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A SPECIES-ALGEBRAIC INTERPRETATION OF THE
INTUITIONISTIC PROPOSITIONAL CALCULUS

JEKERI OKEE

The topological and lattice-theoretical interpretations of the intui-
tionistic propositional calculus (see [4] and [5]) differ from the set-
algebraic interpretation of the classical two-valued propositional calculus
in that, in the former cases, the intuitionistic propositional calculus is
interpreted by means of classical theories which are definable in the
second order classical predicate calculus, but, in the latter, the classical
propositional calculus is interpreted by means of a classical theory which
is definable in the monadic classical predicate calculus of the first order.

The algebra of species is the intuitionistic analogy to the Boolean
algebra of sets (for details, see [1] and [2]). The aim of this article is to
give a species-algebraic interpretation of the intuitionistic propositional
calculus analogous to the set-algebraic interpretation of the classical
propositional calculus. By using the method of logical matrix, it will be
shown that the intuitionistic propositional calculus is equivalent to the
algebra of species, of all subspecies of any infinite species, in the sense
that, if the intuitionistic propositional functors—», v, Λ, ~, are interpreted
as the corresponding species-algebraic operators, namely: species-impli-
cation =Φ, species-union u, species-intersection Π, and species-comple-
ment -, then the formulae of the propositional calculus can be mapped
one-to-one onto the formulae of the algebra of species, in such a way that a
formula H of the intuitionistic propositional calculus is provable in the
intuitionistic propositional calculus if and only if the corresponding formula
§ of the algebra of species is valid in every algebra of species of all
subspecies of any infinite species.

1 The intuitionistic propositional calculus In the formulae of the proposi-
tional calculus variables of only one kind occur, namely, propositional
variables, the letters Pl9 P 2 , . . .,PW will be used. In addition to the
variables, four constants occur in the propositional calculus: the implica-
tion sign -*, the disjunction sign v, the conjunction sign Λ, and the negation
sign ~, (a fifth constant, the equivalence sign <->, may also be used).
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Definition 1.1 The formulae of the propositional calculus will be defined

inductively as follows:

1. Propositional variables are formulae.

2. a) If H is a formula, then ~ΛH is also a formula.

b) If Hi and H2 are formulae, then (H1-*H2), (H1vH2), (HλAH2), are also

formulae.

3. A sequence of symbols is a formula of the propositional calculus if and

only if it is the case according to 1 and 2.

Definition 1.2 A formula H is called an axiom of the intuitionistic proposi-

tional calculus if there are formulae H1, H2, H3, such that H satisfies one of

the following equalities or identities:

1. H = Hx — (H2 -> Hγ)

2. H = Hi-* (Hi — H2). — .Hi — H2

3. H = Hi -> H2. - .(H2 - H3) - (Hi - H3)

4. H= HiΛH2-> Hi

5. H= HiΛH2-^ H2

6. H= Hi-> H2. — .(Hi — H3) — (Hi -> H2 A H3)

7. H= Hi -> HivH2

8. H= H2-+ HiV H2

9. H= Hi- H3. - .(fli - # 3 ) - ( ^ v /ί2 - H3)

10. H= (Hi— 1H2) — (H2 — Ί ^ )

11. H =Hi-> (lHi-H2)

Definition 1.3 If Hl9 H2, and H3 are three formulae such that Hλ = H2 -* //3,

then //s is said to be the result of the detachment of the formulae H2 from

the formula Hi.

2 The algebra of species Here only the basic concepts of the intuitionistic

algebra of species will be given (for further details see [1]). In the algebra

of species, we consider the relations and operations of the theory of

species which are definable in the monadic intuitionistic predicate calculus

of the first order.

