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FIRST DEGREE FORMULAS IN CURRY'S LD

ROBERT K. MEYER

In [1], Belnap provided an algebraic semantics for the first-degree
fragments of the relevant logics E and R, i.e., the sets of formulas A such
that no implication signs —> themselves occur within the scope of implica-
tion signs. First-degree formulas, also studied from a Kripke-style
semantic point of view in Routley's [2], are particularly important because
only on such can implication be taken in its natural sense as a relation
between sentences,1 which either holds or does not hold, rather than as a
connective to be applied to sentences to yield further sentences. Arguments
against using implication as a connective seem to be losing force as years
go by, but both for those who continue to take them seriously and on
considerations of general simplicity, independent characterizations of the
first-degree fragments of familiar logics are important and interesting.
Accordingly, in the present note Belnap's methods will be adapted to give a
very simple characterization of the set of valid first-degree formulas in
Curry's D, as presented in [3].2 The intuitionist logic J comes along to
some extent, so it is included in the characterization. And I note here that
although I am indebted to Belnap for root insights in the relevant contexts, I
am equally indebted to Dunn for his penetrating algebraic analyses and
explications of these insights in [6] and [7],

1 I shall take as an underlying language -C one with denumerably many
sentential variables, positive connectives &, v, D, and sentential constants
f, F. Formulas A, B, etc., are built up as usual, and the following defini-
tions are entered.

DO. A = B =df ( A D B) & (B z> A)

Dl. ~A =df A => f (D-negation)
D2. Ί.A =df A^> F (intuitionist (J) negation)

The following axiom schemes and rule produce a system DJ.3

Al. A 3 t J B ^ C : > A ^ 5 , ^ J 3 C
A2. AD. B DA
A3. A&J5DA
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A4. A & B^ B
A5. A D. B D A & 5
A6. i3Jv5
A7. 5D.Av5
A8. A => C. 3 :£ 3 C. 3 . A v £ => C
A9. Av~A
A10. F DA
Rl. From A and A^> B, infer B.

1 have formulated DJ with two false constants, and two negations, so that D
and J might be dealt with together. A lemma, however, is indicated to show
that it is indeed D and J that we deal with.

Lemma 1 DJ is a conservative extension of each of ϋ, J.

Proof: The F-formulations of [3] will do for D and J, whence it is obvious
that all theorems of each of these systems are theorems of DJ, when F is
taken as the J-false constant and f as the D -false constant. Proof of the
lemma is complete when it is shown (1) that each f-free theorem of DJ is
already a theorem of J, and (2) that each F-free theorem of DJ is already a
theorem of D.

Let A be an f-free theorem of DJ. Replace each occurrence of f in a
proof of A in DJ with F 3 F. Only A9 might cause trouble, and it clearly
does not, in showing each step of the transformed proof a theorem of J,
whence A, being f-free, is a theorem of J, establishing (1).

Let A be an F-free theorem of DJ. Let B be the conjunction of all of
the sentential variables which occur in a proof of A in DJ; transform the
proof by replacing each occurrence of F therein by B & f. Only A10 might
cause trouble, and by induction it does not, in showing each step of the
transformed proof a theorem of D, when A, being F-free, is a theorem of
D, establishing (2) and ending the proof of Lemma 1.

So all of our work may be done in DJ. That is nice for J, which we
examine classically, since we may use excluded middle in the form A9
without assuming that principle for the J-negation Ί. (J-negation, in fact,
is almost ignored in this paper, though some few formulas in which it
occurs will count for us as first-degree; in view of the lemma, positive
formulas of J may be counted the same in J, D, and DJ.)

2 In this section I give in passing an algebraic semantics for DJ, con-
structed along well-known lines and identical in essential respects to that
given for D in [5].4

A Curry lattice 8 is a structure (L, Λ, V, D, 0, f, 1), where

(i) L is a set, and 0, f, 1 are elements of L.
(ii) £ is a pseudo-Boolean algebra under Λ, V, Z>, with least element 0 and
greatest element 1, i.e., 8 is a distributive lattice under Λ, V and is
residuated with respect to D, in the sense a Λ b < c iff a < b D C.
(iii) f is the unique counteratom of 8, i.e., f Φ 1, and for all a in L, if a Φ 1
then a < f.
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Our definitions do not require 0 Φ f, though both must be distinguished from
1. But the only Curry lattice for which 0 = f is the two-element Boolean
algebra 2. I call the first nontrivial Curry lattice <£, and because it plays a
crucial role in subsequent developments enclose a snapshot.

