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THE MODAL PREDICATE LOGICS PF*F

ROBERT L. WILSON

1 Introduction This paper introduces the five modal predicate logics
PF*F that correspond to the five modal propositional logics F*F (F = L,
W, S, D, E) of [1]. The notation used here follows Smullyan ([2] Chs. IV, V)
except where indicated and Wilson [l], and hence many details are omitted.
In section 2 the semantics PF* are discussed with emphasis on the
semantics of quantified expressions. In section 3 the formal systems PF
are given based again on Smullyan's 'analytic tableaux' [2], In section 4 the
semantical consistency and completeness proofs are illustrated with
specific reference to PS*S. In the final section, section 5 further points
and problems are mentioned, the key one being the possible bearing of
these logics PF*F on 'traditional predication theory', at least when set
against the back-cloth of Angelelli's observations in [3]. Throughout this
paper, except where indicated, the index i ranges over 1, 2, 3, 4 and the
index j ranges over 1, 2. (Similarly for i and j).

2 The Semantics PF*

2.1 For the syntax of PF, we add to the syntax of F (omitting propositional
variables and the functor (F9), the symbols 'V and ' 3 ' , and denumerable
lists of individual variables x, y, z, . . .; individual parameters, α, b, c,
. . . (the set Π); and for each positive integer n, ra-ary predicates P, Q, R,
. . . (in all cases with or without subscripts). We now give some definitions.
An atomic formula of PF is defined as an (n + l)-tuple Pυγυ2 . . . vn

where P is any n-ary predicate and vi, i = 1, 2, . . ., n, are any individuals
(i.e., variables or parameters).

We can then define a wff in PF by making use of the formation rules
for F, see [l], together with the new rule: If A is a wff in PF and x is a
variable then VxΛ and ixA are wff. The definition of wff in PF can be made
explicit in the usual way. Signed wff (swff) in PF are analogous to swff in F.
We now define a closed wff (cwff) in PF as follows:

A is a cwff of PF if A is a wff of PF and for every variable x and every
parameter α, Ax

a = A.
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2.2 Interpretations Let U be any non-empty set of individual constants.
By an interpretation J of a set S of pure cwff of PF with constants in U, we
mean a mapping which assigns to each w-ary predicate P an rc-place
relation P' of elements of U. Unlike the case of 'classical' predicate logic
we need here to distinguish interpretations from semantical interpretations.
For PF*F, every interpretation immediately gives rise to two different
kinds of semantical interpretations: PFCx- and PFC2-semantical inter-
pretations (or abbreviated PFC/-interpretations).

Definition A PFC/-interpretation J7of a set S of pure cwff is an interpre-
tation J together with a mapping of S onto C; -truth-values (those relevant
to the particular logic PF*F).

One example, for PS*S and PFCX-interpretations of a set S, the Ci-truth-
values are t1? f1? ϊ1#

For cwff with parameters, by an interpretation J of a set £ of cwff for
a universe U we mean an interpretation of the predicates in S together with
a mapping ψ that assigns to each parameter ζa* that occurs in any element
of S a constant k in U (i.e.,φ(a) = k). To define C; -truth-value of a cwff of
PF under a PFC/-interpretation, we proceed as follows.

We can define a PFC/-valuation tree for a cwff of PF with constants in
U (cf. Smullyan's {/-formula in [2], pp. 46-48). The semantic rules for
quantified cwff are given on the basis of the following rules (i.e., those rules
applicable to the particular logic PF*F under interpretation). The semantic
rules for the functions N, C, A, K, E, M, L, T are as in [1], Tables I-VII,
except that for E*E, we introduce a new functor ζT9 (see below).

Semantic Rules for Quantifiers (V, 3)

SAj-Rules

SA/1. VxPx is tj iff for every k e U Pk is tj.

SA7 2. VxPx is // iff for some k e U Pk is / ; .
SA/3. ixPx is tj iff for some k e U Pk is tj.
SA/4. ixPx is fj iff for every k e U Pk is /y.

