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ON NACHBIN’S CHARACTERIZATION OF A BOOLEAN LATTICE

WILLIAM H. CORNISH

A classical theorem of L. Nachbin [6] characterizes Boolean lattices
as those bounded distributive lattices in which each prime ideal is maximal.
This result has been generalized and applied to non-bounded distributive
lattices by G. Gritzer and E. T. Schmidt, see [3], especially p. 276.
Recently, D. Adams ([1], Theorem 1) has given a version of Nachbin’s
theorem for bounded non-distributive lattices. The object of this note is to
give a transparent alternative proof of Gritzer and Schmidt’s generalization
and also to establish a theorem akin to that of Adams.

The notation and terminology follows that of [2] and Stone’s Theorem
([2], Theorem 15, p. 74) will be used freely. Incidentally, a proof of Nach-
bin’s Theorem is given in [2], Theorem 22, p. 76; it is a simplication
(possibly due to boundedness) of the proof in [3]. For elements x and y of a
lattice @, let (¥,9) ={z ¢ L: x Az <y}. When L is distributive, (x,y) is an
ideal. For a detailed account of such ideals, see Mandelker [5].

The following lemma is an extension of [4], Lemma 12.

Lemma 1 A distributive lattice & is velatively complemented if and only if
for each x, y € L, (x] v(x,y) = L.

Proof: Suppose € is relatively complemented and x,y, z are in L. Let w be
the complement of x in [x AyA 2, xvyvz] Then, 2z = z2A(xvyvz) =
zalxvw)=(zAx)v(zaw). Since z A x e (x] and z A w € (¥, ¥), it follows
that (x] v (x, ) = L.

Conversely, suppose the ideal-theoretic condition holds. Let ¢ € [a, b].
Then, be (c]v{c,a and so b =c¢, vd for some ¢, < c and d € L such that
cands<a. Thenb=cvdand(dva)abis the relative complement of c.

Lemma 2 The set of prime ideals of a distributive lattice R is unovdered
by set-inclusion if and only if, for each x, y € L, (x] v (%, 3 = L.

Proof: Suppose the set of prime ideals is unordered. If (x]v (x, % # L
then there is a prime ideal P such that (x] v (x,3) < P. Since the set of
prime filters is unordered, L\P is a maximal filter. But x ¢ L\P. Hence,
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y € L =[x) v (L\P), and so x Ana < y for some a € L\P. Then, a € {x,y) C P
yields a contradiction. Hence, (x] v (x,3) = L.

Suppose (x] v (x,3) = L for any x, ¥ ¢ L. Let P and @ be prime ideals
such that P C Q. If P + @ then choose a ¢ Q\P and b ¢ P. Since (2] N{a,bd)=
(a A b], it follows that {(a,b) C P, whence L = (a]v {a,b) C Q. This isa
contradiction and so P = @.

Theorem 1 (Gritzer and Schmidt [3]) A distributive lattice is velatively
complemented if and only if its set of prime ideals is unovdered by set-
inclusion.

The proof of the following lemma is the same as that of [2], Lemma 5,
p. 71; see also [7], Lemma 1.

Lemma 3 Let I and J be ideals of a modular lattice. If INJ and Iv J are
principal then so ave I and J.

Theorem 2 A lattice Quwith 0is a genevalized Boolean lattice if and only
if each of the following conditions is satisfied.

(i) ®f is modular.

(ii) Each ideal J # L is contained in a prime ideal,

(iii) The set of prime ideals of L is unovdered by set-inclusion,
(iv) Each filter F # L is contained in a prime filter.

Proof: It is sufficient to prove that (i) - (iv) imply that each initial segment
of £ is a Boolean lattice. Condition (iv) is clearly equivalent to each of the
following conditions:

(v) (0] is an intersection of prime ideals.
(vi) For each x ¢ L, (x]* = (x, 0) is an ideal.

Thus, (ii), (iii) and (iv) imply that (x] v (x]* = L for each x ¢ L, cf. the
proof of Lemma 1 or Theorem 1 of Adams [1].

Now let a € [0, b]. As ® is modular, (8] = (a] v ((a]* N (b]) while (0] =
(a] n ((a]* n (b]). By Lemma 3, there exists ¢ € L such that (a]* n (b] = (c].
It follows that [0, b] is pseudocomplemented and c¢ is the pseudocomplement
at of ain [0,b]. Also b =av at = at*vat, anat = att A at = 0, and
a < at+, As € is modular, a = a*+. Hence, by Glivenko’s Theorem ([2],
Theorem 4, p. 58), [0, b] is a Boolean lattice.

As is shown by the five element non-modular lattice, conditions (ii),
(iii) and (iv) are independent of (i), while (i), (ii) and (iii) are satisfied by
the lattice obtained by adjoining a new largest element to the five element
modular non-distributive lattice.
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