I:
Note that if a ^ b9 a 3 b = 1 in <£; otherwise a 3 b = b.5

Let 8 be a Curry lattice. An assignment in 8 is a function from the
set of sentential variables of DJ into L. Each assignment a in 8 is uniquely
extended to a function Ia defined on all formulas of DJ by setting 7α(F) = 0,
/α(f) = f, and otherwise requiring that Ia(A & B) = Ia(A)Λla(B), Ia{AvB) =
Ia(A) v Ia(B), and Ia(A D B) = Ia(A) D Ia(B); Ia is called the interpretation as-
sociated with a. A formula A of DJ is true in 8 on assignment a (or on the
associated interpretation) if and only if Ia(A) = 1; otherwise A is false on a.
A is valid in 8 if and only if A is true on all assignments in 8. A is
DJ-valid iff A is valid in all Curry lattices.

Theorem 1 A is a theorem of DJ if and only if A is DJ-valid.

Proof as in [5]: I give here only main ideas. Semantic consistency is as
usual, i.e., the axioms are DJ-valid and the rules preserve this property.
For the converse, let a normal a-filter for a pseudo-Boolean algebra Stbe
a prime filter in the sense of [8] which does not contain a. Define an
equivalence relation on the set of formulas of DJ by setting A eq B just in
case A = B is a theorem of DJ; the resulting equivalence classes [A], [B],
etc. form in a natural way as in [8] a pseudo-Boolean algebra, the so-called
Lindenbaum algebra of DJ.

Let 8 be the Lindenbaum algebra of DJ. We note that 8 is not a Curry
lattice, since there is no unique counteratom. Let A be a given non-
theorem of DJ. Prove as in [5] the non-trivial result that A D f. D f is a
non-theorem of DJ and hence that there is a prime filter in 8 containing
[A D f] but not containing [f]. This filter, call it F, is a normal [f]-filter in
the sense just introduced; define an equivalence relation on 8 by setting
a eq b just in case both a 3 b and P α are in F. The resulting equivalence
classes [[A]], [[#]], etc., again form as in [8] a pseudo-Boolean algebra 8'.
Moreover this one is a Curry lattice, since [[f]] is easily shown to be the
unique counteratom. Taking [[F]] as 0, [[f]] as f, and [[f D f]] as 1 and defin-
ing operations on equivalence classes by operations on representatives in
8, that 8' has been well-defined and that it is a Curry lattice is again shown
as in [5]; the chosen non-theorem A is falsified in 8 f by assigning the
element [[p]] to each sentential variable p, ending the sketch of the proof of
Theorem 1.

The proof of Theorem 1 was not immediate from [8] only because we
wanted to keep f distinct from 1 but bigger than everything else. The
reason for this is that we want Curry lattices to furnish a normal
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semantics that respects the intuitions behind D, namely that each sentence
is either true or false but not both. Similar motivation lay behind work
done on the relevant logics in [1], [7], and [9]. But D partially resists
paradoxes of implication, so that alternative possibilities that some
sentences are both true and false, for example, are open; the algebraic
analogue, not pursued here, is to lift the restriction f Φ I.6

3 In defense of the claim that <£ is for present purposes the key Curry
lattice, I play in this section the prime filter game of [7]. To do so, I
modify the semantics above along the lines of [1] so that it takes an
appropriate first-degree form.

An elementary Curry lattice (henceforth, elementary lattice) will be a
Curry lattice with D chopped out, i.e., the D-negation ~ is thrown in to take
up some of the slack. Specifically, δ = (L, Λ, V, ~, 0, f, 1) will be an
elementary lattice provided that & is a distributive lattice under Λ and v, 0
is lattice zero, 1 is lattice unit, and f is a unique counteratom as above, and
finally ~ 1 = f and, for a Φ 1, ~a = 1. It is readily seen that defining -vflas
a D f every Curry lattice is an elementary lattice; the converse may fail.

