Notre Dame Journal of Formal Logic Volume XVIII, Number 3, July 1977 NDJFAM

ADDITIONAL EXTENSIONS OF S4

G. N. GEORGACARAKOS

1 The purpose of this paper is to explore the modal systems resulting from appending

I1 ALCLpqCLMLqp

to either the basis of S4 or any of its known extensions. All of the matrices employed are taken from Sobociński in [4]. In order to make it possible for our proofs to proceed with greater facility in the subsequent discussion, we shall make use of a Fitch-style natural deduction system for S4. Such systems are familiar enough for it to be recognized that the list of derivation rules given below constitute a natural deduction system for S4:

Negative Necessity Elimination (NLE)

Negative Necessity Introduction (NLI)

Negative Possibility Elimination (NME)

Negative Possibility Introduction (NMI)

\cdot	\cdot
\cdot	\cdot
\cdot	$L N X$
\cdot	\cdot
p	$N M X$

$$
n, \mathrm{NMI}
$$

Necessity Elimination (LE)

\cdot	\cdot	
\cdot	\cdot	
n	$L X$	
\cdot	\cdot	
p	X	n, LE

Necessity Introduction (LI)

Strict Implication Elimination (CE)

$$
m, n, \mathbf{c} E
$$

Strict Implication Introduction (Cl)

$m-n$, ©
Strict Equivalence Elimination (CE)

\cdot	\cdot
\cdot	\cdot
m	e. $X Y$
\cdot	\cdot
n	X
\cdot	\cdot
p	Y

\cdot	\cdot
\cdot	\cdot
m	$\dot{C} Y X$
\cdot	\cdot
n	X
\cdot	\cdot
\dot{p}	Y

m, n, C

Strict Equivalence Introduction (cl)

Possibility Introduction (MI)

It is customary to formulate the rule of Possibility Elimination in the following fashion:

However, we shall adopt a formulation due to William A. Wisdom in [6]. It appears to me that more facility in constructing proofs is afforded by his formulation. It goes like this:

Possibility Elimination (ME)

Strict Reiteration (\mathbf{R}^{\prime})

$L X$ may occur in a strict subordinate proof if $L X$ occurs earlier in the proof to which it is subordinate. Schematically, we represent \mathbf{R}^{\prime} thus:

2 It is an easy matter to show that

11 ALCLpqCLMLqp

is not a thesis of S 4 since matrix $\mathfrak{M 4} 4$ verifies $S 4$ but falsifies $I 1$ for $p / 5$ and q/2: CNLCL52CLML25 = CNLC52CLM65 = CNL2CLM65 = CNL2CL15 = $C N 6 C 15=C 3 C 15=C 35=5$. In fact, $\mathfrak{M} 4$ also verifies 54.3 .1 ; thus it is clear that 11 is not a thesis of any of the following systems: S4.3.1, S4.3, S4.2.1, S4.2, S4.1, S4.02, and S4.01. Now if we append I1 to the basis of S4, we obtain a new modal system which I call S4.03. Obviously, this system is not contained in any of the above systems; however, it is contained in the remaining systems up to and including S4.4. First we show that it is contained in S4.3.2 and hence S4.4 by demonstrating that F1, the proper axiom of S4.3.2, inferentially entails I1 in the field of S1:
(1) $A L C L p q C M L q p$

F1
(2) $C N L C L p q C M L q p$
(3) CMLqCNLCLpqp
(4) $C L p p$
(5) CLMLqMLq
(6) CLMLqCNLCLpqp
(7) CNLCLpqCLMLqp
(8) $A L C L p q C L M L q p$

Before showing that 11 is a thesis of $S 4.04$ (and hence S4.1.2), we first demonstrate that

L4 CpLCMLpp

may also serve as the proper axiom of S4.04. Assume L4 and the field of S1:
(1) CpLCMLpp L4
(2) $C L C p q C L p L q$ S1
(3) CLCMLppCLMLpLp 2, $p / M L p, q / p$
(4) CpCLMLpLp 1,3, Syllogism
(5) $C L M L P C p L p$ 4, Permutation

Clearly L4 inferentially entails L1 in the field of S1. Now we prove that L1 inferentially entails L4 in the field of S4. In order to accomplish
this, we shall make use of our natural deduction system for S 4 . We shall also utilize the following formula:
$C L M L C M L p p C C M L p p L C M L p p$
This formula is merely a substitution instance ($p / C M L p p$) of L1.

Having proved that L4 may also serve as the proper axiom of modal system S4.04, we now show that L4 inferentially entails I1 in the field of S4. This time we shall employ

CCLpqLCMLCLpqCLpq
in our proof. Note that this is merely a substitution instance of L4.

