Notre Dame Journal of Formal Logic Volume XVII, Number 1, January 1976 NDJFAM

AN INDEPENDENT STATEMENT ABOUT METRIC SPACES

MAURICE MACHOVER

In a metric space can the points near some point x pack close to each other with ever-increasing density (in the sense of cardinality or power) as x is approached, or must it always be the case that this density reaches a maximum at a certain distance from x and does not increase for smaller distances? We give a precise definition of this density concept and show that the former case can happen (for a space of cardinality \aleph_{ω}) but that the question as to whether it can happen in a space of power less than or equal to that of the continuum cannot be answered. Our results are based on some of the recent independence results in set theory.

1 *Preliminaries* In the following (X, ρ) will be a metric space, A a subset of X, and x a point of X. We define the A-packing power near x by

 $P_A(x) = \sup \{a \leq \operatorname{card} X | \exists \varepsilon > 0, \operatorname{card} [(S(x, \varepsilon_2) - S(x, \varepsilon_1)) \cap A] \geq a \text{ for all } \varepsilon_1, \varepsilon_2 \text{ satisfying } 0 < \varepsilon_1 < \varepsilon_2 < \varepsilon \}.$

That is, if C denotes the set of cardinals $a \leq \operatorname{card} X$ such that between any two small enough concentric spheres about x there lie at least a points of A, then $P_A(x) = \sup C$. $P_X(x)$ will be written P(x) and called the packing power near x. A packed point of X is a point x for which P(x) > 0. A packed space is one whose points are all packed. It is easily seen that a packed space is perfect, but that a perfect space need not be packed (take an appropriate subspace of \mathcal{R}^1). We remark that $P_A(x)$ measures how close (in the sense of cardinality) to *each other* the points near x are packed, not how closely they pack about x itself. We will discuss this other question later.

The question here is whether or not it is always the case (i.e., for all X, A, x) that $P_A(x) \in C$, i.e., whether $\sup C \in C$. We will work in Zermelo-Fraenkel set theory (**ZF**) including the axiom of choice. We will also make use of the results on the status of the continuum hypothesis (**CH**) and the generalized continuum hypothesis (**GCH**) in **ZF**, established by K. Gödel [1] and by P. J. Cohen [2]. In particular we note that $2^{\aleph_0} = \aleph_{\omega+1}$ is consistent with **ZF** [3]. The assertion $\overline{\sup C \in C}$ is taken to mean: For all (X, ρ) and for

all $A \subseteq X$ and for all $x \in X$, sup $C \in C$. Its negation is $\neg(\operatorname{sup} C \in \overline{C})$. Similarly $\operatorname{sup}_0 C \in \overline{C}$ is taken to mean: For all (X, ρ) and for all $A \subseteq X$ and for all $x \in X$, card $X \leq 2^{\aleph_0} \Longrightarrow \operatorname{sup} C \in C$. The following are immediate consequences of the definitions: Given X, A, x,

(1) $P_A(x) = 0 \text{ or } P_A(x) \ge \aleph_0$,

(2) sup $C \in C$ is equivalent to $C = \{a \leq \operatorname{card} X \mid 0 \leq a \leq P_A(x)\},\$

(3) sup $C \notin C$ is equivalent to $C = \{a \leq \operatorname{card} X | 0 \leq a \leq P_A(x)\}.$

Theorem 1 If $P_A(x) \in \{0\} \cup \{\aleph_0\} \cup \{\aleph_{u+1} \mid \mu \text{ is an ordinal number}\}$ then $\sup C \in C$.

Proof: Suppose $\sup C \notin C$. If $P_A(x) = \aleph_0$ then $1 \in C$. Between any two concentric spheres about x, of small enough radii, there lies at least one point of A, hence at least a countable number of such points. It would follow that $\sup C = \aleph_0 \in C$, contradiction. If instead $P_A(x) = \aleph_{\mu+1}$ then by (3) $\sup C = \aleph_{\mu} < \aleph_{\mu+1} = \sup C$, again a contradiction.

2 The independence of $\sup_0 C \in C$ We first establish an equivalence result in **ZF**.

Theorem 2 sup₀ $C \in C$ is equivalent to $2^{\aleph_0} < \aleph_{\omega}$.