We assume henceforth that ~ is primitive for DJ, taking the equiva-
lence corresponding to Dl as a new axiom, and making the obvious adjust-
ments above. Then A shall be a zero-degree formula of DJ (zdf) if it is a
sentential variable or constant or of the form B & C, B v C, or ~ B, where B
and C are zdf. A shall be a first-degree implication (fdi) if it is of the
form B => C, where B and C are zdf. Finally, A shall be a first-degree
formula (fdf) if it is a zdf or an fdi, or of the form B & C, BvC, or ~B,
where B and C are fdf.

Unlike the relevant logics, for which nested implications are hard to
break down, the fdf of D and, so far as we consider them, of J embrace for
practical purposes a wider class than is at first evident, viz. p ^ . q ^> r,
though not legally an fdf, is by an obvious equivalence as good as one, and
so forth.

Still, the operation of implication on propositions has been lifted from
our semantics, leaving as in [l] the corresponding relation ^, defined
lattice-theoretically as usual. Accordingly, the notion of an interpretation
Ia determined by an assignment a as characterized above makes no sense
for elementary lattices beyond the level of zdf. (If necessary, we may use
/£ to show the distinction.) Another notion, again as in [1], takes up the
semantic job. The truth-valuation Va is a function from the fdf of DJ to
{T, F} determined thus: if A is a zdf, Va(A) = T iff Ia(A) = 1; if A is an fdi
B 3 C, Va(B => C) = T iff Va(A) ^ Va(B); finally, on composition of fdf under
&, v, ~, Va works truth-functionally. Earlier semantic notions are rede-
fined appropriately in the present context; in particular, the fdf A of DJ is
elementarily valid iff A is true on all truth-valuations in all elementary
lattices. In fact, the notions of validity and elementary validity coincide.
For we have on essentially lattice-theoretic grounds

Lemma 2 Every Curry lattice can be isomorphically embedded in a
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complete Curry lattice; every elementary lattice can be isomorphically
embedded in a complete lattice that satisfies the infinite distributive law

a A Ύ b{ = V « A 5 / . So every elementary Curry lattice can be isomor-

phically embedded in a Curry lattice.

Proof: Let S be a Curry lattice (elementary Curry lattice), and let S be the
set of prime filters in S. A subset J of S is closed upward if for all
P, Q e S, PeJ and P Q Q imply Q e J. Let U be the set of all closed upward
subsets of S. U is clearly a complete lattice satisfying the infinite dis-
tributive law. Furthermore, on the Stone isomorphism h:L -* U taking each
element a of L into the set of prime filters P such that a e P, 8 is isomor-
phically embedded in U, preserving lattice operations Λ and v and with zero
p and unit S, by Stone's theorem. (Cf. [8] for references.) We must show
moreover that h(f) is the unique counteratom of U and that h preserves ~;
moreover, if 8 is a Curry lattice we must show that h preserves 3.

First, h(f) is a counteratom, since it is S -{{l}} since f is a unique
counteratom. Moreover since 1 is in every filter, by closure upward S is
the only member of U to which {l} belongs; so h(f) is unique. k(~ 1) = h(f) =
~S = ~/z(l); if a Φ 1, h(~a) = k(l) = S = ~h(a) on straightforward definition
of ~ on U; so h preserves ~. Demonstration that h(a ^> b) = h(a) D h(b),

defining J ^ K = U{£: J Π L c K} on U, is not particularly to our point and
is left to the reader, ending the proof of the first sentence of the theorem.
The second sentence follows since it is well-known (cf. [10]) that defining 3
as just above on SL complete lattice satisfying the infinite distributive law
produces a pseudo-Boolean algebra.

Theorem 2 Let A be a first-degree formula of DJ. Then the following
conditions are equivalent:

(i) A is a theorem of DJ.
(ii) A is DJ-valid.
(iii) A is elementarily valid.

