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Automorphisms of co-Cubes

J. C. E. DEKKER

1 Preliminaries The word set is used for a collection of numbers, class for a
collection of sets. We write e for the set of all numbers, o for the empty set of
numbers, card F for the cardinality of the collection F, and "Pfin{oL) for the class
of all finite subsets of a. If / i s a function of n variables, i.e., a mapping from a
subcollection of tn into e, we denote its domain and range by 5/ and pf
respectively. A collection of functions is called a family. The image under /
of the number n is denoted by fn or /(«), sometimes by both in the same
context. We write a ~ ]3 for a equivalent to 0, a ^ (5 for a recursively equivalent
to ]3, and a © ]3 for the symmetric difference of a and jS. The collection of all
recursive equivalence types (RETs) is denoted by £2, that of all isols by A.
Moreover, £20 = £2 - (0), Ao = A - (0), e0 = e - (0). The reader is referred to
[4] and [8] for the basic properties of RETs and isols. Let (pn) be the canonical
enumeration of the class ^/^(&), i.e., let po^ o and

|

(fl!, . . .,<!*), where

ai, . . ., fl* distinct.

Put rn = card pw, then rw is a recursive function. If a is a finite set, can o denotes
the canonical index of a, i.e., the unique number i such that o = p,-. For a C e,
/ ee ,

[a;/] = \x\px Ca&rx = /}, 2* = {xlp* C a} so that
a~0=*(V/)[[a;i] ~ [j3; /]], a ~ 0 => 2* ~ 2*.

If/is a function of one variable, 6/* = 2df, /*(0) = 0 and

y*(2fl(1) + . . . + 2fl^) = 2 ^ J ) + + 2-^^,

for distinct elements au . . ., % of 6/ Equivalently,

5/* = 2 6 / ,p r ( x ) =/(p x ) .
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It is readily seen that

(1) / 1 - 1 =*/* 1 - \J*g =*/* ^ g * , (/*)• = / V -

We briefly review the material of [5] which is relevant to the present
paper. Note that the vertices of Qn = (0, 1)" can be interpreted as the char-
acteristic functions of subsets of (0, . . . , « - 1), (1, . . . , « ) or any other finite
set of cardinality n. This suggests the possibility of defining Qn in terms of
^Pfiniy)- With a nonempty set v we associate the (directed) cube Qv = (2V, <),
where x < y *=> px Cp^ , for x, j e 2y; we call Qv the co-cube on the set P. An
isomorphism from QM onto Q" is a one-to-one mapping g from 2M onto 2V such
that x <y =>g(x) <g(y), for x, y e 2M, or equivalently, px C py => pgix) C p ^ > ,
for x, y e 2M. An isomorphism is an co-isomorphism, if it has a partial recursive
one-to-one extension. The co-cubes QM and Qv are isomorphic (co-isomorphic) if
there is at least one isomorphism (co-isomorphism) between them. These
equivalence relations are denoted by = and = w . For N e £20 we define Qf* = Qv,
for awy v e N. It can be proved that gM s Qv «=• /i - i;, while QM s w Q^ ^=^
JU =« *>. Thus 2 ^ is uniquely determined by TV up to co-isomorphism, just as Qn is
uniquely determined by n up to isomorphism. We call n the dimension of Qn

and Qv, for card ^ = n; N is the co-dimension of Q^ and Q17, for i^eg ^ = iV. In
symbols,

« = dim Qv = dim Q", for card v - ny n e e0,
iV = dimw Qy = dim^ QN, for Reqv = N,N e £l0.

We use the word graph in the sense of a simple, connected, countable
graph with at least one vertex. Such a graph will be represented by an ordered
pair G = <|8, rj), where p C e and 77 C []3; 2]; a vertex of G is therefore identified
with a number, while an edge of G is identified with the canonical index of the
set consisting of its endpoints. The relation can(p,g) e 17 between the vertices/?
and q of G = (|3,77) is also written: p adj q. With a nonempty set v we associate
the graph Qv = (2V, 17), where

r\ = {can(x, >0 e [2V\ 2]lcard(px © p^) = 1! .

An isomorphism from <2M = <2M, 0) onto Qv = <2P, 77) is a one-to-one mappings
from 2M onto 2y such that can(x, >>) e 0 implies can(^, gy) e 77, for x, y e 2M.
An isomorphism is an co-isomorphism, if it has a partial recursive one-to-one
extension. The graphs QM and Qv are isomorphic {co-isomorphic), if there is at
least one isomorphism (co-isomorphism) between them. These equivalence
relations between graphs are denoted by = and = w . For N e £l0 we define
QN ~ Qv> f° r any v e N. It can be proved that 2M = Qv «=> ji ^ p, while
g M ^ w Qv*=*\i 2* v. Thus Q̂ v is uniquely determined by N up to co-isomorphism
just as Qn is uniquely determined by n up to isomorphism. We call 2n the order
of (?„ and Qv, for card p = «, and 2^ the orrf̂ A* of Qyv and Q,,, for Req v = TV. In
symbols,

2" = oQv = oQn, for card ^ = n, n ee 0 ,
2^ = oQv = OQAT, for ,Rec7 p = N,Ne£l0.

