
133

Notre Dame Journal of Formal Logic
Volume 22, Number 2, April 1981

Cofinal Extensions of Nonstandard

Models of Arithmetic

C. SMORYNSKI

A relatively neglected aspect of the study of nonstandard models of
arithmetic is the study of their cofinal extensions.* These extensions certainly
do not present themselves to the intuition as readily as do their more popular
cousins the end extensions; but they are not exactly shrouded in mystery or
unnatural objects of study either. They are equal partners with end extensions
in the construction of general extensions of models; they offer both special
advantages and disadvantages worthy of our interest; and, occasionally, they are
useful in understanding the generally more simply behaved end extensions.
Cofinal extensions deserve more attention than they have traditionally received.

1 The splitting theorem The fundamental theorem on cofinal extensions is
Gaifman's Splitting Theorem, which not only establishes their existence but
also reveals one of their most basic properties. Briefly, the Splitting Theorem
asserts that every extension of nonstandard models splits into an elementary
cofinal extension followed by an end extension. In particular, it follows that
cofinal extensions are always elementary.

Unfortunately, the Splitting Theorem is language dependent. If we add a
few new relations to the language of arithmetic, the theorem could well become
false. For this reason, there are two additional versions of the theorem. The
simplest form it takes, valid for any language (provided full induction is
assumed), is the following:

1.1 Elementary Splitting Theorem Let 1 < 5R be models of arithmetic.
There is another model WLC? of arithmetic satisfying

*The present paper was originally intended as a lecture to be presented at the 1980 ASL
Summer Meeting in Praha. Due to the cancellation of this meeting it is appearing here.
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i.e., ,IC^ elementarily cofinally extends 1 and ft elementarily end extendsM.0^.

Proof: Let I l c / l = [a e Ift I: 3b e I I I (a < b)\. This is closed under +, •, ' since
these functions are monotone. It is closed under application of parameter-free
Skolem functions since they can be majorized by functions under which 1 is
closed: If Fv is a parameter-free Skolem function, a e I lc^l and b e 111 is such
that b > a, then

Fa<Gb = supLFu: v < 6}.

1.2 Corollary Every nonstandard model of arithmetic has a proper ele-
mentary cofinal extension.

The corollary is probably best credited to Rabin who, in [15], first
announced the existence of such extensions under an irrelevant hypothesis.
The origin of the Elementary Splitting Theorem is not known to the author.
Although it would seem to have been needed by Rabin in order to deduce the
corollary, he makes no mention of it and, indeed, it seems only to have been
stated in the literature (e.g., in [3] and [6]) after the full Splitting Theorem
was known.

Rabin did, however, include in his paper a rudimentary form (essentially
Corollary 1.4, under the same irrelevant hypothesis) of the nonelementary
Splitting Theorem. This was further discussed by Adler ([1]) and Chudnovsky
([4]), and, finally, by Gaifman in [5] where the full result was proven:

1.3 Splitting Theorem Let .1 C ft be models of arithmetic in the usual
arithmetic language. There is another model 3.°* of arithmetic satisfying

W<c Wcf Ce ft,

i.e., 1 cf elementarily cofinally extends 1 and ft end extends lc^.

1.4 Corollary In the usual arithmetic language, cofinal extensions are
always elementary.

Since the Skolem functions of 1 and ft can differ, Theorem 1.3 must be
given a different proof from that of its special case Theorem 1.1. l l ^ l is
defined as before and the closure of I St^l under a few encoding and decoding
functions is proven similarly. With coding ability, it is not hard to use the
cofinality of 1 in l c ^ to bound quantifiers and make, as it were, all sentences
Ao. Since l c ^ is an initial segment of ft, I c ^ and ft agree on Ao formulas and it
suffices to see that 1 and ft similarly agree. But for this we have the solution
to Hilbert's 10th Problem: All Ao formulas are simultaneously purely existential
(and so preserved from 1 to ft) and purely universal (and so preserved from ft
to 1 ) .

If one's arithmetic is in an expanded language, the last step of the above
proof cannot always be made and one has in this case the following result
(cf. [12]):

1.5 General Splitting Theorem Let 1 C ft' be models of arithmetic. If the
extension is A0-elementary, there is another model Wcf of arithmetic satisfying

1-VuK ceft.



