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A NOTE ON DEFINING THE RUDIN-KEISLER
ORDERING OF ULTRAFILTERS

DONALD H. PELLETIER

1 This note is prompted by a confusion which arises when one reads
M. E. Rudin’s initial paper [3] on the Rudin-Keisler order in conjunction
with later papers [1], [2], and several others concerning this ordering.*

Let w denote the natural numbers and let “w denote the set of all
functions from w to w. Let p and ¢ be ultrafilters (u.f.) on w. Rudin [3]
defines

psqiff Afe“wp = fq
where, for a C w, fa ={fnlnea}and fq = {falaeq}.
In the later papers, we find a different definition. Let ¢ be an u.f. on w.

D <xqiff Afe“wp = fxq

where f4¢ ={a Cwlf 'aeq}and f;* =Uf'1n.
nea

Before considering the connections between < and <, we present some
further definitions.

Two u.f.s on w are said to be of the same type iff they are isomorphic
when viewed as partially ordered sets under inclusion. It is proved in
W. Rudin ([4], Theorem 1.5) that p and q have the same type iff there exists
a permutation 7€ “w such that p = 7q. We denote the type of p by p~.

Theorem III A of [3] establishes that < is a partial order on types, i.e.,

psqrg<p—pT=q~
Kunen remarks in [2] that an easy modification of her argument can be
used to show

*The author wishes to acknowledge a profitable discussion with Philip Olin as
well as support from the National Research Council of Canada under grant #A8216.
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bsxqrg<xp—p~=q"
i.e., that <« is also a partial order on types.

Thus both < and <, are preorderings and we can combine the preceding
results together with their obvious converses to conclude p < g < p iff
p<xqgs<xp. This still does not answer the question whether the two
preorderings are the same, since distinct preorderings <, <; can lead to
the same collection of equivalence classes under p 7' q iff p <; gaqg <; p. We
show here that they are the same.

2 For an u.f. ¢ on w and an arbitrary fe “w, it is not in general true that fq
is an u.f. on w; it is not even immediate that fg is an u.f. The following
proposition, however, has a routine proof.

Proposition Let q be an u.f. on w, let f be an arbitrary element of “w and
let R denote the range of f; then fq is an u.f. on R.

On the other hand, for an u.f. ¢ on w and an arbitrary fe%w, it is
always the case that fxq is an u.f. on w. The following theorem establishes
the connection between fq and fxq.

Theorem Let q be an u.f. on w, fe “w and let R denote the vange of f; then
fxg={aublaefgadb cw - R}

Proof: Given aefq and b Cw - R let a = fz where zeq; then f~}(aub) =
fla=f"fz) Dzeqsof " aub)eq, i.e., aUbefyxq. Conversely, given
Zefxq, write z=a Ub where a CR,bCw - R;nowf 'z=f"YaUb) =f"a,
so f(f~'z) =f(f~'z) = a since a C R; thus a e fq sincef 'z eq.

Corollary 1 If q is an u.f. on w and fe “w is onto w, then fq = fxq.
Corollary 2 If p and q are u.f.s on w and p < q then p <« q.

Proof: The hypothesis implies that w € p = fg, and hence that Range f = w; so
p = fxq by Corollary 1.

One can give far simpler direct proofs of Corollaries 1 and 2; these
particular proofs were given because the information contained in the
theorem will also be used to establish the reverse implication between the
two orderings.

Corollary 3 If q is an u.f. on w and p <xq then p<q.

Proof: Case 1. p=fsq for some fe®w with finite range, R. By the
proposition, fg is an u.f. on the finite set R, so fg is the principal u.f. on R
generated by {i} for some ie R. From the theorem we conclude that f,q
must be the principal u.f. on w generated by {z} Thus p < g since the type
of the principal u.f.s is least under < among the types of u.f.s on w
([3], Section III, C).

Case II. p = fxq for some fe “w with infinite range, R. By the proposi-
tion, fq is an u.f. on R so we can pick an infinite set Ee€ fg such that R - E
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is infinite and define a map % : R — w by letting %~ 'E = identity and letting
hTR-E—w-E be an arbitrary onto map. We will show p <q by
establishing that p = (ko f)g. Let xefg; then xN Eefgand hx Dh(x NE) =
x NE since AT E = id; thus hx efg. But fgq C fxg by the theorem, so hx ep.
Conversely, invoking the theorem once again, let a Ub, with a efg and
b Cw- R, be an arbitrary element of p; nowa Ub DaNFEefqganda NE =
ha@ NE)e(hof)q; thusa Ub e (hof)q since, by the proposition (2of)g is an
u.f. on Range (hof) =Ww.
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