As basic concepts we define, in the monadic intuitionistic predicate

calculus of the first order, the following relations and operations:

1. The element relation e: a eA =D{ Aa

2. The species-inclusion o A c B =Df Va(aeA .-*. ae B)

3. The identity: A = B =Df A c B AB C A

4. The species-implication =̂ >: ae A =l> B =p/ ae A — ae B

5. The species-union U: ae AΌ B =Df ae Av ae B

6. The species-intersection Π: aeAΠB=DfaeAAaeB

7. The species-complement - : aeA =Df l(ae A)

8. The universal species 1: ael=DfaeA-*aeA

9. The empty spec ies <jb\ aeφ =Df l(aeA-^aeA)

We shall define the terms of the algebra of species inductively as

follows:
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Definition 2.1

1. A species variable Ak (k = 0, 1, 2, 3, . . .) is a term, the universal
species 1, and the empty species 0 are terms.
2. a) If T is a term then T is also a term.

b) If 2\ and T2 are terms, then Tι=^>T2, TΊ u T2, and 7\ Π T2 are also
terms.
3. A sequence of symbols is a term if and only if it is the case according to

1 and 2.

Definition 2.2 The formulae of the algebra of species are formed, with the
help of the terms, as follows:

Formulae of the first kind are of the form T = 1 (where T is a term).
Formulas of the second kind are formed by applying the propositional
functors: —>, v, Λ, ~, and the quantifiers, to the formlae of the first kind.

Definition 2.3 A formula ξ> = (Γ = 1) of the algebra of species is called an
axiom of the algebra of species, if there are terms 7\, T2, T3 such that §
satisfies one of the following equalities:

1. $ = T1=Φ(T2=ΦT1) = 1
2. £ =[τι=Φ{Tι=Φ T2)] ==> (7\ =Φ T2) = 1
3. $ = (T, = # T2) => [(T2 =#> T3) =Φ (Γx =Φ T3)] = 1
4. $ = ( 7 \ n T2)==>TX = 1
5. φ = (7\ Π T2) =Φ T2 = 1
6. Φ = (Tx = Φ τ 2 ) =#> [ ( τ x =̂ > τ 3 ) =#> (Ti =̂ > ( τ x n τ 2 ))] = l
7. § = Ti^ίTiUΓa) = 1
8. φ = Ts^ίTiU T2) = 1
9. § = (T^Ts) => [(T2 ^_T3) => (Ti U Γ2) =^ Γ3)] = 1

10. § =(Γ1=ΦΓ2)=#>(Γ2=ΦΓ1) = 1
11. § = Γ 1 = Φ ( Γ 1 = » T2) = 1

12. § = ((71! =#> Td =^ 5&) n (0 => (Ti ^> TJ) = l

Definition 2.4 If A is a species with at least one element, S a system of
subspecies of A, such that S is closed with respect to the species-algebraic
operations of species implication =φ, union u, intersection Π, and comple-
ment - , then the sextuple

si = (s, A, =>,u, n, -)

is an algebra of species. Here the term variables range over subspecies
of A, and the universal species 1 is the species A itself.

Corollary 2.5 If A is a species with at least one element, and S is a system
of all subspecies of A, then

% = (S,A, =>,u, n, ->

is an algebra of species of all subspecies of A.

Definition 2.6 If

%1 = (SUA, ==>,Ό,n, -)
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and

5f2 = <s2, A , = > , u, n, - )

are two algebras of species such that Sγ c S2, then 51 λ is said to be a
subalgebra of 5l2 and5l2 is said to be an extension of 5lx.

In an algebra of species 51 = (S, A, =>, u, Π, -) of subspecies of a given
species A, the following lemmas can be proved.

Lemma 2.7

a) For any Aif Ak e S, A{ =^Ak = A. <-> ,A, c A&;

b) F o r αwy A7 e S, A ; =» A = A; A =#> A ; = A ; ; A = Ay U A; A Π A7 = A7 .

