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A NOTE ON THE DECOMPOSITION OF THEORIES WITH RESPECT
TO AMALGAMATION, CONVEXITY, AND RELATED PROPERTIES

CHARLES PINTER

1 Introduction If T is any theory, it is well known that T v, the universal
part of T, can be uniquely represented as the intersection of irreducible
components S, ; and, corresponding to this representation, there is a
decomposition of the class M(T) of models of T into subclasses M(TΌ S/).
[This decomposition generalizes, for example, the classification of fields
according to their characteristic] In this note it is made clear, first,
under what conditions the classes M(T u S, ) are mutually disjoint. This
result is then used to show that any theory T having the amalgamation
property can be decomposed into theories T4 such that each Tt has the joint
extension property as well as the amalgamation property, and the classes
Ji(Ti) are mutually disjoint. Then, turning to convex theories, it is shown
that there is a one-to-one correspondence between the core models of a
convex theory T and the components of Γ3, hence T can be decomposed
(according to the components of T3) into convex theories with a unique core
model. Decomposition results with similar intent have been obtained by
Fisher and Robinson in [l], and by Fisher, Simmons, and Wheeler in [2].

We assume, throughout, that X is a countable, finitary, first-order
language. A theory T is a consistent set of sentences of -C; M(T) is the
class of models of T and, if 51 is a structure of -C, Th(21) is the set of all
the sentences which are true in 21. Vx will designate the set of universal
formulas of «£, and 3X the set of existential formulas. T v designates the
universal part of a theory T, and Ta the existential part of T. By an
irreducible ideal of V\ (respectively 30, we mean a deductively closed set
S of universal (respectively existential) sentences such that φvψ e S implies
φe S or ψ e S. A component of Tv (respectively T3) is a minimal irreducible
extension of T y (respectively Γ3).

2 Components and the conditional joint extension property Let T be a
theory, let Pbe a component of Tv, and let *P = {εe 3i: Ίε/P}. It is trivial
to verify that *P is an irreducible ideal of 3U and that T U *P is consistent.
Furthermore, *P is maximal (among the ideals of 3X) with respect to being
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consistent with T, because P is a minimal irreducible extension of Tv. It
follows that T3 c *P. Now, if T U P were not consistent, we would have
some ae P such that Γf-Ία, whence lae *P; this is impossible because, by
the definition of *P, Ί α / * P . Thus,

Theorem 2.1 For e<zc/z component P of Ty, T U P «wd TU *P <zr£ δo#z
consistent. In particular, TO PΌ*P is consistent.

(Note that every model of T U *P has to be a model of P).

A theory T has the jom£ extension property (JEP) iff any two models of
T have a joint extension which is a model of T. T is said to have the
conditional joint extension property (CJEP) iff any two models %, 33ι NT
have a common extension ΦNT provided that they have a common submodel
<£| N Γ (that is, provided there are injections <£ -• % and © - 33).

Theorem 2.2 Lei T be a theory, and {jpf : t€ i} ffte family of all the
components of Tv. Tftβw the following are equivalent:

(i) T ftαs 0te CJEP
(ii) Every model of T is a model of no more than one Pi.
(iii) {M(TΌ P^: iel} is a partition of'Jί(T).

If these conditions hold, then (T U Pf ) v = P, .

Proof: The equivalence of (ii) and (iii) is obvious, so it remains to show
(i)#Φ>(ii). Suppose T has the CJEP, P and P ; are distinct components of
Γy, and <£ t= T U P{ U P/. Then © has extensions 9i! NTUP/U *P, and δt=ΓU
Pj u *P ; , and by hypothesis, % and 33 have a common extension Φ NT. But
then Φ>T u *Pi U *P ; , which is impossible because T U *P, U *P ; is incon-
sistent; (recall that *Pi9 as well as *P ; , is maximal with respect to being
consistent with T). Conversely, suppose (ii) holds, and <£-*%, <5 -• S3 are
injections of models of T. It is obvious that?!, 33, <£ must all be models of
the same component Pi of T v; but then 21, 33 have a common extension
ΦM=P;, and Φ f has an extension Φ |= T U P{ U *P*. The last assertion of the
theorem follows immediately from the fact that T U P{ U *P* is consistent.