Proof: The equivalence of (i) and (ii) was Theorem 1. Since as noted
every Curry lattice is on trivial reconstruction an elementary lattice, (iii)
implies (ii); one need only show that for each assignment a in a Curry
lattice S and for each fdf B, Ia(B) = 1 iff Va(B) = T when 2 is reconstrued
as an elementary lattice. Proof is by induction. Finally, since by Lemma 2
every elementary lattice is isomorphically embeddable in a Curry lattice,
(i) implies (iii), for since all fdf are valid in the embedding Curry lattice
they are a fortiori valid in the embedded elementary lattice—whenever, in
both cases, they are theorems. To illustrate the simplicity of these
methods, the following (known) corollary is immediate.

Corollary 2.1 Let A be a zero-degree formula of DJ. Then A is a theorem
of DJ if and only if A is a classical tautology.

Proof: Necessity is immediate, since truth-tables are a Curry lattice. So
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is sufficiency, since taking the zdf A to be a non-theorem, it has by the
theorem a falsifying truth-valuation Va which clearly suffices to make A 2L
non-tautology.

We turn now to the promised algebra, which produces among other
things an efficient decision method for fdf's. Let £ and 301 be elementary
lattices (which may be Curry lattices). A first-degree homomorphism from
Hi to $R is a function that preserves constants and the elementary opera-
tions Λ, v, ~. A fundamental homomorphism from 8 is a first-degree
homomorphism to one of 2, <£, the two and three element Curry lattices
introduced above. A prime filter in S is to be understood as above in the
usual lattice-theoretic sense; as usual, neither φ nor L counts here as a
prime filter. By borrowing in the present context techniques from [7] and
[1], we put the prime filters of an elementary lattice in 1-1 correspondence
with its fundamental homomorphisms getting thereby a structural decom-
position of 8 into special products of 2 and replicas of <£.

Lemma 3 Let g be a Curry lattice; S the set of prime filters in β, and H
the set of fundamental homomorphisms from g. Then the mapping which
sends P in S to hP as immediately defined is a 1-1 correspondence from S
onto H: hP(l) = 1; ifafίp, hP(a) = 0; otherwise hP(a) = f; the target set of hP

is 2or(£asP = {l} or P ΦΦ{l} respectively.

Remark For any elementary lattice, the requirement that homomorphisms
preserve constants implies that there is at most one fundamental homo-
morphism to 2, i.e., the one that identifies the minimally and maximally
false constants 0 and f, with everything in between. Furthermore, every
first-degree homomorphism takes 1 and only 1 into 1, i.e., Ml) = 1 on
preservation of constants; moreover 1 must be distinguished by the
normality of our semantics from its neighbor f, so that nothing but 1 gets 1
under h. h(f) = f and h(0) = 0 are distinct unless 2 is the target lattice; if 2
is the domain, it must be the target.

Proof: Clearly h^ is the unique fundamental homorphism from g to 2 and
satisfies the stated conditions; that /zμj is a lattice homomorphism is
obvious; furthermore h(~ 1) = h(f) = 0 = f = ~h(l) in this case, while if a Φ 1
then here h(~a) = h(l) = 1 = ~0 = ~h(a), proving that /zμj is a homomor-
phism; {l} is of course always a prime filter.

All other prime filters P in 8 contain f but not 0, so that hP: L -* C.
Clearly given P, hp is determined uniquely; moreover, given any homomor-
phism from £ to <£, the set of a in L such that f ^ h(a) in <$ will constitute a
prime filter in 8, since <£ is a chain; so any such h will be one of the hP

which moreover determines P uniquely; so the stated mapping from S to H
is indeed a bijection, provided that all of the hP are indeed homomorphisms.
The reader is assured that they are and, since he may easily check* this
ends the proof of Lemma 3.

Lemma 3 sets up an embedding theorem in special products of 2 and <£.
We cannot take direct products of Curry lattices in the usual way, defining



FIRST DEGREE FORMULAS IN CURRY'S LD 187

operations pointwise on Cartesian products, without escaping from the
class of Curry lattices, i.e., the problem is that there would not be in
general a unique counteratom to serve as f. Belnap handled an analogous
problem in [1] subdirectly by disallowing elements that are true on some
coordinates and false on others; we adopt his solution in principle.