COFINAL EXTENSIONS 13 5

The Splitting Theorem is, particularly for the usual arithmetic language, of
supreme methodological importance. First, for this language, it establishes as
completely reasonable the dichotomization of research into extensions of
nonstandard models into separate, but equal, studies of end and cofinal exten-
sions. Second, since cofinal embeddings in the usual case are always elementary,
it suggests that for other languages as well the natural cofinal embeddings to
study are the elementary ones. We take this consequence to heart: Throughout
the rest of this survey, we will consider only elementary cofinal extensions—
regardless of the underlying language. Third, and perhaps most vaguely, since
cofinal extensions are elementary and end extensions need not be, it points to
the difference in roles played by the two kinds of new integers in cofinal and
end extensions.

Technically, the Splitting Theorem has not yet been of supreme im-
portance. But it has been of use. Wilkie in [18] showed how, in conjunction
with the Lowenheim-Skolem Theorem, it could be used to lift certain results
concerning initial segments and end extensions from the countable to the
uncountable case. Rather than repeat Wilkie's example (for which Lesan [11]
has supplied a lovely direct proof that works in the general case in his thesis),
we give a simpler application:

1.6 Application In [7], Guaspari proved the equivalence, for a given
recursively enumerable theory T "D PA, of the following two assertions:

i. For a sentence 0, T + 0 is 2rconservative over T, i.e., for all X1 sentences a,
if 7 + 0 h a , then T h a;

ii. For any countable model 31 f= T, there is an initial segment 1 Ce 31 such
that 1 1=7+0.

The proof that ii implies i is straightforward and makes no use of the count-
ability of 31. Guaspari's proof of the converse, however, depended on Fried-
man's initial embeddability criterion and only worked in the countable case.
With the aid of the Splitting Theorem, however, the uncountable case reduces
quickly to the countable case: Assume ii. Let 31 \= T and let 310 -< 31 be a
countable elementary submodel of 31. Applying ii to 310, we get an l 0 Ce 310

such that l 0 \=T+ 0. Simply consider l 0 C 31 and split the extension:

!</" is the initial segment 1 desired. (We should mention that Guaspari notes
Joe Quinsey has given an alternate proof of the equivalence in the uncountable
case.)

2 The greatest common initial segment The greatest common initial
segment of the two models of an extension is of importance in more ways than
can be conveniently summarized in advance. Let us simply define it cold:

2.1 Definition Let 1 <c 31 be given. The greatest common initial segment
of 1 and 31, denoted GCIS(1, 31), is the set

I = { a e 1 1 1 : \fb e \ 3 l \ - \ M \ ( a < b ) \ .
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The obvious significance of the greatest common initial segment of an
extension 1 <c 31 is that it determines—partially—where the new elements of
the extension begin to appear. We say "partially" because nonstandard models
are not well-ordered and there is no guarantee that the new elements occur
immediately after GCIS(1, 31):

2.2 Definition Let 1 <c 31 be given and let / = GCIS(1, 31). We say that 31
is a regular cofinal extension of 1 iff there is an element a e 13l\ - 111 such that
/<a<ISI-/.

Now the definition of regularity merely requires that new elements begin
to appear immediately after the greatest common initial segment. It says
nothing about how many such elements immediately appear. But, before we get
too deeply embroiled in a maze of complications, let us look at what we
already have.

2.3 Lemma Let 1 <c 31 be given and let I = GCISQR, 3ft).

i. coC/
ii. / is closed under addition and multiplication

iii. / / 31 is a regular extension of 1 , then I is also closed under exponentiation.

Proof: i. Trivial.

ii.a. Addition. Let a, b e I. We want to see that a + b eI. Let c e \3lI - 111. It
suffices to show that a + b <c.

Either c = 2[c/2] or c = 2[c/2] + 1. In either case, [c/2] e I ft I - 111,
whence a, b < [c/2] and

a + b<2[c/2]<c.

ii.b. Multiplication. Let a, b e I. To see that ab e /, we let c e I -ft I - I I I and
consider d - [\fc]. Suppose d e 111. There are 2d + 1 elements e of I l l such
that d2 < e < (d + I)2. Thus c = d2 + e for some e < 2d + 1. Since c 4 I l l and
de 111, it follows that ee 13̂ 1 - 111 and so [e/2] e\3l\- 111, whence

a, b<[e/2] <d.

If d 4 Is^I, then a, b <d automatically. Thus, a, b <d, whence

a b<d2<c.

iii. Assume the extension is regular, with b e \3l\ such that

/ < 6 < l B l - 7 .