SB j-Rules

SB/1. VxPx is tj iff for every k e U Pk is tj.
SBj2. VxPx is // iff for some k e U Pk is //.
SB/3. VxPx is ij iff for some e e U Pe is ij

and for every k e U Pk is tj or ij.
SB/4. ixPx is tj iff for some k e U Pk is tj.
SB/5. 3 xPx is // iff for every k e U Pk is //.
SB/6. 3xPx is ij iff for some I e U PI is ij

and for every k e U Pk is // or z; .

These semantic rules for 'V and ' 3 ' bring out the intuitive meaning of 'V
as 'for every' and ' 3 ' as 'for some'. For example, in PS*S and PSCi-
interpretations we make use of SBi 1-6 and for PSC2-interpretations we
make use of SA2 1-4. Referring to the C/-truth-tables given in [1] for the
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functors iK> ('and') and Ά9 ('or') we can see that these interpretations of
'V and '3 * in PF*F, for a denumerable universe U, amount to:

'VxPx9 is interpreted as cPkx and Pk2 and . . .' where k{ e U, i = 1, 2, 3. . . .
ΊxPx9 is interpreted as iPk1 or Pk2 or . . .' where k{ e U, i = 1, 2, 3,. . . .

The semantical interpretations of the functors N, C, A, /f, E9 M, L, T are
as in [l], Tables I-VΠ, except that for E*E we introduce a new functor ζT'
which seems more appropriate, with the following C2-table:

(E*E) C2 T ζTpy is interpreted as "p9 is or will be
C2-true* or in the autonomous mode1 of [1],

2 2 ζp is or will be C2-true\

#

2 . 2 The Ci-table for ζTp> is as in [1].
' 2 ' 2

In the formal systems PF we make use of PF-tableaux with signed cwff as
points. We can extend the definitions of PFCy -interpretations to sets of
PFCy-scwff. As in [1], although cwff in PF are given both PFCi-interpre-
tations and PFC2-interpretations, PFCy-scwff are given only PFC; -inter-
pretations.

2.3 Satisfiability, validity, and semantic models We give the relevant
definitions:

1. A cwff A of PF is PFCy-satisfiable if A is C/-true under at least one
PFCy -interpretation (i.e., in at least one universe U of constants).

2. A cwff A of PF is PFCy-valid if A is Cy-true under every PFCy-
interpretation in every universe U.

Here PFCx-, PFC2-satisfiability and validity are said to be funda-
mental.

As in [1] {cf. F\ -tautology), we define two derived kinds of satisfiability
and validity.

3. A is PFd/C2-satisfiable (valid) if A is PFCi-satisfiable (valid) or A is
PFC2-satisfiable (valid).

4. A is PFCχC2-satisfiable (valid) if A is PFCi-satisfiable (valid) and A is
PFC2-satisfiable (valid).

If 1 does not hold for a cwff A we say that A is not PFCy -satisfiable. If 2
does not hold we say that A is PFCy-invalid. Hence A is PFCy-invalid if
there is a PFC7-interpretation in some universe U such that A is not Cy-
true. As in [1] we can introduce four sub-logics PF^Fj for PF*F, each
associated with PFj-validity and PFj-invalidity. Here PF { -, i = 1, 2, 3, 4
correspond to PFCX-, PFC2-, PFCi/C2-, and PFCχC2- respectively.

1. Autonomous Mode: R. Carnap, The Logical Syntax of Language, Paul, Trench,
Trubner & Co., London (1949). Thomas Aquinas, In Aristotelis libros Peri
hermeneias et Posteriorum analyticorum expositio, Lecture 5, number 6. Marietti,
Torino (1955).
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5. Semantic models We say a set S of cwff (or PFCy-scwff) is PFCy-

satisfiable if there is at least one PFCy-interpretation such that every

cwff (or PFCy-scwff) in S is Cy-true.

A PFCy-interpretation for which a given set S is PFCy-satisfiable is

called a PFCy-semantic model or simply a PFCy-model for the set S.

