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EFFECTIVE DENSITY TYPES

HARRY GONSHOR

1 Introduction Recursive density types were introduced in [6] and studied
in [4] and [5]. It was found that algebraic operations can be defined on the
set of types so that the set becomes an interesting algebraic system
roughly analogous to the algebra of recursive equivalence types. Further
results of a more model-theoretic nature were announced by P. Aczel in [l]
and [2]. (The details of [2] occur in a manuscript in our possession which
is unpublished as far as we know.*) The main result in [2] is that certain
ideals discussed in [4] and [5] satisfy the same universal sentences as the
isols. (This is not quite precise as the language is richer, e.g., ^ is a
primitive relation, and a larger class of functions than the recursively
combinatorial functions are allowed.) All this suggests that a further study
of the model-theoretic properties of the recursive density types would be of
interest. So far, it seems that the algebra of density types enjoy some
saturation properties, and on the basis of work by Nerode and Barback the
types look more like regressive isols than arbitrary isols. We hope to
study all this in future papers.

In this paper, which is still at a pre-model-theoretic level we plan to
study a subsystem of the algebra of density types which was motivated by
[3]. This will add a new system to the systems Δs, Δ«, and Δ/ studied in [4]
and [5]. In [3] Arslanov introduced the concept of effectively hyperimmune
set and studied the properties of such sets. (Actually he was interested
primarily though not exclusively in effectively hyper simple sets.) In this
paper we show that effectiveness is a property of the density type only so
that one can introduce the concept of effective density type. Furthermore
we show, that the set of effective density types forms an ideal properly
included in Δs though not containing Δ«. In particular, effectiveness is
sufficient to guarantee that such types satisfy the cancellation law as stated
in Theorem 5 in [4]. Thus the concept of effectiveness leads to a purely
algebraic consequence! This is what generated the interest in studying
effective density types.

*Added in proof: P. Aczel, "Recursive density types and Nerode extensions of

arithmetic," Journal of the American Mathematical Society, Series A, vol. 20 (1975),

pp. 146-158.
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This paper is independent of [3]. Actually there is very little overlap
since the emphasis in [3] is on effectively hyper simple sets. The only
theorem in [3] which interests us here is the theorem that states that an
effectively hyperimmune set cannot have a hyperimmune complement. We
reprove this result here since we use the point of view of recursive
boundedness whereas [3] emphasizes discrete arrays.

We use the terminology of [4] and [5]. In particular we identify a set
and the function enumerating it in order of size.

2 Definition and elementary properties of Δe A set a is effectively
hyperimmune if there exists a recursive function k such that for every
index e of a recursive function g there exists an n ^ h(e) such that
a(n) > g(n). This is a heuristically reasonable way to effectivize the
concept of recursive unboundedness, and it is shown in [3] that this is
equivalent to an analogous effectivization using discrete arrays. This
result will not be needed here.

For convenience let φe be an enumeration of the partially recursive
functions. It is clear that such sets exist, e.g.,

a(n) = mαχ[0w(m) + n + 1] is effectively hyperimmune with
m ^ n
φm is recursive

h(n) = n. It is also clear that h may always be chosen so as to be strictly
increasing. Furthermore it is enough to find an h which works for strictly
increasing g. In fact, there exists a recursive function k such that
Φk(e)M = max φe{m) +n. Then if h works for strictly increasing g then the
composition hok works for arbitrary g\

Theorem I If β ̂  a and a is effectively hyperimmune then β is effectively
hyperimmune.

Proof: Choose g strictly increasing recursive such that (Vn) [a(n) ^gβ(n)],
and choose an h which works for a. Choose k so that (Ve)(Vn){φk(e)(n) =
g[φeW]}. Then for arbitrary φe there exists an n ^ hk(e) such that a(ή) >
Φk(e)M =gφe(n). Hence g β(n) ^ a(n) >gφe(n), hence β(n) > φe(n). This shows
that hok works for β.

Corollary 1 If a ~ β and a is effectively hyperimmune then β is effectively
hyperimmune.

Definition The density A is effectively hyperimmune if it has an effectively
hyperimmune representative. Let Δe be the set of all effectively hyper-
immune densities.

Corollary 2 If A e Δe and B ^A then B e Δe.

Theorem 2 An effectively hyperimmune set cannot have a hyperimmune
complement, i.e., Δe c Δt.

Remark: This result will be strengthened in the next section.
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Proof: There exists a function k such that φk(a)(n) = 2n + 2a. Let a be
effectively hyperimmune and h work for a. Then (Va)[3n ^ hk(a)][a(n) >
φk(a)(n)], i.e., letting g = hk we obtain (Vα)[Ξlrc ^g(a)] [a(n) > 2n + 2a]. Fix
α. If n > a then, of course, a(n) > 2n. If n ̂  a then a(a) ̂  cn(n) > 2α. Thus
in either case we obtain (Vα)(3») [« < w <£"(«) A α(w) > 2w]. If αf is the com-
plement of a then «(») > 2n —-> αf(rc) ̂  2n. Hence α'(α) ̂  α?'(w) ^ 2?z ̂  2g(a).
Thus 2g is a recursive bound to a'.