Suppose for some a e I, aa 41. Then, if

c = max{d: </*<&},

we have c < a, so c e I. But

(C + l)(c+D = (C + !)C(C + 1 } < ( 2 c ) c ( c + 1 }

<2c-cc-(c+ 1)
<cc-cc-(c+ l ) e / ,

since cc e I and / is closed under multiplication.
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Parts i and ii of the lemma are best possible; part iii is but an example of
the power of regularity. The converse to Lemma 2.3.ii was proven by Paris and
Mills in [13] and is only known in the countable case:

2.4 Theorem Let 1 be a countable nonstandard model and let I Ce 1 be a
nontrivial initial segment. Then the following are equivalent:

i. / is closed under addition and multiplication
ii. / = GCIS( 1 , ft) for some cofinal extension ft! of 1.

In conjunction with Lemma 2.3.iii, this theorem tells us that the answer
to the silly question of whether or not new elements immediately follow the
greatest common initial segment of an extension is a matter of consequence.
The full impact of regularity in terms of closure properties of this segment has,
again in the countable case, been assessed by Kirby and Paris in [8] and [9]:

2.5 Theorem Let 1 be a countable nonstandard model and let I Ce ffi be a
nontrivial initial segment. Then the following are equivalent:

i. / is regular in 1
ii. / = GCISOR , ft) for some regular cofinal extension ft' of I .

We refer the reader to the above cited papers for the proof as well as for
the definition of the regularity of an initial segment. We note merely that
regularity is somewhat stronger than closure under exponentiation, but that we
have stressed the latter in Lemma 2.3.iii for the sake of Corollary 2.14, below.

As remarked earlier, the regularity of a cofinal extension merely depends
on the immediate appearance of some rather than many new elements after the
greatest common initial segment. To assess the impact of many such new
elements, we need some definitions:

2.6 Definitions Let I <c ft and / Ce 1 be given. The closures of / in ft are
the two initial segments of ft defined by:

r=Icf = \ae Iftl: 3Z? el{a<b)\
I+ = \ae Iftl: Mb e I l l -l{a < b)\.

Note that / C r C / + and / = /" iff / C GCIS(I, ft). It can happen that / +

properly extends /". Indeed, if ft is a regular cofinal extension of 1, this
happens for / = GCIS(1, ft). Since / Cc /", these two segments are closed under
the same monotone functions definable in 1 . Of greater interest is the fact
that / + inherits some closure:

2.7 Lemma Let 1 <c ft and I Ce 1 be given. Let F: ft -> ft be definable in
ft with parameters from 1 and strictly monotone. If I is closed under F, so
isl\

Proof: Since F is strictly monotone, we can define a sort of inverse function

Ga = least b[Fb<a<F(b+ 1)].

Let a e /+, c e I l l - /. Since / is closed under F, / < Gc. But Gc e 111, whence
a < Gc. But then

Fa < FGc < c.
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2.8 Corollary Let ft be a regular cofinal extension of 1 and I = GCIS(W, ft).
77ze« /+ is closed under addition, multiplication, and exponentiation.

Proof: For addition, let Fa = 2a; for multiplication, F<2 = a2; and for expo-
nentiation, Fa = aa.

Not every nice closure property of / = GCIS(1, ft) is inherited by /+, as
the following result of Kirby and Paris (from [8] and [9]) shows:

2.9 Theorem Let 1 be a countable nonstandard model and let I Ce 1 be a
nontrivial initial segment. Then the following are equivalent:

i. I is strong in 1
ii. / = GCIS( 1, ft) and I+ is semiregular in ft for some regular co final extension

ft o/ffi.

The definitions of "strong" and "semiregular" are to be found in the
papers cited. We note merely that semiregularity is a strictly weaker property
of initial segments than regularity, and regularity is strictly weaker than
strength. By this theorem, we see that closure conditions on the set of immedi-
ate new elements entail strong closure conditions on the greatest common
initial segment.

One more example along these lines is given by the following result from
Kirby's dissertation [8]:

2.10 Theorem Let SI, ft be countable, ft a regular co final extension o / l ,
and let I = GCIS(W., ft). / / / is strong in 1, then I <e 7

+.

Evidently, a great deal more can be done along these lines. But there are
other lines to follow. Integers code sets and new integers can code new sets.
The position where the new integers begin to appear has a direct bearing on
what new sets can appear.