3 the amalgamation property A theory T has the amalgamation-
property (AP) iff each diagram

(3.1) < ^ Φ, 31,33,®, Φ NT

can be completed. It is obvious that if T has the AP then T has the CJEP,
hence T satisfies all the conditions of Theorem 2.2.

Theorem 3.2 Let T have the AP, and let {PΪ: iel} be the family of all the
components of T v . Each T U P t has the AP as well as the JEP._ Further-
more, the classes M(T u P*), £ e /, are mutually disjoint, so T = f| (T U P,).

id

Proof: By Theorem 2.2, (T U P/)v= Pi, hence each T U P{ has the JEP. It
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remains only to show that each T u P t has the AP. Well, suppose 51,53,
©NΓUP/, and 51 -* 53, 51-+<£ are embeddings. Because T has the AP,
there is a model ΦNT such that the diagram (3.1) can be completed. By
2.2 (ii), φ must be a model of P t , that is, ΦNΓU P, ; thus, T U P, has the
AP.

4 Convexity A theory T is called convex if, whenever 51 N T, 5I7 N T, and
fly c 51 for each je J, then 0 5I7 NT. If T is convex and ff>T, the core

submodel of 51 is Π {53: 53 c 51 and 531= T}. (We assume here that the
language J£ has at least one constant symbol, hence the above intersection
is always non-empty). It is easily seen that if 51, 53NT have a common
extension Φ I=T, then they must contain the same core model.

In connection with convex theories T, we will be interested not in the
components P of T v , but in the components Q of T 3 . If Q is any component
of T 3, we let *Q = {ae W. Ία^Q}. By the same reasoning as in (2.1), we
deduce that:

(4.1) For each component Q of T 3, TO Q and T U *Q are consistent.

Now, let T be a convex theory and $ a component of T 3. Because
TU*Q is consistent, there must be a core model M of T such that
<£ NT U *Q. If 51 NT u Q, then Th(5l)v c *Q, so © can be extended to a model
of Th(5ί), and it easily follows (from the observation at the end of the first
paragraph of this section) that <£ is the core model contained in 51. We have
now shown that all the models of T u Q contain the same core model <£. On
the other hand, if Qγ and Q2 are distinct components of T 3, then the core
models ^ N T U *QX and©2 NT u *Q2 must be distinct, for T u *QX U *Q2 is
inconsistent. Since each model of T contains one and only one core model,
we conclude that the classes Ji(T U Qi), M(T U Q2) are disjoint. In par-
ticular, each model of T is a model of only one component Q{ of T 3 . We
conclude as follows:

Theorem 4.2 Let T be a convex theory, and {Q^. iel} the family of all the
components of T 3 . Each T U Qt is a convex theory with a unique core
model. Furthermore, the classes Ji( TU Q? ), i e /, are mutually disjoint, and
M{T) = U M(T U Qi). In particular, T = f\ (T u Q{).

Corollary 4.3 There is a one-to-one correspondence between the core
models of T and the components of T 3 .

Corollary 4.4 A convex theory T has a unique core model iff T3 is
irreducible.

If T has the CJEP, it is clear that 51, 53 NT contain the same core
model iff they have a common extension, that is, iff they are models of the
same component P of T v. Thus,

Corollary 4.5 If T is a convex theory with the CJEP, then there is a
one-to-one correspondence between the core models of T and the com-
ponents of T v .
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5 Conclusion By means of the method used here, one can obtain similar
decompositions of theories with respect to other properties, for example,
different kinds of amalgamation property, the congruence extension prop-
erty, and properties relating to the existence of existentially closed and
algebraically closed models.
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