3 The Formal Systems PF

3.1 We list here groups of rules for tableaux construction comparable to

[2], Ch. V, p. 52, and [1] section 4, and then indicate which rules apply to

each of the five systems PF (F = L, W, S, D, E). The schematic variables

used here are ζX9, ζY9 and ζZ' for wff. Also 'a' denotes any parameter and

*bf any new parameter not already introduced in the branch.

kj-Tableaux Rules

I. Rules for non-modal functors (N, C, A, K, E)

Afl. TjNX Af2. FjNX Af3. TtCXY Af4. FjCXY

FjX TjX FjXlTjY TjX

FfY

A; 5. TjAXY A; 6. FjAXY Ay7. TjKXY_ Ay8. FjKXY

TjXlTjY FjX TjX FjX\FjY

Fj Y Tj y

Ay 9. TjEXY Ay 10. FjEXY

TjX FjX TjX FjX

TjY FjY FjY TjY

II. Rules for modal functors (M, L, T)

A xll. TφίX Kxn. FXLX A211. T2TX_ A212. F2TX

TjXlFjX TiXlFjX ΓgX F^X

A213. T2MX A 2 l4. F2MX A215. T2LX A216. F2LX

T*X F2X T2X F2X

III. Rules for quantifiers (V, 3)

Ay 17. TjVxZx Ay IB. FjlxZx Ay 19. Tj^xZx Ay 20. FjVxZx
τiza FjZx

a TjZ'l FjZ%

Condensed A-Rules

Al. _α_ A2. β _ A3. γ A4. __λ_ A5. j±_
ai βi\ AΪ Ύi Ύ2 λi« [lib
a2 γ3 γ4
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&j-Tableaux Rules

I. Rules for non-modal functors (N, C, A, K, E)

B l. TjNX By2. FjNX By3. IjNX

FjX TjX IjX

B ; 4. Tj CXY By 5. FjCXY By 6. IjQXY

FjX I Tj Y IjX TjX IjX I TjX

IjY FjY FjY\IjY

By 7. TjAXY By 8. FjAXY By 9. / ; i I F

TJXJΨJY FJX IjX FjX IjX

FjY FjY IjY IjY

BylO. TjKXY Byll. FjKXY B;12. / /jCYF

Γ; X FyX|FyF IjX TjX IjX

TjY TjY IjY IjY

Byl3. TjEXY By 14. FjEXY Byl5. IjEXY

TjX FjX IjX TjX FjX TjX IjX FjX IjX

TjY FjY IjY FjY TjY IjY TjY IjY FjY

II. Rules for modal functors (M, L, Γ)

Bilβ. Γ!MX Bil7. FjLX Bα18. ^ΓX

ΓiXlFiXlΛX ΓiXlF^lΛX T1X\F1X\I1X

B216. T2MX B217. F 2 MJ B218. Γ2LX B219. F2LX

T2X\I2X F2X T2X F2X\I2X

B220. Γ2ΓX B221. F2TX B222. /2ΓX

T 2X F2X 12X

IΠ. Rules for quantifiers (V, 3)

By23. TjVxZx By24. FjVxZx By25. IjVxZx

TjZ* FjZ% IjZl
T . 7X\ T. 7X
1 j a\ j a

By26. Tj 3xZx By27. Fy ixZx By28. 7y3^Z^

Fyz;|/yz;

Condensed B-Rules

B l . _α_ B2. )3 B3. y B4. δ

^l ft I β2 y x y 2 6χ δ 2 δ 3

α2 y 3 y 4 δ 4 δ5 δ 6

B5. € B6. __λ_ B7. _μ_ B8. v

€i e2 e3 e4 \xa μxb v^b

^5 e 6 e 7 e 8 i^2« I i; 3α
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The tableaux rules applicable to the different systems are:

PL : A, -Rules, omitting A211-12.

PS : Bi-Rules, A 2-Rules.

PE : B ;-Rules.

PW : Bi-Rules, A2-Rules omitting A211-12, B1I8.

PD : By-Rules, omitting B1I8, B220-22.