Lemma 2.8 L£ί Si be a system of subspecies of a species B c A sz/c/z ί/zαί
51 = (Si, B, =Φ, u, Π, -) is an algebra of species, then:

a) 51 = ( S 2 , A , =#>, u , Π, - ) is also an algebra of species, where S2 = SιU

D Γ > Γ Ϊ _ D

b) Tf ίfeβ species algebraic operations in^Kx and%2 are denoted =>, u, 0,

αnrf =^>, u, Π, respectively, then we have the following relations-.
A B A B

(i) if Au, Aj e Siand Ak=^Aj Φ B, then Ak=^>Aj = Ak=^>Aj) if Ak=$>Aj = JB,
ί/z£?2 Afe ^>Ay = A; A,- ==> A = A, /or ^t ̂ r^ A, e S2; A =^>Aj = Aj, for every
AjβS2,

(ii) Aj U Ak= Aj U Ak, for every Aj, Ak e SL; A/ U A = A u A, , /or ẑ ̂ r^
A, e S2.

Λ B

(iii) A ; Π 4 = A ; Π Afc, /or ẑ ̂ rj; Ay, Ak e Sx.

(iv) if AieS1 andA'^ΦB, then A~{

A = A}E'; if A{e Sλ and A~® Φ B, then A'{
A =

A; A'Λ = B'B.

Proof: a) Since 51 is an algebra of species, Sλ is closed under =#>, u, Π, and

—, and since S2 = Sx u v^h ^ suffices to show that for any Az e Sl9 A{ =ΦA,

A U Az , A Π A, , A/ =̂ > A, and A"Λ are elements of S2; then the proof follows
from the fact that B c A, and Lemma 2.7.

b) Lemmas 2.7 and 2.8a imply points (i), (ii), and (iii) at once. Since 5^
and %2 are algebras of species, B~B = φ = A~Λ, and since if AJβ Φ B, then
Ai Φ 0, by Lemma 2.8a, point (iv) follows.

Lemma 2.9 If a and b, (a Φ b), are any two positive prime numbers, then

for any natural number n and m, an Φ bm.

Proof: Since for any two natural numbers c and d it can be decided whether
c = d or c Φ d, and for any natural number n it can be decided whether n is
prime or not, we can apply indirect proof.

(i) Suppose that for some two positive prime numbers a and b, (a Φ b), and
for some two natural numbers k and j, ak= b\ then for k = j we have
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ak - bk

y jτ = 1 = — = lk, ~ = 1, a = b, which contradicts the hypothesis that

a Φ b.

(ii) Suppose that k Φ j , say k > j , then it follows from ak = 6 ; that a^k"^a' -

b\ thus ak'j = ( - ) . Since ak'j is an integer, it follows that (-) , and - are
\a/ \a; a

also integers, hence b is divisible by α, which contradicts the hypothesis
that b is a prime number. This concludes the proof.

Lemma 2.10 Let _yV be the species of all natural numbers, then for every
natural number n there are n infinite pairwise disjoint subspecies of jsi.

Proof: Let al9 . . ., an be any positive prime numbers and A1 the species of
all the natural numbers of the form a\ with ieN (that is all the numbers
a\9 a\, a\9 a\9 a\9 . . ., etc.), and Λy the species of all the natural numbers of
the form a) with je Jsl, then, by Lemma 2.9, the species Aλ . . ., An are
pairwise disjoint infinite subspecies of J\ί as required.

Lemma 2.11 For any infinite species A and any natural number n, there
are n pairwise disjoint infinite subspecies A.

The proof of the lemma follows from Lemma 2.9 and the fact that every
infinite species has a countable infinite subspecies.

3 The matrix method

Definition 3.1 Let W be any given species, an element Ae W, three binary
operations •»->, >-, and x, and one unary operation ~, such that W is closed
under the above operations and that the following holds: if Y e W and
A •»*-> Y = A, then Y = A. Under these assumptions, the ordered sextuple

m = (w, A, -»-, Y, x, ~>

is called a (normal logical) matrix.

Definition 3.2 Two matrices:

m, = (wu A19 -~, v, A, τ )

and
<m2 = (w2, A*, γ , Ύ, A, ?>

are said to be isomorphic if there is a function F which maps Wγ one-to-
one onto W2, and is such that F(A,) = A2, F ( I γ Y) = F(X) •*£> F(Y),
F(XΎ Y) = F(X)ΎF(X), F{X^Y) =F(X)^F(Y) and F(~X) = ~F(X), for all
X, Ye Wi. (The isomorphism is reflexive and transitive.)

