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FORBIDDEN SUBGRAPHS IN TERMS OF
FORBIDDEN QUANTIFIERS

T. A. McKEE

In 1930, Kuratowski characterized planar graphs as those graphs which
fail to contain either of two special subgraphs; see Theorem 11.13 of [4].
Since then, such ‘‘forbidden subgraph’’ characterizations have been sought
and prized by graph theorists. The nature of such characterizations is
considered in [2] and [3]. In particular, [3] is based on the simple observa-
tion that a class of graphs has a forbidden subgraph characterization if and
only if the class contains each subgraph of each of its members.

We will show that the properties characterizable using forbidden
subgraphs are precisely those which are expressible in a natural symbolic
language from which existential quantifiers have been forbidden. Of course,
this is exactly what is expected from combining the observation of [3] with
the well known result of Tarski and EoS on properties preserved under
subsystems (Theorem U of [5]). But unlike either of these approaches, ours
uses only very simple symbolic logic and is actually able to produce the set
of forbidden subgraphs.

While following the graph-theoretic terminology of [4], one important
distinction must be stressed. We call H an induced subgraph of G if H
results by removing points from G (along with each line incident with a
removed point). On the other hand, H is a subgraph of G if H results by
removing lines or points from G (along with each line incident with a
removed point). (The notion of containment in Kuratowski’s theorem is
slightly different from each of these.)

Consider the language [ involving variables x, y, . . . (interpreted as
points) and the binary relations =, #, ~, and + (interpreted as equality,
nonequality, adjacency, and nonadjacency). Also, .L has the connectives a
and v (for conjunction and disjunction) and universal and existential
quantifiers. The universal J[-sentences are defined in the expected
manner. Note that the omission of a symbol for negation in no way limits
the expressiveness of ., since occurrences of negation can be reduced to
uses of # and ~.
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Theorem 1 A graph-theovetic property can be characterized in terms of
finitely many forbidden induced subgraphs if and only if the property is
expressible as a universal L-sentence.

To prove the ‘‘only if’’ direction of the theorem, suppose a graph has a
particular property exactly when it contains none of H,, . . ., H, as induced
subgraphs. For each H; there is a universal .L-sentence o(H;) which is true
of precisely those graphs not containing H; as an induced subgraph. (For
instance, if C, denotes a cycle with four points and no diagonals, then o(C,)
could be written '

VYV, VX VX3VX4 (X = Xa VK] # XaV Xy = XgV Xy & Xgv
X3 = XgVX3 b XgVXy=X VEg ® X1V
XIS X3VX ~ X3V = XgVEy ~ Xy).

Thus o(C,) ‘“says’’ that C, is not an induced subgraph.) And so the property
in question can be expressed as the universal .L-sentence o(H,) A. . .A0(H,).

To prove the ‘‘if’’ direction of the theorem, suppose a graph G has a
particular property exactly when the universal .(-sentence ¢ is true of G.
As specified in the next sentence, o can be put into the form o,a.. .a0,
where each o; consists of a string of universal quantifiers followed by a
disjunction of one of the formulas

Xi = XjvXi ~Xj, X =XjVXi *Xj, OF X; # XjvXi~Xj

for each pair x;, x; of quantified variables. Specifically, in the standard
jargon of [6], o can be put into prenex normal form with its matrix in full
conjunctive normal form; conjuncts involving x; # x; v x; * xj can be dropped
as tautologous; then the quantifiers can be pulled inside the conjunctions.
(Happily, there are ways to shorten this procedure considerably.) For each
o; there will be a graph H(o;) (determined directly from the negation of o;)
such that o; will be true of precisely those graphs not containing H(c;) as an
induced subgraph. (For instance, the sentence o(C,) displayed above is in
the form of one of the o;’s. Its negation asserts the existence of four
distinct points x,, x,, x5, %4 joined cyclicly but not diagonally. Thus H(o(C,))
would be C4.) Therefore o will be true of G if and only if each o; is true of
G, and so if and only if none of the H(c;)’s are induced subgraphs of G.

Observe that this proof gives a method for producing a list of forbidden
subgraphs from the characterizing .[-sentence. After weeding out duplica-
tions and inclusions, the minimal set of forbidden subgraphs results, each
subgraph having no more points than the sentence has quantifiers. This
method is admittedly involved, but it is feasible in at least one important
case. Namely, Beineke’s forbidden (induced) subgraph characterization
((1] or Theorem 8.4 of [4]) of ‘‘derived”’ graphs (or, synonymously,
‘‘interchange’’ or ‘‘line’’ graphs) can be thus deduced from van Rooij and
Wilf’s earlier characterization ([7] or [4]), the latter being easily written
as a (lengthy) universal .-sentence.

To look at subgraphs (rather than induced subgraphs), it is more
natural to consider a language .£' with the point variables of . plus new
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variables X, Y, . .. (interpreted as lines) and with binary relations =, #, €,
and ¢ (interpreted as expected), a, v, and universal and existential quan-
tifiers for both sorts of variables. Essentially the same proof as above
shows the following.

Theorem 2 A graph-theoretic property can be characterized in terms of
finitely many forbidden subgraphs if and only if the property is expressible
as a universal L'-sentence.

For instance, not having C, as a subgraph can be expressed by the
universal quantification of the variables x,, x,, x5, ¥4, X;, X5, X5, X, followed
by the disjunction of all the formulas x; = x; and X; = X; (where ¢ # j) and
x; € X;, %;+1£ X, X;42€ X;, and %;45€ X; (in the obvious modulo 4 sense).
Theorem 2 could also be stated in terms of those .L-sentences without
existential quantifiers and without the adjacency relation (but allowing
nonadjacency), since saying two points are adjacent is tantamount to
requiring the existence of a line. Then not containing C, as a subgraph
could be expressed by the above-displayed .L-sentence o(C,) without the
disjuncts x; ~ x; and x, ~ x4.

For infinite families of forbidden subgraphs or forbidden induced
subgraphs, these theorems can be restated in terms of infinite families of
universal sentences. In this way we could (awkwardly) forbid all subgraphs
homeomorphic (see [4]) to particular graphs and thus treat Kuratowski’s
characterization of planar graphs. It would be preferable, however, to find
a language better suited for discussion of homeomorphism.
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