3.2 The definitions of open and closed branches and tableaux are analogous

to [1], A branch is closed if it is broken or incompatible. In PS*S, a

branch is broken if it contains at least one scwff of the form FXMX, ^MX,

T^LX, IXLX, TλTX, or FλTX. Also, the definitions of complete branch and

completed tableaux are analogous to [1] and [2]. (For example in PS, if v is

a point in a complete branch τ c then for some b e Π, v J) is in τ c , and for

every a e Π, v2a or v3a is in τ c.)

3.3 Provability and rejection in PF We il lustrate for PS: A cwff X in PS

is PSCi-provable iff there exist closed PS-tableaux ϋ(FιX), ϋi^X) and we

write PSCi f- X if such tableaux exist, otherwise we write PSCX π X and say

that X is PSCi-rejectable. A cwff X in PS is PSC2-provable iff there exist

a closed PS-tableau ZJ(F2X) and we write PSC2 \-X if such a tableau exists,

otherwise we write PSC2 H I and say X is PSC2-rejectable. PSCiC2- and

PSCi/C2-provability and rejection are defined analogously (cf. [l], sections

4.2 and 4.3). For PF we can introduce PFj -provability and rejection, i =

1, 2, 3, 4 corresponding to PFCi-, PFC2-, PFCiC2- and PFCi/C2- respec-

tively.

4 Semantical Consistency and Completeness Proofs for PF*F

4.1 Properties hold for the unifying notation α, β, . . ., v, analogous to the

properties P1-P6 of [1], section 5.1, and the properties F1-F4 of [2], p. 52.

These properties for λ, μ, and v derive from the semantical rules SA/1-4

and SByl-6 (see section 2.2). We label these properties PA1-4 (see A-Rules)

and PB1-6 (see B-Rules). We illustrate property PB6 for PS*S.

In PS*S, under any PSCx-interpretation in a universe U, for any PSCi-

scwff of type v, v is Ci-true iff for some k e U, vλk is Q-true and for every

k e U either vφ is Cx-true or v3k is Ci-true. These properties are used in

the proofs and illustrated for PS*S.

4.2 Theorem 1 (Semantical consistency for PS*S) // PSj h X, then X is

PS \-valid.

Proof: Case i = 1. Let ^ ( S ^ ) be a PSCi-tableaux. We show first that the

immediate extension ΊJ2(SIX) of ϋ^S^) is PSCx-satisfiable under every

PSCx-interpretation J x in every universe U, for which CΊ(SiX) is PSCi-

satisfiable.

Suppose ΊJxiS^) is PSCi-satisfiable under Λ in a universe U, then it

contains a PSCi-satisfiable branch r(SxX) say. Suppose now ZJ2(SιX) is

formed by applying one operation, derived from one of the B-Rules Bl-8,

to some branch τx of C1# As in [1], section 5, Theorem 1, we need consider
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only the case where τλ is identical with T. If r was extended by Bl, B2, B3
(see [1], sections, Theorem 1), Bβ, B7 (see [2], p. 53), B4 or B5, then the
extended branch is PSCi-satisfiable, because of the properties PBl-7
mentioned above. Finally, if T was extended by B8, then some v occurs in T

and r is extended to r - vjb or r ^ 3 , a, b e Π. In the former case r - vφ
^u2a

is PSCi-satisfiable (cf. proof of S4 in [2], p. 53). Also by PB8, either r - v2

or r - v3 is PSCi-satisfiable. Hence V2{S1X) is PSCi-satisfiable. Thus by
induction, if the origin SXX or V^X) is Q-true under J x then ΊJ^ SXX) is
PSCi-satisfiable under Ji. Suppose now PSCX \- X. Then there exist closed
tableaux ZJ(FιX) and ZJ(lιX). But neither of these tableaux can be PSCi-
satisfiable, since each and every branch in ΐJ(FιX) and VtiiX) must contain
at least one scwff which is Cx-false under J l e Hence, by the above, X cannot
be Ci-false or Ci-indeterminate. Hence X is Ci-true. But 3X and U are
arbitrary. Hence X is PSCi-valid.

