Notre Dame Journal of Formal Logic Volume XVIII, Number 2, April 1977 NDJFAM

BINARY CONSISTENT CHOICE ON TRIPLES

ROBERT H. COWEN

1 Introduction Łoś and Ryll-Nardzewski introduced various principles of "consistent" choice with respect to symmetrical relations in [4], [5] and then showed many were equivalent to **P.I.**, the prime ideal theorem for Boolean algebras.¹ In particular, they showed that even for binary relations, consistent choice from finite sets of cardinality $\leq n$ equals **P.I.**, for $n = 4, 5, 6, \ldots$ Here we extend this result to include n = 3.

2 Let A be a collection of sets and R a binary symmetric relation. A set t is a *choice set* for A if $t \stackrel{\frown}{\cap} a = 1$, for all $a \in A$; if, in addition, $\{x, y\} \in R$ for all x, y in t with $x \neq y$, t is an *R*-consistent choice set for A. The collection of all choice sets for A will be denoted by c(A), while the collection of all *R*-consistent choice sets is $c_R(A)$. In [4], [5], the following theorem was proved equivalent to **P.I.**

Theorem 1 Let A be a collection of finite sets and R a binary symmetric relation, and suppose that for any finite $A_0 \subseteq A$, $c_R(A_0) \neq \emptyset$. Then $c_R(A) \neq \emptyset$.

Let F_n denote the statement of Theorem 1 if the sets of A are further restricted to have cardinality $\leq n$; then, as mentioned above, Loś and Ryll-Nardzewski even showed $F_n \leftrightarrow \mathsf{P.I.}$, $n = 4, 5, 6, \ldots$ We will prove $F_3 \leftrightarrow \mathsf{P.I.}$ It is, of course, enough to show $F_3 \rightarrow \mathsf{P.I.}$

Let $\beta = \langle B, \wedge, \vee, \sim, 0, 1 \rangle$ be a Boolean algebra. For any $K \subseteq B$, let $\tilde{K} = \{\{b, \sim b\} | b \in K\}$. If $K \subseteq B$ is a subalgebra, any prime ideal of K is an element of $c(\tilde{K})$. Moreover, any ideal of K which belongs to $c(\tilde{K})$ is a prime ideal of K. Let pr(K) denote the set of prime ideals of K and let $\Sigma(B) = \{K \subseteq B | K \text{ is a finite subalgebra of } \beta\}$. It is easy to see that any $I \in c(\tilde{B})$ will be a prime ideal of β if $I \cap K$ is an ideal of K, for all $K \in \Sigma(B)$.

Theorem 2 $F_3 \rightarrow \mathsf{P.I.}$

Proof: Let $\beta = \langle B, \wedge, \vee, \sim, 0, 1 \rangle$ be a Boolean algebra. For each finite

310

^{1.} Equivalent here means in **ZF** without the axiom of choice.

subalgebra, K, and for each $t \in c(\tilde{K}) - pr(K)$, $t = \{b_1, \ldots, b_n\}$, take 3n - 2new sets, $b_1^t, \ldots, b_n^t, c_1^t, \ldots, c_{n-1}^t, d_1^t, \ldots, d_{n-1}^t$, the sets are to be outside of B and distinct. Let A_t be the (unordered) pairs and triples formed from the columns of the following array:

(1)
$$\begin{array}{c} d_1^t, \ldots, d_{n-2}^t, d_{n-1}^t \\ b_1^t, b_2^t, \ldots, b_{n-1}^t, b_n^t \\ c_1^t, c_2^t, \ldots, c_{n-1}^t. \end{array}$$

Let $A_K = \bigcup_t A_t$, $(t \in c(\tilde{K}) - pr(\tilde{K}))$, and $A = \tilde{B} \cup (\bigcup_K A_K)$, $(K \in \Sigma(B))$. Define a binary symmetric relation on $\bigcup A$ as follows:

(2)
$$\{x, y\} \in R \text{ iff } \{x, y\} \neq \{b_i, b_i'\} \text{ and } \{x, y\} \neq \{c_i', d_i'\}.$$