Let {S;}. be an indexed set of elementary lattices. Let Φ8 = X 8Z be
t€I iel

the direct product of the S —i.e., members of Φ8 are all functions g
defined on / such that f(i) e L{ for each i in 7, constants are corresponding
constant functions, and operations are defined pointwise. It is well-known
that Φ8 is a distributive lattice. Remove all elements of Φ8 between f =
ffff . . . and 1 = 1 1 1 1 . . . Then we are left with a set SL, consisting of one
element 1 which is true on all coordinates together with all members of Φ8
which are true on no coordinates. (D contests Quine's dictum that there
are as many truths as falsehoods—for D, as in life, there are many more
ways to go wrong than to be right.) Let 8 8 = (SL, Λ, V, ~, 0, f, 1) be the
subalgebra of ΦS got by restricting all operations to SL. Clearly Φ8 is
closed under the operations and contains the constants of Φδ. Moreover,
we have:

Lemma 4 Let 3 8 be as just defined, a special product of elementary
lattices. Then β'δ is an elementary lattice.

Proof: By straightforward verification. The important point is that f is a
counteratom, settled drastically by amputation.

We can now embed. A special product is a special power if all com-
ponent lattices are the same. A fundamental lattice is either 2, <£, or a
special power of <£. We index 2, <£, and its powers by ordinals (and
possibly in other ways), letting <£0 be 2, d^ be <$, and in general for each
ordinal λ setting <Sχ equal to the special power of copies of <£, one for each
ordinal v such that v < λ. Note that without loss of generality we may
pretend that we have multiplied in a copy of 2 where desired, since special
multiplication by 2 produces an elementary lattice isomorphic to the
multiplicand.

Theorem 3 Let 8 be an elementary lattice. Then 8 is first-degree
embeddable in some fundamental lattice <$χ, i.e., there is a 1-1 first-degree
homomorphism from 8 to <£χ. If 8 is of finite cardinality k, 8 is first-
degree embeddable in <£7 for some j < k.

Proof: Let S be the set of all prime filters in 8. For each PeS, there is a
fundamental homomorphism hP to 2 or d by Lemma 3. Well-ordering S
and indexing by corresponding ordinals, where the ordinal number of S can
be taken to be λ + 1 without loss of generality, taken as the set of prior
ordinals. (If S turned out to have a limit ordinal, shuffle.) If λ = 0, clearly
8 = 2, so that 8 being identical with (&χ is certainly embeddable therein.
Let Pχ be the filter {l}. Then λ itself indexes, shuffling if required, the
filters that contain f—there are some, the contrary case having been
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disposed of. Letting hvbe the homomorphism from £ to <£ corresponding to
Pvhγ Lemma 3 for each v < λ, define a function h from g to (£λ pointwise
as follows: for each aeL and v < λ, let [/*(«)] M = hy(a). We show /z so
defined is a first-degree embedding of 2 in <£λ.

Clearly h is 1-1. For by Stone's prime filter theorem for distributive
lattices, any two elements of L are separated by a prime filter Pv and
hence, if v < λ, they take different values under h on the i>'th coordinate and
are hence separated in ©χ; in the last case, they are separated by P\, which
means that one of the elements is 1 and the other is not; but by definition of
the hv, 1 differs under h on every coordinate from any other element, so Pλ

is not needed when λ > 0. Furthermore the values of h are really in @χ,
since, as just noted, h(ϊ) is 1 everywhere and h (anything else) is 1
nowhere, so that the amputation to get special products is respected.
Finally, it follows immediately from the fact that h is a pointwise homo-
morphism from 8 to <£ that it is a homomorphism from 2 to <£λ, inasmuch
as operations are defined pointwise in special powers. This ends the proof
of Theorem 3.