47	CLMLqp	6-46, CI
48	ALCLpqCLMLqp	47, Al
49	NALCLpqCLMLqp	2, R
50	NNLCLpq	4-49, NI
51	LCLpq	50, NE
52	ALCLpqCLMLqp	51, AI
53	NNALCLpqCLMLqp	2-52, NI
54	ALCLpqCLMLqp	53, NE

Using the matrices of Sobocinski ([4], p. 350), we find

1. $\mathfrak{M} 7$ verifies 11 , but rejects $S 4.02$ ([3], p. 381) and hence also S4.04, S4.1.2, S4.1, S4.2.1, S4.3.1, and S4.4.
2. $\mathfrak{M 5}$ verifies 11 , but rejects $S 4.2$ ([4], p. 354) and hence also S4.3 and and S4.3.2.
3. M1l verifies 11 , but rejects S 4.01 ([1], p. 569).

These considerations demonstrate that S 4.03 is a proper extension of S4, properly contained in S4.04, S4.1.2, S4.3.2, and S4.4, and independent of S4.01, S4.02, S4.1, S4.2, S4.3, S4.2.1, and S4.3.1.

We may now wonder whether the addition of 11 to the basis of any of the other Lewis extensions of S4 independent of S4.03 will also yield additional modal systems. But before directing our attention to this task, we first show that

12 CKLMLpqLApMq

may also serve as the proper axiom of S4.03. Assume 11 and the field of S1:
(1) $A L C L p q C L M L q p$
(2) $A C L M L q p L C L p q$

1, Commutation
(3) CNCLMLqpLCLpq 2, Implication
(4) $C K L M L q N p L C L p q$

3, Implication
(5) CKLMLqNpLANLpq
(6) CKLMLqNpLAMNpq
(7) CKLMLqNpLAqMNp
(8) CKLMLpNNqLApMNNq 4, Implication
(9) CKLMLpqLApMq 5, Modal Exchange 6, Commutation

$$
7, q / p, p / N q
$$

8, Double Negation
Quite obviously, this proof may also be carried out in reverse; thus 12 also inferentially entails 11 in the field of $S 1$.

Having proved that II and I2 are inferentially equivalent in the field of S1, we now show that the addition of 12 to the basis of S 4.02 yields S 4.04 . We prove this by showing that $I 2$ and $Ł 1$ together inferentially entail L1 in a field at least as weak as S4:

Now because $Ł 1$ is a thesis of S4.1, it is obvious that appending either 11 or I 2 to the basis of S 4.1 would yield S4.1.2 since S4.1.2 $=\{\mathrm{S} 4.1 ; \mathrm{L} 1\}$.

Now we show that 11 inferentially entails $F 1$, the proper axiom of S4.3.2, in the field of S4.2:
(1) $A L C L p q C L M L q p$
(2) $C N L C L p q C L M L q p$

1, Implication
(3) CLMLqCNLCLpqp 2, Permutation
(4) $C M L q L M L q$
(5) CMLqCNLCLpqp

3, 4, Syllogism
(6) CNLCLpqCMLqp
(7) ALCLpqCMLqp

5, Permutation
6, Implication
Clearly then, appending 11 to either S4.2 or S4.3 yields S4.3.2.
In [9], p. 297, Zeman demonstrates that appending F1 to S 4.1 yields S4.4. Consequently, it follows that since S4.2.1 and S4.3.1 both contain S4.2, appending 11 to either S 4.2 .1 or S 4.3 .1 would also yield S4.4.

Adding formula 11 to the basis of S 4.01 does, however, result in another new modal system. I call this new extension of $S 4$ modal system S4.05. In [1], R. I. Goldblatt shows that S4.01 is properly contained in every known extension of S4 except S4.02 and S4.04. He also demonstrates that S 4.01 is independent of both S 4.02 and S 4.04 . Now again consider the following matrices:

1. $\mathfrak{M y}$ verifies both $\Gamma 1$, the proper axiom of $S 4.01$, and $I 1$, but rejects S4.02 ([3], p.381) and hence also S4.04, S4.1.2, S4.1, S4.2.1, S4.3.1, and S4.4. 2. $\mathfrak{M 5}$ verifies both $\Gamma 1$ and $I 1$ but rejects $S 4.2$ ([4], p. 354) and hence also S4.3 and S4.2.
2. $\mathfrak{M i l}$ verifies 11 , but rejects $\Gamma 1$ ([1], p. 569).
3. M4 verifies $\Gamma 1$, but rejects $I 1$.

These considerations establish that $S 4.05$ is a proper extension of S 4 , S4.01, and S4.03, properly contained in S4.1.2, S4.3.2, and S4.4, and independent of S4.2, S4.3, S4.1, S4.2.1, S4.3.1, S4.02, and S4.04.

The following diagram enables us to visualize the relationships existing among S4.03, S4.05, and the other Lewis extensions of S4 at the time of writing:

3 In this section we consider the relationship of formula 11 to modal family Z. We have already observed that $\mathfrak{M} 4$ falsifies 11 ; but this matrix verifies system Z7. Consequently, I1 is not a thesis of any of the following systems: Z7, Z6, Z4, Z5, Z3, and Z1. Now we have also observed that I1 is a thesis of S4.04, S4.1.2, S4.3.2, and S4.4; thus it must be the case that II is a thesis of both Z8 and Z2.