Definition 3.3 Let Wl = (W, A, -H^, Y, A, ~> be a matrix and Ha formula of
the intuitionistic propositional calculus. The following formulae define
(recursively) a function FH<m which correlates an element FH>m{Xι,. .. , Xn,
. . .) e W with every infinite sequence Xl9 . . ., Xn, . . . € W:
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a) FH>m(Xu . . ., Xn . . .) = Xp if H = Hp(p = 1 , 2 . . . ) .

b) FHtV&Xu ., Xn, -) +~ FH2>m(Xu . . ., Xn, . . . ) , if H = H, - H2 (where
Hi, H2 are formulae of the propositional calculus).

c), d) Analogously for the operations Ύ and v, or A. and Λ.

e) FH,m(Xl9 . . ., Xn9 . . .) = FH.tm(Xu . . ., Xn9 . . .) if H = ~H{ (where H{ i s

a formula of the propositional calculus).

We say that a formula H is verified by the matrix 3W, in symbols He E(3W),

if FHιV^Xl9 . . ., Xn, . . .) = A foτ all Xx . . ., Xn. The matrix 9W is said to be

adequate for the system S of propositional formulae if E(9W) = S.

Corollary 3.4 If the matrices Wlγ and 9W2 are isomorphic then EίS^) =

E(9W2). [By 3.1, 3.2, 3.3]

Definition 3.5 If 9Wi = (Wl9 A, +~, v, x, ~> and m2 = < ^ 2 , A, +^, -r, Λ, -)

are two matrices and if Wγ c M 2̂, then 3^! is called a submatrix of 9W2

Corollary 3.6 If Wiί is a submatrix o/9W2, tftew E(aW2) c E(3Mi).

Definition 3.7 We denote by ZK the ordered sextuple

(W, 1, — , V, A, ~>

where W ={θ, l}, Λ; -»-> 3; = 1 - x + x y, x^ry = x + y - x- y, x * y = x. y, and

^ x = 1 - ΛΓ, for all x, y e W.

Definition 3.8 Let 9W = (W, B, •«-», v, A, ~) be a matrix and A any element

which does not belong to W. We put:

a) W* = W U{A}.

b) then X -*->* 7 = X +~ F if X, Fe W and X -*-* Y Φ B, if X, Fe W and

X ->^ 7 = B, then X -»-** Y = A; X - ^ * A = A, for all X e W*; A -*̂ >* F = F,

for all Ye W*.

c) XV* F= XΎY, for all X, Fe W*; Z Y M = i v * Z = A, for Ze W*.

d) X A * F= X A F , for all X, Fe W; Z ^A = A A* Z = Z, for ZeW/*.

e) if Xe W and ~X Φ B, then ~ * X = A; if Xe 2^ and ~X = 5, then ~ * X = A;

~*i4 = -J5.

The ordered sextuple (W*9 A, •»-»*, v*, A*, -*> is denoted by 9W*.

Corollary 3.9 If Wl is a matrix, then 9W* is also a matrix and E(9W*) c

E'(SDt); if-the matrices y&γ andWl^ are isomorphic, ί&en 9Wf αw<i 9WJ αr^ αZso

isomorphic. [By 3.1, 3.2, 3.4, 3.7]

Definition 3.10 Let n be a natural number and 9W = (If, A, •«-», Y, A, ~) a

matrix. We put:

(i) Wn = the system of ordered ^-tuples: Xl9 . . ., Xn with Xl9 . . ., Xwe W

(ii) Aw = (X1? . . ., Xw), where X, =, . . ., Xw = A;

(iii) (X1? . . . , Xn> -Λ ( F l 5 . . . , Fw> = (X, — F u . . . , Xn — Fw>, for all X,,. . .,

