
310
Notre Dame Journal of Formal Logic
Volume XVIII, Number 2, April 1977
NDJFAM

BINARY CONSISTENT CHOICE ON TRIPLES

ROBERT H. COWEN

1 Introduction Los and Ryll-Nardzewski introduced various principles of
"consistent" choice with respect to symmetrical relations in [4], [5] and
then showed many were equivalent to P.I., the prime ideal theorem for
Boolean algebras.1 In particular, they showed that even for binary rela-
tions, consistent choice from finite sets of cardinality ^ n equals P.I., for
w = 4 , 5 , 6 , . . . . Here we extend this result to include n = 3.

2 Let A be a collection of sets and R a binary symmetric relation. A set t
is a choice set for A if t Π a = 1, for all ae A; if, in addition, {x, y}e R for
all x, y in t with x Φ y, t is an R-consistent choice set for A. The collection
of all choice sets for A will be denoted by c(A), while the collection of all
^-consistent choice sets is cR(A). In [4], [5], the following theorem was
proved equivalent to P.I.

Theorem 1 Let A be a collection of finite sets and R a binary symmetric
relation, and suppose that for any finite Ao c A, CR(A0) Φ 0. Then cR(A) Φ φ.

Let Fn denote the statement of Theorem 1 if the sets of A are further
restricted to have cardinality ^ n; then, as mentioned above, Los and
Ryll-Nardzewski even showed i^^-^P.I . , n= 4, 5, 6, . . .. We will prove
F3<-> P.I. It is, of course, enough to show F3 -* P.I.

Let β = (B, Λ, V, ~, 0, 1) be a Boolean algebra. For any K<Z B, let K =
{{b, ~b}\be K}. If K C B is a subalgebra, any prime ideal of K is an
element of c(K). Moreover, any ideal of K which belongs to c(K) is a prime
ideal of K. Let pr(K) denote the set of prime ideals of K and let Σ{B) =
{K C B\K is a finite subalgebra of β}. It is easy to see that any Ie c(B) will
be a prime ideal of β if / Π K is an ideal of K, for all KeΣ(B).

Theorem 2 F3 -* P.I.

Proof: Let β = (B, Λ, V, ~, 0, 1) be a Boolean algebra. For each finite

1. Equivalent here means in ZF without the axiom of choice.
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subalgebra, K, and for each t e c(K) - pr(K), t = {blf . . ., bn}, take 3n - 2
new sets, b[, . . ., bf

n, c{, . . ., c^-i, <#ί, . . ., rf»-i, the sets are to be outside
of B and distinct. Let A/ be the (unordered) pairs and triples formed from
the columns of the following array:

it -it -jt

(1) bt> b{, . . ., bn-iy bn
rt rt rt
C\, C2, . . . , C«-i.

Let Λκ = \jAt, (tec(K) - Pr(K)), and A = 2? U ( U A Λ , (KeΣ(B)). Define a
* II κ

binary symmetric relation on U-A as follows:

(2) {*, y}ei? iff {*, y} Φ {bi, b'i\ and {̂ , y} * {c}, d[\

We claim that cR(A) Φ 0. Since A consists entirely of pairs and triples,
it is sufficient, by F3, to show CR(A0) Φ <β, for all finite Aoc A. Suppose,

then, that Ao c A, Ao finite. Then Ao c Z), where D = Bo U ( U A Λ (ϋCe Σ r),

with BQCZB, Σ'CIΣ(B) and both J50 and Σ' finite. It suffices to show

Let ^ be the finite subalgebra generated by Bo U ί UK), (Ke Στ). If /

is a prime ideal of #, then IΠKe pr(K), for KeΣr. Moreover, for any
te c(K) - pr(ϋθ, there exists a bit e t - (I Π K) = t - I. Let

β, = {cί, . . ., 4 . ! , ^ , 4 , . . ., dn-il and let aκ = U ^ , (f e c(^) - pr(Λθ).

Then, by (1), atec(At)9 and % e c ( 4 ) . Also / n £ o

e c C B o ) . Therefore,

(IΠ Bo) U (Uaλ e c(D), (/f€ Σ f ) . However, by (2), (in Bo) U (Ό<*K\, (Ke Σ f ),

is an i?-consistent choice set as well as (b{tfίl). Hence cR(D) Φ 0, and so
cR(A0) Φ 0.

By ^ 3 , cR(A) Φ<jb. Use cR(A) and Is = B Π 5, then 7S e c(έ) and we claim
that 7S is a prime ideal of β. It suffices to show that 7S Π K is an ideal of K,
for every iΓe Σ(B). We show 7S (Ί K Φ tf for every te c(K) - pr(K). Suppose,
then, that te c(K) - pr(K), t = {6^ . . ., bn}. Since At ^ A and s is a choice
set for A, s must select an element from each column of (1); since
{dj, cf}jίR, 1 < i < n - 1, by (2), at least one bf must be selected by s. But
then bifίs, by (2). Therefore, b{ ^IsnK and Is nK Φ t, completing the proof.

We are unable to say whether or not F 2 <->P.I. Finally, an indirect
proof of Theorem 2 can be based on the recent results of Lauchli [3], that
P.I. <->Pn, n = 3, 4, 5, . . ., where Pn is the theorem of DeBruijn and Erdos
[2] that an infinite graph is n-colorable if every finite subgraph is—see our
paper [l] for details, as well as additional theorems equivalent to P.I.
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