Case i = 2 is similar to case i = 1, and cases i = 3, 4 follow from cases

1 = 1,2.

4.3 In Smullyan [2], the completeness proof for first-order logic makes
use of Ήintikka sets' for arbitrary universes, and here for PF*F we make
use of the analogous notion of PFC; -model sets for arbitrary universes of
constants. For PS*S, by a PSC,-model set for a universe U, we mean a set
S of PSCy-scwff with constants in U (cf. C/-formula in [2], pp. 46-48) such
that the following conditions hold:

MO. There are* no scwff of S which are broken or incompatible (in the
terminology of tableaux given above).

Ml. If a e S, then ax and a2 e £.
M2. lϊ β e £, then & or β2 e S.

M3, M4, M5, M6, M7 correspond to type y, δ, e, λ and μ.

M8. If v e S then for some k e U, vjd e S and for every k e U, v2k e S or

Lemma 1 Every PSCy -model set for a universe U is PSCj-satisjϊable, i.e.,
has a PSCy -semantic model in U.

Proof: Case j = 1. Let <£i be a PSCi-model set. Let U be a non-empty
universe of constants. We need to give a PSCi-interpretation Jx in U for
every atomic scwff in Si, such that every element in Si is ti under this J l e

We assign Ci-truth-values to every atomic cwff Zuxu2 . . . un as follows:

(1) If TiZ e Si, assign Z the value t l e

(2) If FXZ e <$i, assign Z the value fle

(3) If IXZ e Si, assign/? the value ii.
(4) If neither TXZ9 FXZ or 1XZ e Si then assign Z the value t l e (This is
always possible for Si since MO holds.)

We now show by induction on the degree of a scwff that every element
SiF e <Si is h under this J1 # By (1), (2), (3) it follows that every element of
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degree 0 is h Suppose now SλY is of positive degree and that every ele-
ment of lower degree than SXY is t1# We show SiFis tx. By MO, SiF must
be some aφ, . . ., or v. Suppose Si7 is a v. Then, by M8, for some k e U,
vik e Si and for every k e U, v2k e Sx or v3k e Slt Hence by hypothesis,
since v-Jz, v2k and vjk are of lower degree than v, then for some k, vik is tx

and for every k, v2k is t x or v3k is t1# Hence, by PB8, v is ti. Similarly if
SLY is an a, β, . . ., or μ, then, by PB1, PB2, . . ., or PB7 and M1-M7, it
follows that SjY is ti. Hence by induction ,Sχ is PSCi-satisfiable under Jl9

and the above PSCi-interpretation in U therefore constitutes a PSCi-
semantic model in U.

Case j = 2 is analogous to case j = 1.

Lemma 2 Every complete open branch r, say, of any PSC;-tableau is
PSC - satisfiable.

Proof: By definition, the set of PSCy-scwff in T, S say, constitute a PSC; -
model set for the universe Π of parameters (or a denumerable universe U
of constants under a mapping). Hence, by Lemma 1, the result follows.

Lemma 3 For any scwff SjX of PS, there exists a completed PSCy-
tableau.

Proof: Unlike completed F-tableaux in [l] which need involve only a finite
number of points, in PF-tableaux generally, complete branches can be
infinite (due to the presence of λ-type or i^-type scwff). The proof of this
lemma depends on the fact that for a scwff SjX of finite degree, any possible
PSCy -tableaux will involve only a denumerable number of occurrences of
λ-type and i^-type scwff and applications of A4, B6 or B8 can then lead only
to a denumerable number of successors for λ- and ^-completion. In
principle then, it is possible to define a procedure for completing any
PSC;-tableaux, although in general we are unable (as in first-order logic,
[2], p. 63) to decide at any finite stage of the construction whether the com-
pleted tableaux will close or remain open. We use Lemmas 2 and 3 to prove

Theorem 2 (Semantical completeness for PS*S) If X is P$\-valid, then

PSi H X.

