Notre Dame Journal of Formal Logic Volume XVII, Number 1, January 1976 NDJFAM

SOME NOTES ON "A DEDUCTION THEOREM FOR RESTRICTED GENERALITY"

M. W. BUNDER

In [2] the deduction theorem for Ξ :

If $X_0, X \vdash Y$, and $X_0 \vdash L([\mathbf{u}]\mathbf{X})$ where u is not involved in X_0 , then $X_0 \vdash X \supseteq_u Y$,¹

was proved using the following axioms.

Axiom 2. $\vdash Lx \supset_x \Xi xx$. Axiom 3. $\vdash Lx \supset_{x,y} : xu \supset_u . yuv \supset_v xu$. Axiom 4. $\vdash Lx \supset_{x,t} : xu \supset_u yu(tu) \supset_y . (xu \supset_u (yuv \supset_v zuv)) \supset_x (xu \supset_u zu(tu))$. Axiom 5. $\vdash Lx \supset_x \Xi x$ (WQ). Axiom 6. $\vdash \Xi IH$. Axiom 7. $\vdash LH$.

Of these, $\vdash LH$ as it restricts the system to obs which satisfy

 $Au \vdash H(Hu)$,

is a somewhat unsatisfying axiom. In particular with E = A it is inconsistent with the others (see [1]).

Also the rules obtained by applying Rule Ξ once to each of the remaining axioms are consistent. This was shown in an unpublished paper by H. B. Curry and the author. Curry in [3] proved that for an equivalent system no nonpropositions are provable and Seldin in [4] has shown consistency in a stronger sense.

We show here that the deduction theorem for Ξ can be proved without $\vdash LH$. We achieve this by taking L as primitive (rather than as defined by L \equiv FAH) and we define H as BLK. Axiom 3 leads to the rule:

$$Lx, xu \vdash yuv \supset_v xu$$

Received February 12, 1975

^{1.} In [2] L = FAH. $X \supset_{u} Y$ is an alternative notation for $\Xi([u]X)([u]Y)$.

so with $\mathbf{K}Y$ for x and $\mathbf{K}X$ for y we obtain

BLK*Y*, *Y*
$$\vdash$$
 Xv \supset_{v} *Y*.

Axiom 6 then allows us to derive the rule that was used in Case 2 of the proof in [2], which was the only case in which $\vdash LH$ was used.

 \vdash LH was also used in deriving $Lx \vdash \Xi xx$ from the other axioms. This can still be done so strictly Axiom 2 is not needed. From Axiom 4 we obtain:

$$Lx, xu \supset_u yu(tu), xu \supset_u (yuv \supset_v zuv) \vdash xu \supset_u zu(tu).$$

With $z = \mathbf{K}x$ and $y = \mathbf{K}([u], zuv \supset_v xu)$, we have by Axiom 3:

$$Lx \vdash xu \supset_u (yuv \supset_v zuv)$$

and

 $Lx \vdash xu \supset_u yu(tu)$

so that

 $Lx \vdash \Xi xx$

follows. Thus the deduction theorem for Ξ can be proved on the basis of Axioms 3, 4, 5, and 6. (In a system without equality Axiom 5 is also unnecessary).

REFERENCES

- [1] Bunder, M. W., "A paradox in illative combinatory logic," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 467-470.
- [2] Bunder, M. W., "A deduction theorem for restricted generality," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 341-346.
- [3] Curry, H. B., "The consistency of a system of combinatory restricted generality," *The Journal of Symbolic Logic*, vol. 38 (1973), pp. 489-492.
- [4] Seldin, J. P., "The **Q**-consistency of \mathfrak{F}_{22} ," to be published in Notre Dame Journal of Formal Logic.

The University of Wollongong Wollongong, New South Wales, Australia

154