Corol lary 3 CeΔeΛA+C = B + C — A = B.

Proof: This follows from the theorem and [5].

3 Relations between Δe, ΔM, and Δs

Theorem 3 Δe ̂  ΔM.

Proof: Choose A e Δe. (3^)(JB < A)(JB/ΔJ by [5], By Corollary 2, 5e Δe.

Theorem 4 Δw ̂  Δe.

Proof: Enumerate the strictly increasing recursive functions gλ, g2, .,
gn, . . . . (There is no necessary relation with the sequence φe.) We define
a inductively in pieces. We use the notation gι for the z'th iterate of g. Let
e satisfy φe(i) = gl(0) and let a(i) = "̂{(0) for i^gι(e). Now suppose of is
defined up to m and gλ, g2, . . ., gn have been considered. Let h =
mαχ(gΊ, ̂  2> , ̂ «+i) and define/: f(x) = a(x) if x ^ m anάf(x) = /z*~™[α(m)] if
x > m. Let / = 0e. Choose any number ?̂ such that p > m and £ ̂ gn+i(e)
Let α(2) =/^[αίra)] for m<i^p. It is clear that by brute force we
obtained a uniformly hyperimmune set which is not effectively hyper-
immune.

Corollary 4 Δs £ Δe.

This is clear from Theorem 4 since ΔM c ΔS .

Theorem 5 Δe c Δ S .

Remark: This result is somewhat surprising. In fact, it seems reasonable
at first to search for an effectively hyperimmune set which is not strongly
hyperimmune. There is also the plausible fear that the result may depend
on the Godel numbering. Actually, the only property of the Gόdel numbering
which is used in the paper is that for every recursive functional F there
exists a recursive function g such that F[φe] = φg(e)

Proof: Roughly, the idea of the proof is to find an increasing sequence of
Gδdel numbers such that the functions go up much faster than the numbers.
This loose statement will be made precise in the proof.

Let a be effectively hyperimmune and h strictly increasing work for en.
Let / be arbitrary strictly increasing recursive. We must find an n0 such
that (Vn) [n ̂  n0 —> a(n) >/(w)]. There exists a strictly increasing recursive
function k such that (Ve)(Vn){φk(e)(n) = fhφehφe{n)}. We may choose k so that
k(0) > 0. This guarantees that (Vn)[hk(n) > n]. Let k = φa. Then φk(a)M =
fhkhk(n). It follows by induction that (Vn)[φkiia)(n) ^f(hk)2i(n)] for all i > 1.
In fact, assume the latter is valid for i. Then a fortiori φki(a)(n) ̂  {hk)2t(ή).
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Φki+Ha)(n) = fhφhKβ)hφhi(β)(n) >fφki(a)φki(a)(n) >f(hk)zi(hk)2i(n) >f(hk)2i(kk)2(n)
=f(hk)2i+2(n).

Since h works for α, [3n ̂  hk*(a)] [a(n) > φki(n)]. Hence a fortiori
[3n ^ (hkY(a)] [a(n) >f(hk)2i(n)]. Since hk(O) > 0, hka(0) >a. Hence for i >
a + l,f(hk)2i(0) >f(hk)ί+a+1(0) =f(hk)i+1fa(0) >f(hk)i+1(a). We have

[3n^hk\a)][a{n)>f{hk)2i{0)l

Hence for i ^ a + 1,

a[hk\a)} >f(hk)2i(0) >f{hk)Uι{a).

We claim that hka+1(a) works as an n0. In fact if n ̂  n0 then (3i > a +
ΐ){hkΫ{a) ^n< (hk)i+1(a). Then

a(n) >a(hkY(a) > f(hk)i+1(a) >f(n).

It follows from the proof that n0 can be chosen effectively from /.
Specifically, there exists a recursive function g such that if n^g(e) then
a(n) > φe(n). Let us tentatively call such a set a an effectively strongly
hyperimmune set. We then obtain the following.

Corollary 5 A set is effectively hyperimmune if and only if it is effectively
strongly hyperimmune.

Proof: One direction follows from the above. The other direction is trivial.

The concept of an effectively strongly hyperimmune set is useful as a
stepping stone towards the proof of the next theorem.

Theorem 6 The union of two effectively hyperimmune sets is effectively
hyperimmune.

Proof: By the previous corollary we know that the sets are effectively
strongly hyperimmune. We now simply note that the proof in [4] can
trivially be "effectivized." Note that there is no loss in generality in
assuming that the two sets are disjoint.

Remark: In [3] the analogous result for effectively hypersimple sets is
proved. In that case the usual proof for hypersimple sets can be ef-
fectivized. For arbitrary hyperimmune sets the corresponding result is
actually false. Hence no such technique is possible.

Theorem 7 A e Δ e and B e Δe -> A + B -* Ae.

Proof: This follows immediately from Theorem 6.

We have now shown Δe is an ideal in Δ properly included in Δ s.

4 Conclusion It is easy to see that Δe Π Δ« Φ 0. It follows from the
unpublished work by P. Aczel referred to in the introduction that Δe

satisfies the same universal sentences as the isols. Thus we have a
further example to which model-theoretic studies can be applied.
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