Proof: First suppose $2^{\aleph_0} < \aleph_{\omega}$. Let (X, ρ) be any metric space with cord $X \leq 2^{\aleph_0}$. Then sup $C \leq 2^{\aleph_0} < \aleph_{\omega}$. Hence sup $C \in \{0\} \cup \{\aleph_0\} \cup \{\aleph_{n+1} | n = 0, 1, 2, \ldots\}$, so that sup $C \in C$ by Theorem 1.

Conversely, given $\sup_{0} C \in C$ we suppose $2^{\aleph_0} \ge \aleph_{\omega}$. We construct a subspace of the real line \mathcal{R}^1 as follows. By our supposition we may select \aleph_1 points in turn from each of the intervals $[\frac{1}{2}, 1]; [\frac{1}{2}, \frac{3}{4}], [\frac{3}{4}, 1]; [\frac{1}{2}, \frac{5}{8}], [\frac{5}{8}, \frac{3}{4}], [\frac{3}{4}, \frac{7}{8}], [\frac{7}{4}, 1]; [\frac{1}{2}, \frac{5}{8}], [\frac{5}{8}, \frac{3}{4}], [\frac{3}{4}, \frac{7}{8}], [\frac{7}{4}, 1]; and so on, each time dividing previous intervals in half. In this way we accumulate a set <math>S_1 \subseteq [\frac{1}{2}, 1]$ with cardinality \aleph_1 , such that each subinterval $[\varepsilon_1, \varepsilon_2)$ of $[\frac{1}{2}, 1]$ contains exactly \aleph_1 points of S_1 . Similarly (this time selecting \aleph_2 points each time) we obtain a set $S_2 \subseteq [\frac{1}{3}, \frac{1}{2}]$ with cardinality \aleph_2 , such that each subinterval $[\varepsilon_1, \varepsilon_2)$ of $[\frac{1}{3}, \frac{1}{2}]$ contains \aleph_2 points of S_2 . Continuing the process we obtain $S_n \subseteq \left[\frac{1}{n+1}, \frac{1}{n}\right]$ with similar properties, for $n = 1, 2, \ldots$. Take $X = \{0\} \cup \left(\bigcup_{n=1}^{\infty} S_n\right)$ with the usual metric inherited from \mathcal{R}^1 . Then cord $X = \aleph_1 + \aleph_2 + \ldots = \aleph_{\omega}$. Take A = X and x = 0. Then it is easily seen that $C = \{a \mid 0 \le a < \aleph_{\omega}\}$ so that $\sup C = \aleph_{\omega} \notin C$, contradicting $\sup_{0} C \in C$. Hence $2^{\aleph_0} < \aleph_{\omega}$ (proving the theorem).

Since $2^{\aleph_0} = \aleph_{\omega^{\pm 1}}$ and $2^{\aleph_0} = \aleph_1$ are both consistent with ZF, $2^{\aleph_0} < \aleph_{\omega}$ is independent. This gives us the following result.

Corollary $\overline{\sup_0 C \in C}$ is independent.

It is also clear by Theorem 1 that CH implies $\overline{\sup_0 C \in C}$.

3 A counterexample to $\sup C \in C$ By Theorem 1 any counterexample would have to have $\operatorname{card} X \ge \mathsf{P}_A(x) \ge \mathfrak{S}_{\omega}$. We will indeed construct one with $\operatorname{card} X = \mathsf{P}_A(x) = \mathfrak{S}_{\omega}$.