4 The algebraic interlude simplifies the logical work. One thing that a
Belnap semantics like the above is good for is in providing efficient deci-
sion methods for fdf. Decision methods for logics in the intuitionistic
family exist, of course, but they tend to be extremely impracticable (a
bound which turns up regularly is 22W (e.g., in [8]), which goes up pretty
quickly); Gentzen methods, if anything, are worse. Accordingly, it is nice to
know that it is the complexities of nested implications, which we do not
really understand that well anyway, which are responsible for those high
numbers. The reader no doubt knows about positive and negative occur-
rences of formulas. I recall here only that when an occurrence of B in A is
truth-functional, i.e., within the scope of no connectives but &, v, ~ at
most, that occurrence is negative in A if B is within the scope of an odd
number of negation signs and is otherwise positive. I recall too that in
familiar systems, including DJ, if A D B is a theorem then replacement of
positive occurrences oi A by B and negative occurrences of B by A in a
theorem C yields a theorem. (Replacement Theorem for 3)

The Pleasant Lemma Let A be built up truth-functionally from formulas
B, C19 . . ., Cn. Let each occurrence of B be negative in A. Let v assign
truth-values to the Ct , and let v(B) = F; suppose further that, by truth-
tables, v(A) = F. Let vf agree with v on the Cif but let v'(B) = T. Then
vr(A) remains F.

Proof: Apply the Replacement Theorem. Suppose for reductio ihsά.vf(A) =
T. Substitute the sentential constant T for B, and correspondingly sub-
stitute the constant v'(Ci) for C, in A. On these substitutions A is a
theorem. But B occurred only in negative parts, whence since F classically
implies T putting F in where B was produces another theorem, correspond-
ing exactly to the valuation v on which A is false, which is absurd. So
vf{A) = F, proving the lemma.

The next is our decision method for fdf.



FIRST DEGREE FORMULAS IN CURRY'S LD 189

Theorem 4 Let A be an fdf of DJ. Let there be exactly k positive occur-
rences of first-degree implications in A. Then a necessary and sufficient
condition that A be a theorem of DJ is that A be valid in both <£0 and (&k.

Remark <£0 is sort of along for the ride, except if k = 0; otherwise it blocks
the logical falsehood of / ^ F. And, for what it is worth, note that <£& has
2^+1 elements.

Proof: If A is a theorem, it is by Theorem 2 valid in all elementary
lattices, including the <£j. So suppose A is a non-theorem; our job is to
refute it in the proper <£&.

At any rate, A is invalid in some elementary lattice 8, by Theorem 2.
8 is by Theorem 3 isomorphically embeddable in some (£χ; A remains
invalid, extra elements in the embedding lattice being irrelevant to its
first-degree falsification. Let v be the least ordinal such that A is invalid
in <£v; if v = 0 we are through, validity in ©0 having been part of the
condition that A be a theorem. Furthermore, if 0 < v < k, it is easy to
concoct from a falsifying assignment a in (&v a corresponding falsifying
assignment in <£*, since a(p) is for practical purposes a y-tuple, construct a
k-tuple a'(p) like a(p) in each of the first v places and constant from the
i/th place on; the extra coordinates do no work on the resulting assignment
a*, falsifying A as before in &&. We may assume accordingly that v > k,
finishing the proof of the theorem by deriving a contradiction from this
assumption. Let a be the assignment that falsifies A in (&v, Ia the cor-
responding interpretation, and Va the resultant truth-valuation. Ia9 we
recall, is defined in the elementary lattice <£v only on zero-degree
formulas, and that, the coordinates of Ia{B) all being the same in β v with
respect to truth-value for each zdf B, inspection of any one of them suffices
to determine truth-value for any zdf on Va.

v is, by convention, a set of ordinals. An ordinal β is critical in v iff
for some fdi B ^> C that occurs positively in A it is the first ordinal γ such
that [la(B)](γ) jt [la(C)](γ). Let the critical ordinals, if any, be |30, . . ., β; ;
if it exists, j < k, there being k positive occurrences of fdi and clearly at
most one βi for each such occurrence. Suppose first that there are no
critical ordinals in v. Then, recalling the definition of truth on Va for fdi,
all positive fdi B => C in A are true on α, Ia(B) ̂  Ia(C) holding in 1&v on all
coordinates. Define an assignment a1 in <S0 by setting ar(p) = 1 iff Va(p) = T
and ar(p) - 0 otherwise. An easy induction shows that Vaf agrees with Va on
zdf; moreover Vat is determined truth-functionally on fdi B ^ C; since Va

respects truth-functionality to the extent that it never makes conditionals
with true antecedents and false consequents true, this means that Vat

differs from Va only in sometimes making B ^> C true where Va makes it
false, at the level of fdi. Since Va already made all the positive fdi true, so
does Vaf. This sets things up for our Pleasant Lemma, A being compounded
truth-functionally from fdi and those zdf not occurring within the scope of
any horseshoe. For since Vat differs at most on these subformulas of A
from Va in changing F at some places to T in negative parts, by (possibly
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repeated) application of the Pleasant Lemma we see that since A is false on
Va it is also false on Vat. But this means that A is invalid in <£0 [= truth-
tables], contradicting 0 ̂  k < v and the fact that v is the least ordinal such
that (&v invalidates A.

