third rule of simplification.

Example 3 (identical with Example 1 from p. 523 of Quine [l]). In order to
simplify "pqvprv qr", a reversal is first necessary, because none of the
three types of simplification can be used, therefore

pqrvpar vprvqr = pqrvpry qr.

A simplification at this point would result in the original polynomial
again, therefore it is necessary to continue reversing until a decision can
be made. By expanding pr we obtain

pqr vparvpqr vqr = pqs/ qr,

which is the unique minimal form. Quine obtained this result by proving
through a logical argument that the term "pr" is superfluous.

Example 4 (from page 526 of Quine [1]). In order to simplify pqvpqv
qrvqr, a reversal is first necessary. By expanding pq we obtain
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pqrvpqvqrvqr. Since a simplification at this point would result in the
original polynomial, the reversing is continued. By expanding pq into pqr
and pqr we obtain pqr vpqr vqrv qr, since pqr c qr. Continue the reversal
by expanding qr\ this yields

pqr v pqr v £#r v £#r v qr = prvpq vqr. (3)

The alternative minimal form is obtained by continuing the reversal.
Expand Equation (3) into the "fully developed" form

pqr v pqr v pqr v pqr v pqr v pqr.

Then recombine sets pairwise front to back, wherever possible (first term
with last term, first with next to last, etc). This results in the alternative
minimal form

qrv pqvpr.

Example 5 (see p. 528 of Quine [l]) In order to simplify pqrvprvpqsv
prvpqrs, the first step is to apply pqr v pr = pqvpr. The rest is straight-
forward.

pqrvprvpqs vprvpqrs = pqvprvpqs vprvpqrs = pqvprvpr vpqs,

which is the one of the four alternative minimal forms. A continuation of
the reversal process would result in one of the other three minimal forms.
For example

pqvprvprvpqs = pq v prvprvpqrs = pqr v pr v pr v pqrs = qrvprvprvpqs.

The other two alternatives are prvprvpqv qrs and pr vpr vqrv qrs.

NOTES

1. A complete subset or sublattice includes both its greatest lower bound (g. l.b.) and least upper
bound (l.u.b.), and all elements which are both greater than the g.l.b. and less than the l.u.b.:
the words "greater than" and "less than" are used in the context of partially ordered sets. In
the sequel, "term", "complete subset" and "sublattice" are used almost interchangeably where
the meaning is clear from the discussion; likewise, "variable", "component" and "indicator"
are used interchangeably.

2. When the truth function represents the universal set, this is known in logic as a "tautology" if
the truth value is "one", and a "contradiction" if the truth value is "zero". A method of prov-
ing that the system is a tautology is to show that the indicators for the truth function all
disappear in simplification.

3. In this regard, the following quotation from Quine's paper [ 1 ] on p. 531 is relevant:

Clearly, it would be desirable to find a quicker way of getting simplest normal
equivalents, say by gearing the whole routine to irredundant formulas rather than to
developed formulas. I have not seen how to manage this.

After an allowance is made for the differences between the terminology Quine used and that
employed in this paper, the procedure described herein does obtain simplest normal equiva-
lents without resorting to developed formulas.
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4. The connection between symbolic logic and the algebraic theory of partially ordered sets is
well known. However, the terminology and notation linking the two fields is not completely
standardized, possibly because of the wide variety of disciplines which have made contribu-
tions to the understanding of this interface, including: philosophy, logic, mathematics and
engineering. The approach taken in this paper is the same as that used in an earlier paper by
the author on logical and probability analysis of systems [5 ] . Basically, it is Boolean notation,
essentially the same as that used by G. Boole in The Laws of Thought [6 ] , incorporating
modern algebraic concepts, principally from lattice theory and Boolean algebra. For further
information on related mathematics, the reader is referred to the books of Boolean algebra by
Halmos [7 ] , lattice theory by Birkhoff [8 ] , and model theory by Bell and Slomson [9] .

5. The merging operations described in the immediate foregoing, merging partitioned subsets and
eliminating redundant terms, are included in the Quine-McCluskey procedure. Eliminating
redundant indicators is not explicitly included as an operation in the descriptions of Quine-
McCluskey, (see Quine [1 ] , McCluskey [2] , Phister [3 ] , and Korfhage [4]), although it is
well known in other contexts such as in analysis of Venn Diagrams. The "reversal test" which
is described in the immediate sequel, is believed to be new. A PL-1 computer program which
incorporates all three merging operations and the reversal test for simplifying Boolean poly-
nomials was programmed by Myers [12] .
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