Proof: Case i = 1. Suppose X is PSCi-valid. Let Z7(FXX) and ZJihX) be
completed PS-tableaux which exist by Lemma 3. If either tableau contains
an open branch τ1} then by Lemma 2, τu would be PSCi-satisfiable. Hence
either FXX or IχX would be Cx-true, i.e., X would be Ci-false in both cases.
Thus ZJ(FXX) and V{IXX) are closed. Hence PSCi H X.

Case i = 2 is similar to case i = 1. Cases i = 3, 4 follow.

From Theorems 1 and 2 we get:

Theorem 3 (Semantical consistency and completeness for PS*S) PS.j H X
iffX is PS\-invalid.

We now state the main theorem for PF*F:
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Main Theorem (Semantical consistency and completeness for PF*F)

(1) PFj h XiffXίs PF\-valid,

(2) PFi -\XiffX is PFi-invalid,

where F = t , W, S, D, E, i = 1, 2, 3, 4.

5 Further Points and Controversial Problems
5.1 The 3-valued logic In [1] we suggested a possible semantical
interpretation for Stiipecki's2'3 tertium function ζTp9, but these interpreta-
tions require ζT' to be considered as a modal functor rather than as a
non-modal one. Also, on the basis of these interpretations for ζT' it
follows that the correct (non-modal) 3-valued logic is the one initially
formulated by Lukasiewicz without the functor ζT', and axiomatised by
Wajsberg.4 An interesting question remains in connection with the full
3-valued logic: is it possible to provide a non-modal semantical interpre-
tation for the functor <T>?

5.2 Cx-indeterminateness We suggested in [1] that in mathematics,
Ci-truth, or more generally Cx-truth-value of a proposition, bears some
relationship to the intuitionist view of mathematical truth and mathematical
propositions. In this connection the third truth-value Ci-indeterminateness,
ii, is elevated to a new important logical status. We can roughly divide the
Ci-indeterminate propositions into four classes:

(1) Absolutely undecidable propositions.
(2) Propositions relating to future contingent events.
(3) The logical propositions ζTX* of F*F and PF*F, where, in the former
case 'X' is a wff of F, and in the latter (X' is a cwff of PF.
(4) Propositions which are Cx-indeterminate but which may or may not
become Ci-determinate.

Of these four classes (1) and (3) can be taken as examples of proposi-
tions that are intrinsically Cx-indeterminate; (3) on purely logical grounds
and (1) on more than logical grounds. (2) provides examples of propositions
that will become d-determinate. The interesting and problematic class
is (4). An examination of Heyting [4] indicates that the troublesome cases
for the law of excluded middle arise from propositions that should be placed
in this class (4). (See for example [4], pp. 17-18, and p. 24.) Thus, con-
cerning Heyting's 'intuitionism' (and certain other varieties) and also the
new approach to the foundations suggested in [5], a common problem is to
provide a sharpened characterisation of those mathematical propositions
that fall into this class (4).

5.3 Ontological presuppositions and consequent logical possibility and
necessity Several recent authors have been concerned with such questions

2. J. Shipecki, "The full three-valued propositional logic." See footnote 3.

3. S. McCall, editor, Polish Logic, 1920-1939, Clarendon Press, Oxford (1967).

4. M. Wajsberg, "The three-valued logic." See footnote 3.
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as ontological presuppositions and logic with or without ontology. The
logics F*F, cf. [ l ] , and PF*F here clearly belong to the class of logics with
ontology, where it is hoped that the ontological presuppositions have been
made explicit. The essential ontological presupposition posited by these
logics F*F and PF*F, as stated in [l], section 2, is that of the postulate of
a Supreme Being or the Divine. A crucial question immediately suggests
itself here: is it possible in these logics F*F, PF*F, and the semantics in
particular, to dispense with this presupposition? I think not. The idea of
the categories Ci and C2 depends in turn upon the idea of two qualitatively
different kinds of intelligibility—human intelligibility and Divine intelligi-
bility. Although it is true that one could refer to the transcendental idea of
C2-truth, without making this postulate of the Divine, unless we make such
a postulate the concepts of the absolute category and C2-truth would become
merely blank cyphers.