So there are critical ordinals in v, β0,..., β; , j < k. Define an assign-
ment ar in <S/+i using a as follows: for each sentential variable p, define
af(p) p o i n t w i s e by s e t t i n g , for Q^i^j, (i) [a'(p)](i) = [a(p)](βi). T h u s , in
effect, ar is like a on critical coordinates while taking no account of the
others. Prove by induction that (i) holds for all zdf B for Ia; thus, truth-
values being determined by any coordinate, Va = Vat on restriction of both
to zdf. Moreover, if B 3 C is an fdi that occurs positively in A, it has the
same values under Va and Vat; for if B ^> C is false on Va, then there is
some coordinate γ such that [la(B)](γ) Φ[la(C)](γ); the first such γ being
critical is one of the βi9 assuring the corresponding falsehood of 5 ^ C on
Vat; and if on the other hand B D C is £rwe on 7α, then on αZZ coordinates
including critical ones Ia(B) ^ Ia(C), implying the corresponding truth of
B ^> C on Vat. The Pleasant Lemma may now be applied as above; A is built
up truth-functionally from fdi and zdf such that Vat differs maybe from Va

in making more negative components true; by the cited lemma, this does
not affect the falsification of A. But ar falsifies A in <£y + 1, j < k < vy again
contradicting the leastness of v, exhausting the cases, and completing the
proof of Theorem 4.

We note some easy corollaries to Theorem 4.

Corollary 4.1 <£ is characteristic for the first-degree implications of D,
i.e., a first-degree implication o/D, if falsiftable at all, is falsifiable in the
3-point Curry lattice.

Proof: It suffices, in view of Theorem 4, to note that all formulas of D
valid in © are classically valid.

Corollary 4.2 Let A be an fdf of D, and let k fdi occur positively in A.
Then A is a theorem o/D iff A is valid in <£*,.

Proof: By Theorem 4 and the Corollary 4.1.7

NOTES

1. If one prefers, between propositions.

2. Called there HD, LD (as in the title), etc., depending on the style of formulation.
Henceforth, I call the system simply D. The methods of [1] are particularly
appropriate for the analysis of D, since D has been shown in [4] and [5] to be the
logic in the intuitionistic family most closely related to the relevant logics of
Anderson and Belnap, being in fact an exact and clearly defined subsystem of the
calculus R of relevant implication. But the first-degree analysis of D, as we
shall see, is much simpler than that of R—central is the 3-point chain © charac-
terized below, which plays for D the role of the 8-point lattice 9W0 of [1].
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3. Binary connectives are ranked &, v, D, Ξ in order of increasing scope for ease in
reading formulas; otherwise we (i) associate to the left and (ii) use dots for
parentheses in accordance with the conventions of Curry's [3]. I have not run
across the system DJ, but that is probably an oversight, since the idea is too
simple to have gone unnoticed—on the motivation of [3] the negations of D and J
have nothing to do with one another, so that one might as well have them both
together; Lemma 1 shows that there is no harm in doing so; since this paper is
mainly about D, negation here almost always means D-negation.

4. To take account of the absurd constant F, the characterization of Curry lattices
here differs from that of [5] in that we require here a least element 0; the point is
insubstantial in the present context.

5. ©has a distinguished history in the study of intuitionist logic, having been used by
such scholars as Gδdel and Jaskowski in their pioneer research into intuitionist
logic; it is important.

6. Yielding a semantics for non-trivial inconsistent theories.

7. The results of this paper are essentially spin-off from hard work done for the
relevant logics by Belnap and by Dunn, to whom thanks are due in particular, into
more familiar terrain. Thanks are due also to the National Science Foundation
for partial support through grant GS2648.
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