X«> F i , , Xw € 2f \
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(iv), (v) analogously for v and ^

(vi) £ (Xly . . ., Xn) = (~Xly . . ., ~Xβ>, for all J ^ , . . ., Xwe W

(W ,A , *->, v, Λ, ~>

is called the ra'th power of the matrix 9W and is denoted by '9W*\

Corollary 3.10 If n is a natural number and 9W is a matrix, then Win is also
a matrix and we have E(9WW) = E(9W); if Wl1 and 3022 are isomorphic
matrices, then Wί[and W"are also isomorphic. [By 3.1, 3.2, 3.3, 3.9]

Definition 3.12 (i) IKX = ZK, and (ii) IKn+1 = ((IKW)W)*.

Theorem 3.13 Let $1 = (S, A, ==>, u, Π, -) 6e an algebra of species of sub-
species of A, then% is a matrix. [By 3.1, 2.4, 2.2]

We shall denote by E($!) the set of formulae verified by the matrix 51.

Theorem 3.14 Let%λ and%2 be two algebras of species as defined in 2.3.
If Wli and m2 cire two matrices such that ^H1 and %γ and 9W2 and $ϊ2 we
isomorphic respectively, then Wγ = 9Wf. [By 3.8, 2.3]

Lemma 3.15 If:

(i) A is an infinite species;
(ii) Bl9 . . ., Bnare pairwise disjoint subspecies of B;
(iii) Bu . . .,Bn = B CA;
(iv) Sp is a system of subspecies of Bp (p = 1, . . ., ή) and for each p

Bp Bp Bp Bp

*Bp = <βp>Bt> =>> u , n , - )

zs an algebra of species isomorphic with the matrix

m = (W, A, +~, v, A, ~>;

(v) 51 β and%Bp satisfy the conditions in 2.9;

(vi) S is a system of all species X = X1u . . . U Xn where X1eS1, . . .,
X2 e S 2 , . . ., Xw e Sw αne? ί/ze algebra

, B B B B.

WB = (SB,B, =#>, u, n, ->

zs isomorphic with a matrix P;

then φ is a matrix isomorphic with $FJW, and if SA = Sβ U {A} //zew the species

algebra A A A AK

zs isomorphic with the matrix ^3* which is isomorphic with (30ίw)*.

Proof: Since 3W is isomorphic with each %Bp, by 3.2, there are isomor-
phisms Fi, . . ., Fn which map W one-to-one onto Sλ,. . . , Sn. Then:

1. We put F(ϋ) = FάUj U . . . U Fn(Un) for ί/ = (C^, . . ., Un)eWn. Since
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Fp(Up) eSp (p = 1, 2, . . ., ή), Fp(Up) c Bp and since the species Bl9 . . ., Bn

are pairwise disjoint, by (v), we conclude that F maps Wn one-to-one onto
S.

By 3.2, 3.10,

2. F(An) = F,(A) U . . . U Fn(A) = Bl9 U . . . U Bn = B.
3. F u r t h e r , l e t U = (Ul9 . . ., Un) eWn a n d V=(Vl9...9 Vn) e Wn.

By 3.2, 3.10, 3.15.1, and 2.3, we get:

4. F(U^V) = FdU, *~ Vu . . ., Un ~- Vn))
= F^U, —> Vj U . . . U Fn(Un -H^ Vn)

- (^(ί/0 4 ^ ( F J ) U . . . U (Fn(Un) A Fn(Vn))

= (FάUj A FάVj) . . (Fn(Un) A FM).

By 2.3 and 3.15.1:

F(ϋ •£> V) = F(U) A F(V).

Thus for all U, Ve Wn, F(U A V) = F(U) A F(V).

In an analogous way we obtain the formulae:

5. F(U Y V) = F(U) U F(V) and F{lJlv) = F(U) Π F(Ϋ), for all U, Ve Wn.
6. F(~nU) = F(U)'B, for all ϋe Wn.

By 3.10 the matrix φ is isomorphic with the matrix 9WW, and, by 2.3, 3.8,
and 3.2, %A is isomorphic with φ * and since ψ is isomorphic with Wln it
follows, by 3.9, t h a t φ * is isomorphic with (30θ* as required.