2.11 Definitions Let 1 be nonstandard and / C 1. Any set X C / is termed
an I-set. X C / is an I-set of 1 if, for some formula </)vv0 and some parameter

ftelBl,

X=iael: 1 \=<^l

Finally, an /-set X is a bounded I-set if X < b for some b el.
For I = co, the /-sets are called standard sets and it is well-known that the

collection of standard sets does not change in the passage to an end extension.
For / = 1, Phillips (in [14]) has defined an extension 1 C -ft to be conservative
provided 1 and ft have the same /-sets. Moreover, he observed that elementary
conservative extensions are always end extensions. A close look at his argument
(for which cf. [3] or [6]) reveals something more:

2.12 Theorem Let 1 C ft be nonstandard models. The following are
equivalent:

i. 1 and ft have the same bounded 3,-sets
ii. I Ce ft.
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Instead of proving this, we prove the related:

2.13 Theorem Let SI <c ft, I = GC7S(Sl, ft), and J Ce I .

i. Every (bounded) J-set of SI is a (bounded) J-set of ft
ii. If 1 £ / , then 31 has more bounded J-sets than 1

iii. IfJCI and J is closed under exponentiation, then 1 and ft have the same
bounded J-sets.

Proof: i. Since the extension is elementary, definitions in I lift to 31.

ii. Let b e IftI - 111, c e J such that b < c, and define

X = \aeJ:a<b\.

Then X < c is a bounded /-set of 31. To see that it is not a /-set of 1 , suppose

X = \aeJ: 1 1= 0od V

for some formula 0 and some d e I SI I. But then

X = {ae 111: 1 l = 0 ^ A a < c } ,

and X is definable in SI. But 0 e X and X is closed under successor, whence
induction yields X = 111, a contradiction.

iii. Let / C / be closed under exponentiation and let X be a bounded /-set of ft.
Pick c e J such that X < c and choose d e I ft I by Arithmetic Separation such
that

D d = X = iae \3l\: aeXAa<c\,

where Dj is the ft-finite set with canonical index d:

Dd = {d0< . . . <de-J, where d=2do+ . . . + 2de'1.

But

d<J^2i<2c eJ.

i<c

Thus d e J and X is a bounded /-set of SI defined in W by the formula

(pvd: v e D3.

2.14 Corollary Let M be given, ft a regular cofinal extension of SI, arcd
/ = GCIS(W, ft). 7%e« 1 fl«d ft /ztfR? the same bounded I-sets.

Proof: By Lemma 2.3.iii, / is closed under exponentiation.

What about unbounded /-sets? The prototype is Phillips' notion of
conservative extension. Not every elementary end extension is conservative;
indeed, Kirby notes in his thesis that, if ft is a conservative elementary exten-
sion of 1 , then SI is strong in ft. A related result for cofinal extensions is the
following result of Kirby and Paris from [8] and [9]:

2.15 Theorem Let 1 be a countable nonstandard model and let I Ce 1 be
a nontrivial initial segment. The following are equivalent:
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i. / is strong in 1
ii. / = GCIS(W, 5ft) for some regular extension 5ft of 1 which possesses the same

I-sets as 1 .

3 Short models Psychologists assure us that tall people command more
attention and respect than short ones. In as anthropomorphic a field as logic, it
would follow that taller concepts excite more imagination than shorter ones.
Thus, more is written about tall end extensions than stubby cofinal ones, and,
asked for a preference between tall and short models, most logicians would
make the tall choice. Such high-minded strategy might work well in the short
run; but in the long run we must pay everything its due.

3.1 Definition Let 1 be nonstandard. I is called a simple model if 1 is
generated by one element by means of its parameter-free Skolem functions. If
a e 111 is such a generator, we write N[<z] for 1 .

The notation N[a] is rather bad: it falsely suggests that N[a] is an elemen-
tary extension of the standard model N. However, the author has grown used to
this notation and is not willing to give it up just because of a minor flaw.