Of opinions on the meaning of the phrases 'logical possibility' and
'logical necessity' we can single out the predominant view associated with
the analytic/synthetic division of propositions, cf. e.g., Carnap.5 The
notions of logical possibility and necessity underlying these logics F*F,
in [l], involve quite different ideas. Recalling the semantics F* in [1],
section 3, 'possibility' and 'necessity' are ambiguous, the ambiguity arising
from the need to consider both under each of the two categories Cx and C2.
For these logics, logical possibility under Cx is a wider notion, while under
C2, it is a narrower one than in Carnap. The reverse is the case for logical
necessity: under Clf logical necessity is a narrower concept, while under
C2, it is a wider concept than in Carnap. We illustrate with a few examples
for F*F.

The propositions '2 + 2 = 5', 'the number of planets Φ 9', '2 + 2 = 4', and
'the number of planets = 9' we can (nominally) affirm as fif2, fxf2, tit2, and
tχt2 respectively. Under Cly 'it is possible that '2 + 2 = 5' is C2-true' is
affirmed ϊλ. Under C2, 'it is possible that 'the number of planets Φ 9' is
C 2-true' is affirmed f2. Under Ci, 'it is necessary that '2 + 2 = 4' is
C 2-true' is affirmed flβ Under C2, 'it is necessary that 'the numbers of
planets = 9' is C 2-true' is affirmed t2.

We associate here the notions of consequent logical possibility and
necessity with each of the logics F*F and PF*F, (F = L, W, S, D, E), and
mean by this: possibility and necessity consequent on a given logic, includ-
ing of course the full semantics, formal properties and presuppositions,
ontological or otherwise, for the given logic. In [6] the phrase 'logical
possibility' and derivatives should be understood in this sense of consequent
logical possibility. This point is important because, in particular, the
argument in [6] on the 'logical possibility of freedom' for example, S*S and
E*E only remain valid when we take into account the 'loaded' semantics of
these logics.

5.4 Additional functors and modal logics F*F, PF*F In [l] we also intro-
duced the functor (F9 not included in this presentation of the logics PF*F.

5. R. Carnap, Meaning and Necessity, University of Chicago, Chicago Press (1947).
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The rich semantics of these logics should allow scope for introducing
more, and even perhaps some new, logical functors. We can also consider
whether there are further logics that naturally fall into the class F*F and
PF*F. One further possibility is G*G with the following tables for ζM>, ζL',
and T ' and a new functor (U9 not appearing in [1]. 'M', 'L' and T ' (see
above) have the same Ci-tables as in E*E, and the same semantical inter-
pretations. ζU* has the same Ci-table as 'T".

C2-Tables for G*G

M L T U

t2 *2 *2 *2 '2

•2 1*2 \2 2 >2

'2 *2 2̂ '2 '2

'Up* is interpreted as 'The C2-truth-value of p will change.' Although
G*G appears at first sight to be a very strange logic indeed it does seem to
have a location in the metaphysical tradition—Peter Damiani6 (1007-1072).
As Weinberg7 notes, Damiani assigns an elevated position to 'the divine
omnipotence to such an extent that not only the ordinary uniformities of
nature, but also the principles of logic as applied to natural events are
dependent on the absolutely omnipotent will of God.' Also, from a purely
formal point of view G*G is of interest in that this functor ζUy enables one
to accommodate the full 3-valued logic, under C2. We can refer to G*G as
the Damiani system* Concerning these possibilities in this section however
we must be wary not to overload the treasure-ship at least until we see how
our ship fares in stormy passages.

5.5 Traditional predication theory Angelelli's observations on the Όnto-
logical square' and 'traditional predication theory' in [3] seem of relevance
here, and particularly his remarks given in the first chapter 'Ontology':

Traditional ontology has two-dimensions (to use an algebraic meta-
phor): (1) substance—accident, (2) singular—universal. This is briefly
described as the ontological square.