Lemma 3.16 Let A be any species with at least one element, and S = {A, 0}.
Then

21 = (s, A , = > , U , n, ->

is an algebra of species.

Proof: S i n c e A=>0 = 0e S,_p =^>A=AeS,A\jA=AeS,An0 = 0eS,Au
φ = Ae S, and A = 0 e S and φ = A, hence, by 2.4,$(is an algebra of species.

Lemma 3.17 Let W = (S, A9 =#>, U, Π, -) be an algebra of species of all
subspecies of an infinite species A, then for every natural number n^ 1,
there is a subalgebra $lw of % which is isomorphic with the matrix IKW.

Proof: We shall prove the lemma by giving a method of constructing %n for
any given natural number n^l. To construct %n for the given natural
number n ^ 1 we proceed as follows:

a) We construct n\ subalgebras which are isomorphic to IKi. Then for
n\

each of the natural numbers m (2 < m < n) we construct —7 algebras which
ml

n\
are (starting with m = 2) isomorphic with \Km. After constructing-^ L τ ~
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algebras which are isomorphic with IKW-1 we then construct %n in accor-
dance with 3.7, 3.2, and 3.14.
b) If n = 1, then, by 3.12, IKX = ZK, and, by 3.7 and 3.2, ZK is isomorphic
with 21 = (S, A, ==>, U, Π, -> where S = {A, 0}.
c) If n = 2; then, by 2.5, there are two pairwise disjoint infinite subspecies
Bu B2,ofA. Let sx = {Bl9 φ), S2 = {B2, 0}. Then the algebras

«ii = <Si,£i, =Φ, u, n, ->

and

^ 2 ^ 2 ^ 2 2

«i 1 2 = ( s 2 , B2, =#>, u , n , - >
are both isomorphic with IK: (by 3.7, 3.2). Further, let Bx u B2 = J5 and S a
system of subspecies X = Xx U Z 2 , with -X\ e Sx and X2eS2. Then

5lχ = <S, B, = >̂, U, Π, ->

and, by 3.14, ^lx is isomorphic with IK2. Moreover, if Sf = S U {A}, then, by
3.14,

w2 =(S',A, =4,u,n, ->

is isomorphic with IK2.

We have shown that the construction is valid for n = 1 and n = 2. Now
suppose that the construction is valid for any number n, then we construct

—^- subalgebras of 51 which are isomorphic with 1KW. Then we construct
n\

%t+1 which is isomorphic with IKW+1 in accordance with 3.14 and 3.14c as
required.

1. Let H = Hi -» (lHι —> /ί2) where //Ί, H2 are propositional formulae. We
construct, in accordance with 3.3 and with the help of 3.13, the functions
^H,w> ^//i,sι> FH2,% We consider further an arbitrary sequence of sets
Xί, . . ., Xn e S and put

2. Fff.wίXi, . . .,XW) =X,

FH2t*(Xl9. . ,XW, . . .) = Z.

By 3.13(ii), 3.13(v), and from 3.17.1 and 3.17.2 we have X= Y=^(Ϋ=ΦZ);
and, by 2.3.11, X = 1; from 2.4, X = 1 = A. Thus we have FHtsn (Xl9. . .,
J ζ , , . . . ) = A, for al lXi, . . ., Xn, . . . e S. Hence, by 3.3, He E(2ί).

Lemma 4.2 Let A be any algebra of species of subspecies of a given
species A, and let H, Hu H2 be formulae of the intuitionistic propositional
calculus such that H = Hx — H2. If H, Hλe E(2I), then also H2e E(5ί). In
other words, E (51) is closed under the operation of detachment.