3.2 Definitions Let 1 be nonstandard. 1 is short if it has a cofinal simple
submodel, i.e., if there is an a e 111 such that N[a] <c 1 . If 1 is not short, 1 is
called tall

The tall/short distinction is fine so long as one does not try to turn it into
a comparative distinction, i.e., taller vs shorter. The following simple lemma
supporting the noncomparative notion can be proven by considerations similar
to those of the proof of Theorem 1.1:

3.3 Lemma Let SW<C 5ft be given.

i. 1 is short iff 5ft is short
ii. 1 is tall iff 31 is tall

With this lemma, we see that the distinction between short and tall models
has at least one property testifying to its coherence. The following result of
Blass (from [2]) offers even more convincing evidence of the significance of the
distinction and suggests some importance for short models:

3.4 Theorem Let 31 be a short nonstandard model and l 0 , l x cofinal
submodels. Then: l 0 n i ^ c 3ft.

We note the following: if we do not assume the cofinality of l 0 , 3JIx in 5ft,
it need not follow that l 0 n I j is a model of PA (as remarked already by
Rabin in [15]). By the cofinality of the extensions, we are dealing with elemen-
tary submodels and it follows that l 0 H Wl < 31. But, unless 5ft is short, it need
not be the case that the intersection is cofinal in 5ft;: Blass has constructed tall
models l 0 , 1 1 ? 5ft with each 1/ cofinal in 5ft and with I I o n l j = CJ. Thus, the
theorem exhibits a property peculiar to short models.

Blass's Theorem, or rather the work behind it, has an interesting applica-
tion to recursively saturated models of arithmetic (solving, incidently, an open
problem of [16]):
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3.5 Theorem Let 1 be a countable recursively saturated model of arith-
metic. Then sUl has a countable infinity of nonisomorphic elementary initial
segments.

It is an elementary observation that sl has continuum many distinct
elementary initial segments. Slightly less elementary is the fact that there is not
much variety among them; obviously there are two types of such initial
segments—tall ones and short ones. The tall ones inherit the recursive saturation
of 1 and, thus, are all isomorphic to 1 (cf., e.g., [16]); the short ones, as we
shall see, need not be isomorphic, but they are determined by their simple
cofinal submodels and so are countable in number.

Just before we finished checking the final stages of our proof of Theorem
3.5, we heard from Kotlarski that he had proven that the short elementary
initial segments need not be isomorphic. Presumably his proof yields the actual
cardinal calculation as well and he intends to publish his results. This happy
coincidence allows us to be quite sketchy in the exposition of our proof, which
is largely Blass's proof of Theorem 3.4 and in print anyway.

We begin with two lemmas directly from [2]:

3.6 Lemma Let c e N[a]. The following are equivalent:

i. For some F: N[#] -> N [a] definable without parameters,
a. N[tf] 1= F is finite-to-one
b. c = Fa

ii. N[c] <cN[tf].

The point here is that every c e N[a] is of the form Fa. If F is finite-to-
one, while it does not necessarily have an actual inverse, it does have enough of
an inverse to capture something of the magnitude of a from c, and thus to
guarantee the cofinality of l\l[c] in N[a].

3.7 Lemma Lettt[a], N[6] <c ft. There is a c e I ft I such that

N[c] <cH[a] andH[c] <cH[b].

This lemma, the proof of which is based on Lemma 3.6, is the secret
behind the proof of Theorem 3.4. The fact is that only one of the initially
chosen cofinal submodels needs to be simple in its proof. Thus, if 31 is short
and l 0 , l j are cofinal submodels, I o and "the" simple submodel witnessing
the shortness of 31 have a common simple cofinal submodel, which shares a
similar submodel with l l 5 whence Theorem 3.4.

Our reason for stating the weak form of the lemma is to pair it with the
following converse.

3.8 Lemma / / N [ c ] <c N[a] and N[c] <c N[b], there is a model ft such
that

INI [a] <c®andft[b] <c®.

To prove this, simply let %l be an tto-saturated elementary extension of IM[c]
and split:

N[c] <c®<e3l.
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The saturation of -ft allows both IM[<z] and N[b] to be embedded in 3G. Since
N[c] <c K[a] and H[c] <c ti[b], it follows that N[a] <c ft and N[6] -<c ft.

Putting Lemmas 3.6-3.8 together, we get the following characterization.

3.9 Theorem Let T = Th(fi[a]) = Th(tt[b]). The following are equivalent:

i. There is a ft such that

N[a]<c®andN[b] <c ft

ii. There are functions F, G provably total in T such that

2L. T h F, G are finite-to-one
b- tpav = tQbV* where

tcv = \(j>v: N[c] t=0c!

is the type of c.