An important consequence of the existence of these two dimensions is
that the term "property" becomes ambiguous, as does the expression
"relation between individual and property." A property of a thing may be
an accident; then the property is not a universal but an individual. On the
other hand, a property of a thing may be a universal ("property" in the
sense usual today). The same applies to other terms like "attribute",
"predicate", etc. (Angelelli [3], p. 9)

Angelelli's account of the ontological square can be linked with these
predicate logics PF*F on the following basis:

6. P. Damiani, De Divίna Omnipotentia E Altri Opuscoli, Vallecchi, Florence (1943).

7. J. R. Weinberg, A Short History of Medieval Philosophy, Princeton University
Press, Princeton (1964).
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01. For the 'accident-substance' distinction compare: the 'predicate con-
sidered under Ci-predicate considered under C2

f distinction. (See the
semantics of PF* in section 2 above.)
02. For the 'singular-universal' distinction compare: the familiar 'indi-
vidual-predicate' distinction.

From what has been said here (and Angelelli's work indicates many
further ramifications and confirmations) it is likely that these modal predi-
cate logics PF*F could have an important bearing on traditional predication
theory. However, at this time, historical excursions should be controlled
until we have secured the measuring rod.

5.6 Two questions on Leibniz and the weak Lewis systems Kripke's8

semantics for the Lewis Systems S2-S5 articulate Leibniz's notion of
'possible worlds', and are based on the postulate of many worlds, and one
logical aspect. Purtill9 discusses the application of four-valued tables to
the Lewis Systems, and suggests that four values can be viewed as arising
from two worlds, and again, only one logical aspect. In contrast, these
logics F*F, PF*F are based on the view of one world and two logical
aspects. This is clear from [1] and in this paper from the fact that in the
syntax of PF we postulate one class of predicate variables and one class of
individuals, and in the semantics PF*, two logical aspects.

Concerning Leibniz and the Lewis Systems two questions suggest
themselves:

LI. Does Leibniz's 'possible worlds' and treatment of predication touch on
the possibility of different logical aspects?
L2. Is it possible to provide an alternative semantics for the weak Lewis
systems (S2,S3) based on the following ideas: one world, two logical
aspects, different factual realms, and different kinds of relations holding
between factual realms?

For LI, Angelelli's remarks on Leibniz's treatment of relations in [3],
pp. 19-21, seem relevant. There are two clues that may relate to the
second question L2:

1. Hallden's incompleteness property holds for S2,S3 (see [l]).
2. Kripke's semantics splits the possible worlds into two groups—normal
worlds and non-normal worlds.

5.7 Practical considerations In [l] and in this paper the emphasis has
been on naturalness of presentation rather than on formal simplicity.
However from the point of view of practicality it is desirable that the
formal treatment of these logics F*F, PF*F be simplified, for example, by:

8. S. Kripke, "Semantical analysis of modal logic II," published in The Theory of
Models, edited by Addison, Henkin, and Tarski, North-Holland, Amsterdam (1965).

9. R. L. Purtill, "Four-valued tables and modal logic," Notre Dame Journal of
Formal Logic, vol. XI (1970), pp. 505-511.
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1. Use of definitions for the tableaux method—thus enabling one to operate
with a smaller number of primitive functors.
2. Use of derived rules for the tableaux method. This again can help to
simplify and shorten formal derivations.

Gentzen, c/. [7], in his paper entitled "The present state of research
into the foundations of mathematics" (1939) presents a clear statement on
the issues between the 'constructivism {cf. Cj and the 'actualist' {cf. C2)
interpretations of mathematics. In his final section (the possibility of
reconciling the different points of view) he argues for the important
practical significance of the 'actualist' view, well supported by other
authors (e.g., Kleene, Weyl and Hubert). In [6] the key concept for meta-
physics is C2-belief. Concerning the programme for the foundations of
mathematics in [5] and the logics S*S and PS*5, C2-belief should also be the
key to practicability because S*S and PS*5 can be viewed as accommodating
the 'classical' propositional calculus and the 'classical' predicate calculus
(i.e., under C2). Ironically, metaphysical belief, i.e., C2-belief (rather than
Ci-belief) should also yield the greater honest practicability in the
sciences.
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