Appending 11 to Z 1 generates a new system to be called Z1.5. Now consider the following matrices:

1. $\mathfrak{M s}$ verifies both $I 1$ and $\Gamma 1$, but rejects $\mathbf{Z 1}$ ([7], p. 354).
2. $\mathfrak{M 5}$ verifies both 11 and $Z 1$ but rejects $G 1$ ([5], pp. 310-311), and hence $\mathrm{Z4}, \mathrm{Z} 5, \mathrm{Z} 6, \mathrm{Z7}$, and Z8.
3. $\mathfrak{M G}$ verifies both II and Z 1 but falsifies N 1 ([9], pp. 296-298), and hence Z3 and Z2.

Now in view of Goldblatt's finding (cf. [1], p. 568) that $\Gamma 1$ is entailed by Z1 and the considerations given above, we may conclude that modal system Z1.5 is a proper extension of S 4.05 and Z1, properly contained in Z8 and Z 2 , and independent of $\mathrm{Z} 3, \mathrm{Z} 4, \mathrm{Z} 5, \mathrm{Z} 6$, and Z 7 .

In the last section, we proved that appending 11 to either S4.2 or S4.3 yields S4.3.2. Thus appending 11 to either Z 4 or Z 6 must yield Z 8 . Again in the last section, we saw that appending 11 to S 4.1 gives S 4.1 .2 ; hence it follows that adding it to Z3 yields Z2.

In [2], Sobociński constructs a system which he calls Z9 by appending Z1 to the basis of S4.4. However, in [8], Zeman proves that Z9 is S4.9. Hence appending Z 1 to S 4.4 yields S4.9. Now we observed, in the last section, that adding 11 to either S4.2.1 or S4.3.1 gives S4.4. Consequently, appending I 1 to either Z 5 or Z 7 would yield S4.9.

The relationships holding between Z1.5 and the other systems of family Z are exhibited by the following diagram:

4 Let us now consider 11 with respect to family K. Now $\mathfrak{M} 4$ verifies the entire basis of K3.1, but, as we have seen, falsifies I1. Thus it is clear that 11 is not a thesis of any of the following systems: K3.1, K3, K2.1, K2, K1.1, and K1. Now since I 1 is a thesis of $\mathrm{S} 4.04, \mathrm{S4.3.2}$, and S4.4, it follows that it is also a thesis of K1.2, K3.2, and K4.

The addition of 11 to K 1 also generates a new modal system to be called K1.1.5. Now consider the following:

1. $\mathfrak{M z}$ verifies both 11 and $\mathbf{Z 1}$, but rejects, as is well-known, K 1 and hence K1.1.5.
2. $\mathfrak{M 5}$ verifies both II and K 1 , but rejects G 1 ([5], pp. 310-311), and hence K2, K3, K3.2, K2.1, K3.1, and K4.
3. $\mathfrak{M h}$ verifies both 11 and K1, but rejects N1 ([9], pp. 296-298), and hence K1.1 and K1.2.

These considerations show that K1.15 is a proper extension of K1 and and Z1.5, properly contained in K1.2, K3.2, and K4, and independent of K1.1, K2, K3, K2.1, and K3.1.

Now, as we have already remarked, appending 11 to $\$ 4.1$ yields S4.1.2, hence appending it to K1.1 would generate K1.2. Adding I1 to either S4.2 or S4.3 gives S4.3.2, hence appending it to either K2 or K3 would yield K3.2. It is well-known that $\{\mathrm{S} 4.4 ; \mathrm{K} 1\}=\mathrm{K} 4$, and, as we have already pointed out, $\{S 4 ; \mathrm{N} 1 ; \mathrm{F} 1\}=\mathrm{S} 4.4$, hence appending 11 to either K2.1 or K3.1, since they both contain S4.2, would yield K4.

The diagram given below exhibits the relationships holding between K1.1.5 and the other systems of family K at the time of writing:

REFERENCES

[1] Goldblatt, R. I., "A new extension of S4," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 567-574.
[2] Sobociński, B., "A new class of modal systems," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 371-377.
[3] Sobociński, B., "A proper subsystem of S4.04," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 381-384.
[4] Sobociński, B., "Certain extensions of modal system S4," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 347-368.
[5] Sobociński, B., "Modal system S4.4," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 305-312.
[6] Wisdom, William A., 'Possibility-elimination in natural deduction," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 295-298.
[7] Zeman, J. J., "A study of some systems in the neighborhood of S4.4," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 341-357.
[8] Zeman, J. J., 'S4.6 is S4.9," Notre Dame Journal of Formal Logic, vol. XIII (1972), p. 118.
[9] Zeman, J. J., ''The propositional calculus MC and its modal analog,' Notre Dame Journal of Formal Logic, vol. IX (1968), pp. 294-298.

University of Missouri
Columbia, Missouri