This theorem furnishes us with the tool needed to construct the non-
isomorphic elementary initial segments promised in the statement of Theorem
3.5. To find nonisomorphic l 0 , s$i <e 1> where 1 is a given recursively
saturated model, we merely diagonalize to find ay b e 111 such that, for all F, G
which Th(sM) declares to be finite-to-one, we have tpav ¥= tQ^v. To obtain a
countable infinity of nonisomorphic such segments, it suffices to find, for all
n e co, a0, . . ., an-x e 111 such that, for all Fo , . . ., Fn-X which Th{3.) declares
finite-to-one, we have tpmv =£ tp.a.v for / =£/. The trick to finding the elements
a0, . . ., an-x is to diagonalize on all tuples (Fo, . . ., Fn-X) to construct the types
tajv of the <z/'s. To guarantee these types to be realized in 1 , it suffices to make
the types standard sets of 1 (cf., e.g., [16]).

We sketch the diagonalization. For notational convenience, we consider
the binary case. Let 1 be given and 7 = 77z(l). Let (Fo> Go), (Fh Gt), . . . be an
enumeration of all pairs of T-provably finite-to-one functions. We construct
types tav, tbV by stages. At the nth stage, we guarantee Fna and Gnb to be of
different types by finding T-provably unbounded sets An, Bn such that
F'nAn n Gn'Bn = </> and letting tav say v e An and t^v say v e Bn. (To guarantee
consistency, one makes descending choices Ao D Ax D . . . and B0D BtD . . ..
The construction is not problematic for Fn and Gn are finite-to-one and avoid-
ing overlaps is easy.)

After co steps, one has partial types

tAv = \v e An: n e co), tBv = {v eBn\ n e co}

recursive in T, hence coded as standard sets of 1 . One now simply chooses tav
and tbV to be completions of tAu and tBu, respectively, coded in 1 .

4 Cofinal extensions and saturation In the last section, we gave a nice
application of cofinal extensions to the study of recursively saturated models.
The significance of cofinal extensions for recursive saturation is even more
direct, as the following result of Smorynski and Stavi (from [17]) shows.

4.1 Theorem Let W<c a.

i. / / 1 is recursively saturated, so is 31
ii. / / 1 is tto-saturated, so is $1.
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The proof is based on two simple ideas. First, if 1 is recursively saturated,
there is a recursive type realized arbitrarily highly in 1 that asserts any element
realizing it to encode a truth definition for all formulas with small parameters.
The arbitrary high realizability of such a type (actually, any type) is inherited
by cofinal extensions. Now, in ft, the elements realizing this type work to
reduce the complexities of formulas in arbitrary recursive types. But it has long
been known (if not actually enunciated) that recursive types consisting of
formulas of bounded complexity are realized. Hence every recursive type over
ft is realized and we have Theorem 4.1.L Assertion 4.1.ii reduces readily to
4.1.i—some parameter from 1 will make any type over ft recursive.

Kotlarski, in [10], has shown Theorem 4.1 to be best possible:

4.2 Theorem K ̂ saturation is not preserved under cofinal extensions.

Kotlarski notes, however, that a simple cofinal extension of an N r

saturated model is again ttrsaturated. Also, if 1 is saturated, some simple
cofinal extension of 1 is saturated. These results compare favorably with
knowledge of end extensions: simple end extensions are short and, hence, not
even recursively saturated.

Another sense in which Theorem 4.1 is best possible is that it is saturation
and not resplendence that the extension preserves.

4.3 Example Resplendence is not preserved under cofinal extensions.

A counterexample is based on two facts: (i) there are countable resplen-
dent models; and (ii) resplendent models are not two-cardinal models. Let 1 be
a countable resplendent model and let / be any initial segment other than co
closed under addition and multiplication. Following Paris and Mills, Theorem
2.4 can be iterated Kx times to obtain 1 <c ft, with/= GCIS(I, ft) and Iftl of
cardinality Xx. Since / remains countable, any definable initial segment
{a: a < b\, with b e I nonstandard, is countable and ft is a two-cardinal model.

Despite this failure, Kotlarski [10] has shown some expandability to be
preserved. For example, he has proven the following:

4.4 Theorem / / 1 is expandable to third-order arithmetic, then every
cofinal extension ft of 5H is expandable to second-order arithmetic.

The situation is reminiscent of that in Section 2, where very strong
properties of/= GC7S(1, ft) entailed moderately strong properties of/+.
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