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A NOTE ON DEFINING THE RUDIN-KEISLER
ORDERING OF ULTRAFILTERS

DONALD H. PELLETIER

1 This note is prompted by a confusion which arises when one reads
M. E. Rudin's initial paper [3] on the Rudin-Keisler order in conjunction
with later papers [l], [2], and several others concerning this ordering.*

Let ω denote the natural numbers and let ωω denote the set of all
functions from ω to ω. Let p and q be ultrafliters (u.f.) onω. Rudin [3]
defines

p^qffi 3feωωp=fq

where, for a c ω9 fa = {fn\nea}a.nd fq - {fa\ae q}.

In the later papers, we find a different definition. Let q be an u.f. on ω.

p^qiii 3feωωp = f*q

where f*q = {a c ω \f~ιa e q} and fa λ = U f~ιn.
nea

Before considering the connections between < and *£* we present some
further definitions.

Two u.f .s on ω are said to be of the same type iff they are isomorphic
when viewed as partially ordered sets under inclusion. It is proved in
W. Rudin ([4], Theorem 1.5) that p and q have the same type iff there exists
a permutation π e ωω such that p = πq. We denote the type of p by p~.

Theorem III A of [3] establishes that < is a partial order on types, i.e.,

p^qΛq^p- p~ = q~.

Kunen remarks in [2] that an easy modification of her argument can be
used to show
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p^* q*q^*p-+ p~ = q~

i.e., that ^* is also a partial order on types.

Thus both ^ and <s* are preorderings and we can combine the preceding
results together with their obvious converses to conclude p ^ q ̂  p iff
p ^* q ̂ * p. This still does not answer the question whether the two
preorderings are the same, since distinct preorderings ^1? ̂ 2 can lead to
the same collection of equivalence classes under p~ q iff p ^i q Λ # ̂ , p. We
show here that they are the same.

2 For an u.f. q on ω and an arbitrary fe ωω, it is not in general true that fq
is an u.f. on ω it is not even immediate that fq is an u.f. The following
proposition, however, has a routine proof.

Proposition Let q be an u.f. on ω, let f be an arbitrary element of ωω and
let R denote the range of f; thenfq is an u.f. on R.

On the other hand, for an u.f. q on ω and an arbitrary feωω, it is
always the case that f*q is an u.f. on ω. The following theorem establishes
the connection between fq and f*q.

Theorem Let q be an u.f. on ω,fe ωω and let R denote the range of f; then

f*q = {a U b \a efq Λ 6 C O ) - R}.

Proof; Given a efq and b c ω - R let a = fz where z e q; then/"x(a U b) =
f~ιa = f~ι{fz) Dzeq so f~ι{a\jb) eq, i.e., aubef*q. Conversely, given
z ef*q, write z = a U b where a Q R, b Q ω - R; now f~1z -f"\a U b) =f~1a,
sof(f~1z) =f(f"1z) = a since a c R; thus a efq since/-1£ € q.

Corollary 1 If q is an u.f. on ω and f e ωω is onto ω, thenfq = f*q.

Corollary 2 If p and q are u.f.s on ω and p ^ q then p ^* q.

Proof: The hypothesis implies that ω ep = fq, and hence that Range / = ω; so
P = f*q by Corollary 1.

One can give far simpler direct proofs of Corollaries 1 and 2; these
particular proofs were given because the information contained in the
theorem will also be used to establish the reverse implication between the
two order ings.

Corollary 3 If q is an u.f. on ω and p ^*q then p^ q.

Proof: Case I. p-f^q for some feωω with finite range, R. By the
proposition, fq is an u.f. on the finite set R, so fq is the principal u.f. on R
generated by {i} for some ieR. From the theorem we conclude that f*q
must be the principal u.f. on ω generated by {i}. Thus p ^ q since the type
of the principal u.f.s is least under ^ among the types of u.f.s on ω
([3], Section ΠI, C).

Case II. p = f*q for some/e ωω with infinite range, R. By the proposi-
tion, fq is an u.f. on R so we can pick an infinite set Eefq such that R - E
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is infinite and define a map h : R -» ω by letting hΓE = identity and letting

hΓR-E-+ω-E be an arbitrary onto map. We will show p ^ q by

establishing that p = (hof)q. Let xefq; then x Π Eefq and /ZΛ; D /*(# Π £ ) =

x Π E since ft Γ£ = id; thus hx efq. But fq Qf*q by the theorem, so hx ep.

Conversely, invoking the theorem once again, let a jb, with a efq and

b c co - R, be an arbitrary element of p; now α U δ D f l Π E e/# and a ί) E =

h(a HE) e (hof)q thus a {J b e (hof)q since, by the proposition (hof)q is an
U.f. on Range (hof) = CO.
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