Proof: In accordance with 3.3 and with the help of 3.13, we construct
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functions Fu>^, FHlιs^ FH2>^. Then we have: for all species X1,...,
X w , . . . e S

^//,3ί(^l, , Xn, •) = FHV&(XI, - , Xn, . . .) = ^ FH2,^(Xl9 . . ., Xw, . . .)

and, s ince ft, H2e E (51),

•^H,ΪICXΊ, .,-X«, . ) = A = FH1 ,%(Xi, . , Xn),

for al l AΊ,. . ., Xn,... eS, and s ince, by 2.2,

FH2t%(Xl9. . ., X j = A f o r a l l Xu . . . , X n e S ,

we have, by 3.3, H2 e E(5l). Thus E (51) is closed under the operation of
detachment.

Theorem 4.5 Let IK be the species of all provable formulae of the intuί-
tionistic propositional calculus. Then for any species algebra $ί, IK c E($ί).

[By 1.5, 4.2]

The following theorem was proved by Jaskowski (see [3] and [5]):

Theorem 4.6 In order that He\K it is necessary and sufficient that
He E (IKn) for every natural number n, in other words:

CO

ΠE(IK W ) = ικ.

Corollary 4.7 An algebra of species % of all subspecies of any infinite
species A is an adequate matrix for the system of all provable formulae of
the intuitionistic propositional calculus.

Proof: By 3.16, 4.6, 3.3(v), and 3.4.

Definition 4.8 Let $ί = (S, A, =#>, U, Π, -) be an algebra of species and T a
term of the algebra of species. The following formulae define (recursively)
a function Fγ, which correlates an element Fjt%{Xu . . ., Xn,. . .) e S with
every infinite sequence of elements Xl9 . . ., Xne S:

(i) FTi*(X1,...,Xn,...)=Xpti T= Tp(p= 1, 2, . . . ) ;
(ii) Fγt ̂ C^i? . ">Xm ) = FTι>u(Xι,. . ., Xn,. . .) =Φ Fγ2 ty(Xu . . ., Xn,. . .)> if
T = T1==>T2 (where Tl9 and T2 are terms);
(iii) and (iv) Analogously for the operations u and Π;
(v) F τ . * U C i , . . . , X « , . ' . ) = ( F T l ) v ( X u . . . , X n , . . . ) ) , i f T = fι.

We say that a term T is verified by the algebra 51, in symbol Te E(5ί), if
F Ύ t * ( X u . . . , X n f . . . ) = A f o r a l l Xu . . . , X n e S .

Note 4.9 Definition 4.8 means that if the algebra of species is considered
as a matrix, then the definition of verifiability of a term by 51 is the same
as the verifiability of a propositional formula by 51, and the resulting
theorems and corollaries in section 3 hold in both cases.

Definition 4.10 A formula § = (T = 1) of the algebra of species is said to be
valid in an algebra 51, if T is verified by 51.
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Theorem 4.11 (i) φ is a function which assigns a formula $ς> of the
algebra of species to every formula H of the propositional calculus;
(ii) φ{H) = $ = (T = 1) where T is a term obtained from H as follows: every
propositional variable pi and every propositional functor —», v, Λ, ~ occur-
ring in H is replaced by the corresponding element ai and the correspond-
ing species -algebraic operation =5>, U, Π, - .

Then under the above conditions φ maps the formulae of the propositional
calculus one-to-one onto the formulae of the algebra of species in such a
way that a formula H of the intuitionistic propositional calculus is provable
in the intuitionistic propositional calculus, if and only if the corresponding
formula $ of the algebra of species is valid in every algebra of species %
of all subspecies of any infinite species A.

Proof: Let / ί b e a formula of the intuitionistic propositional calculus and %
an algebra of all subspecies of any infinite species. If H is provable in the
intuitionistic propositional calculus then, by Corollary 4.7, He E($f) and, by
4.8, 4.1(i), and 4.1(ii), φ(H) = $ is valid in $ί. Conversely, if φ(H) = § is
valid in $1, then, by 4.10, 4.8, and 3.3, He Eft) and, by 4.7, H is provable in
the propositional calculus as required.
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