We claim that $c_R(A) \neq \emptyset$. Since A consists entirely of pairs and triples, it is sufficient, by F_3 , to show $c_R(A_0) \neq \emptyset$, for all finite $A_0 \subseteq A$. Suppose, then, that $A_0 \subseteq A$, A_0 finite. Then $A_0 \subseteq D$, where $D = \tilde{B}_0 \cup \left(\bigcup_K A_K\right)$, $(K \in \Sigma')$, with $B_0 \subseteq B$, $\Sigma' \subseteq \Sigma(B)$ and both B_0 and Σ' finite. It suffices to show $c_R(D) \neq \emptyset$. Let H be the finite subalgebra generated by $B_0 \cup \left(\bigcup_K K\right)$, $(K \in \Sigma')$. If I

is a prime ideal of H, then $I \cap K \in pr(K)$, for $K \in \Sigma'$. Moreover, for any $t \in c(\tilde{K}) - pr(K)$, there exists a $b_{i_t} \in t - (I \cap K) = t - I$. Let

$$a_t = \{c_1^t, \ldots, c_{i_t-1}^t, b_{i_t}^t, d_{i_t}^t, \ldots, d_{n-1}^t\}, \text{ and let } a_K = \bigcup_t a_t, \ (t \in c(\tilde{K}) - pr(K)).$$

Then, by (1), $a_t \in c(A_t)$, and $a_K \in c(A_K)$. Also $I \cap B_0 \in c(\tilde{B}_0)$. Therefore, $(I \cap B_0) \cup \left(\bigcup_K a_K\right) \in c(D), (K \in \Sigma')$. However, by (2), $(I \cap B_0) \cup \left(\bigcup_K a_K\right), (K \in \Sigma')$, is an *R*-consistent choice set as well as $(b_{i_t} \notin I)$. Hence $c_R(D) \neq \emptyset$, and so $c_R(A_0) \neq \emptyset$.

By F_3 , $c_R(A) \neq \emptyset$. If $s \in c_R(A)$ and $I_s = B \cap s$, then $I_s \in c(\tilde{B})$ and we claim that I_s is a prime ideal of β . It suffices to show that $I_s \cap K$ is an ideal of K, for every $K \in \Sigma(B)$. We show $I_s \cap K \neq t$, for every $t \in c(\tilde{K}) - pr(K)$. Suppose, then, that $t \in c(\tilde{K}) - pr(K)$, $t = \{b_1, \ldots, b_n\}$. Since $A_t \subset A$ and s is a choice set for A, s must select an element from each column of (1); since $\{d_i^t, c_i^t\} \notin R, 1 \leq i \leq n - 1$, by (2), at least one b_i^t must be selected by s. But then $b_i \notin s$, by (2). Therefore, $b_i \notin I_s \cap K$ and $I_s \cap K \neq t$, completing the proof.

We are unable to say whether or not $F_2 \leftrightarrow \mathbf{P.I.}$ Finally, an indirect proof of Theorem 2 can be based on the recent results of Läuchli [3], that $\mathbf{P.I.} \leftrightarrow P_n$, $n = 3, 4, 5, \ldots$, where P_n is the theorem of DeBruijn and Erdös [2] that an infinite graph is *n*-colorable if every finite subgraph is—see our paper [1] for details, as well as additional theorems equivalent to $\mathbf{P.I.}$

REFERENCES

[1] Cowen, R. H., "Generalizing König's lemma," Notre Dame Journal of Formal Logic, vol. XVIII (1977), pp. 243-247.

- [2] De Bruijn, N. G., and P. Erdös, "A colour problem for infinite graphs and a problem in the theory of relations," *Indagationis Mathematicae*, vol. 13 (1951), pp. 369-373.
- [3] Läuchli, H., "Coloring infinite graphs and the Boolean prime ideal theorem," Israel Journal of Mathematics, vol. 9 (1971), pp. 422-429.
- [4] Łoś, J., and C. Ryll-Nardzewski, "On the application of Tychonoff's theorem in mathematical proofs," *Fundamenta Mathematicae*, vol. 38 (1951), pp. 233-237.
- [5] Łoś, J., and C. Ryll-Nardzewski, "Effectiveness of the representation theory for Boolean algebras," Fundamenta Mathematicae, vol. 41 (1955), pp. 49-56.

Queens College, CUNY Flushing, New York