Theorem 3 $\exists (\overline{\sup C \in C}).$

Proof: Let S be any set of cardinality \aleph_{ω} . Let $\mathbb{B}(S)$ be the set of bounded functions from S into \mathbb{R}^1 with the usual metric $\rho(f, g) = \sup_{s \in S} |f(s) - g(s)|$. For $t \in S$ let $x_t \in \mathbb{B}(S)$ be the characteristic function of $\{t\}$. If $0 \le a \le b$ there are at least \aleph_{ω} functions of $\mathbb{B}(S)$ between the concentric spheres $\mathbb{S}(0, a)$ and $\mathbb{S}(0, b)$ about the zero function of $\mathbb{B}(S)$. (This is so because the map $t \to \frac{a+b}{2} x_t$ is one-to-one with range in $\mathbb{S}(0, b) - \mathbb{S}(0, a)$). As in the proof of Theorem 2 select \aleph_1 points (i.e., functions) in turn from each of the sets $\mathbb{S}(0, 1) - \mathbb{S}(0, \frac{1}{2})$; $\mathbb{S}(0, \frac{3}{4}) - \mathbb{S}(0, \frac{1}{2})$, $\mathbb{S}(0, 1) - \mathbb{S}(0, \frac{3}{4})$; $\mathbb{S}(0, \frac{5}{8}) - \mathbb{S}(0, \frac{1}{2})$, $\mathbb{S}(0, \frac{3}{4}) - \mathbb{S}(0, \frac{5}{8})$, $\mathbb{S}(0, \frac{7}{8}) - \mathbb{S}(0, \frac{3}{4})$, $\mathbb{S}(0, 1) - \mathbb{S}(0, \frac{7}{8})$; and so on, denoting the resulting set of cardinality \aleph_1 by S_1 . Continuing this process we again obtain sets $S_n \subseteq \mathbb{S}\left(0, \frac{1}{n}\right) - \mathbb{S}\left(0, \frac{1}{n+1}\right)$ with cord $S_n = \aleph_n$ and such that if $\frac{1}{n+1} \le \varepsilon_1 \le \varepsilon_2 \le \frac{1}{n}$, $\mathbb{S}(0, \varepsilon_2) - \mathbb{S}(0, \varepsilon_1)$ has \aleph_n points of S_n . We take $X = \{0\} \cup \left(\bigcup_{n=1}^{\infty} S_n\right)$ as our metric subspace of $\mathbb{B}(S)$. Evidently cord $X = \aleph_\omega$. Choosing x = 0 and A = X it follows that $C = \{a \mid 0 \le a < \aleph_\omega\}$. Hence $\sup C = \aleph_\omega \notin C$ and $\exists (\sup C \in C)$.

4 Comments and possible generalizations One course of further investigation would be the characterization of those cardinalities that $P_A(x)$ can assume, especially those for which $\sup C \notin C$ can occur. For example if a cardinal \aleph_{μ} is the sum of an increasing sequence $\aleph_{\nu_1}, \aleph_{\nu_2}, \ldots$ of infinite cardinals then it is possible to carry out the construction in Theorem 3 (taking cord $S = \aleph_{\mu}$) to obtain a case where $\aleph_{\mu} = \sup C \notin C$. Also it may be possible to generalize these concepts to first-countable topological spaces (where each point x has a *decreasing* sequence of neighborhoods constituting a base at x) or even to general topological spaces (using a generalized sequence or net of neighborhoods of x).

According to the definition of *C*, each $a \in C$ has an $\varepsilon > 0$ corresponding to it. If one is interested in the finer details of the packing it would be useful to investigate, for any particular space, how ε depends on *a*. For example if ε corresponds to *a* then any positive $\eta < \varepsilon$ also corresponds to *a*. What is the maximum ε corresponding to *a* (especially in the case that $a = \sup_{\varepsilon} C$)? For special types of metric spaces such as Banach and Hilbert spaces most of these questions reduce to trivialities.

To investigate the packing at x rather than near x we define the A-packing power at x as $R_A(x) = \sup D$ where $D = \{a \leq \operatorname{card} X | \exists \varepsilon > 0, \operatorname{card} [S(x, \eta) \cap A] \ge a$ for all η satisfying $0 < \eta < \varepsilon\}$. Assertions (1), (2), (3), and Theorem 1 hold for $R_A(x)$, except that in (1) and Theorem 1 we also allow the possibility of $R_A(x) = 1$. There are differences between $P_A(x)$ and $R_A(x)$. For one thing if $a \in D$ then every $\varepsilon > 0$ will correspond to a. For another we always have $\sup D \in D$, because if $S(x, \eta) \cap A] \ge \sup D$; and this is true for all $\eta > 0$.

MAURICE MACHOVER

REFERENCES

- Gödel, K., "Consistency-proof for the generalized continuum hypothesis," Proceedings of the National Academy of Sciences of the U.S.A., vol. 25 (1939), pp. 220-224.
- [2] Cohen, P. J., "The independence of the continuum hypothesis, I, II," Proceedings of the National Academy of Sciences of the U.S.A., vol 50 (1963), pp. 1143-1148, and vol. 51 (1964), pp. 105-110.
- [3] Solovay, R., "2^{N0} can be anything it ought to be," in *The Theory of Models*; proceedings, eds. J. W. Addison, L. Henkin and A. Tarski, North-Holland, Amsterdam (1965), p. 435.

St. John's University Jamaica, New York