We shall need two propositions of [5].
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Proposition A l . l ( [ 5 ] , P l . l ) Let g be a one-to-one mapping from 2Monto
2V. Then

(a) g is an isomorphism from Q^ onto Qviffg = /*, for some one-to-one func-
tion f from n onto v,

(b) g is an co-isomorphism from gM onto Qv iff g = /* , for some one-to-one
function f from ju onto v with a partial recursive one-to-one extension.

Proposition A1.2 ([5], P3.2) Let g be an isomorphism (co-isomorphism)
from <2M onto Qv. Then g is an isomorphism ( co-isomorphism) from QMonto Qv

iffg(0) = 0.

For a function f(x) we define irf = \x e 8f\f(x) ^x\. L e t / b e a permuta-
tion of the set v. Then / is a finite permutation of v, if irf is finite;/is an
co-permutation of v, if it has a partial recursive one-to-one extension. We write
Per(v) for the family of all permutations of vy Per^iy) for the family of all
co-permutations of v, and Pv for the family of all finite permutations of v. For
the groups under composition formed by these three families we have

Pv<Per0J(p)<Per(v).

If v is finite these three groups are the same. If v is denumerable we have
Pefu>(p) < Per(p), since card Per^iy) = fto> while card Per{v) - c. We shall need a
characterization of the sets v for which Pv = Per^iy). This clearly depends only
on Req v. An RET N is multiple-free, if every even predecessor of Â  is finite.
Trivially, every finite RET is multiple-free. Let R = Req £. If A e £1 - A, we
have R < A, where R = 2R, hence A is not multiple-free. Thus every multiple-
free RET is an isol. There are exactly c infinite isols which are not multiple-
free, since every infinite isol which is even or odd is not multiple-free. There
also are c infinite isols which are multiple-free, e.g., all infinite, indecomposable
isols and every isol which is the sum of two incomparable indecomposable isols
([4],T49).

Proposition A1.3 (12], P7, due to B. Cole) Let N = Req v. Then Pv =
Per^iy) iffN is a multiple-free isol

2 Automorphisms of Qv and Qv An automorphism of Qv (of Qv) is an
isomorphism g from Qv (from Qv) onto itself; g is an co-automorphism of Qv

(of Qv)> if it has a partial recursive one-to-one extension. We define:

Aut Qv = the family of all automorphisms of Qv,
Autu Qv = the family of all co-automorphisms of Qv,
Aut Qv = the family of all automorphisms of Qv,
Aut^ Qv = the family of all co-automorphisms of Qv.

These four families are groups under composition. In case v is finite we have
Autu Qv = Aut Qv and Aut^ Qv = Aut Qv, since every function with a finite
domain is partial recursive. For an elementary discussion of the relationship
between the groups Aut Qv and Aut Qv in the special case v = (1, . . ., n), see
[7], Ch. I Section 9. Henceforth the set v need not be finite, unless this is
explicitly stated. If we take /i = v in Propositions Al . 1 and Al .2 we obtain:

Proposition A2.1 Let g be a permutation of2v. Then
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(a) g e Aut Qv iffg = /* , for some f e Per(v),
(b) g e AutuQv iffg = f*,for some f e Per'Jy).

Proposition A2.2 Let g e Aut Qv [or e Aut^ Qv}. Then g e Aut Qv [or e
AutOJQ

v]iffg(0) = 0.

Remark: Let the mapping 0 have Per(y) as domain and let 0(/) = /* , 0^ =
^[Per^iy). Then we see by (1) and A2.1 that 0 is an isomorphism from Per{v)
onto Aut Qv, while 0W is an isomorphism from Per^iy) onto Autu Qv. The
mapping 0^ is effective in the sense that given any fe Per^{v), say by a defini-
tion of a partial recursive one-to-one extension /o f / , we can find a definition
of a partial recursive one-to-one extension of/*, namely/*.

We now turn to the question of how Aut^ Qv can be expressed in terms of
Aut^ Qv. The identity function on £ will be denoted by /.

Definition For a e £,

I x + 2a, for a 4 px.

x - 2a, for a e px.

Note that ca is a recursive function, irca = £, and cac^ = Q,ca, for a, b e t.

Proposition A2.3 Let a e e. 77*erc f/ze function ca is a recursive permutation
ofz, an involution and a recursive automorphism of the graph Qc.

Proof: Let a et. From now on we keep a fixed and write/= ca. The recursive
function / is an involution, since f2 = / and /(0) =£ 0; hence / i s a recursive
permutation of £.

Assume x adjjy, i.e., card(p^ © p-̂ ) = I. Then either: (1) px ® Py ~ (fl) or
(2) px ® Py - (b), for some b =£ a. If (1) holds, px ~ Py ^ («)? where a ^ p^, or
p^ = px U (a), where a 4 px. We may assume without loss of generality that
px = py U (a), where a 4 py. Then x = >> + 2fl, 3/ = x - 2a, hence /(x) =y, f(y) = x
and/(x)adj / ( ^ ) . Now assume (2) holds. Since px and p^ only differ in b, where
b =£a we have: either a e p* H p^ or a 4 px U p^. In the former case (px - (a)) ©
(Py - (a)) has cardinality 1, hence can(px - (a))adj can(p-j; - (a)), i.e.,
/ (x)adj /O). In the latter case, (px U (a)) © (py U (a)) has cardinality 1, hence
can(px U (fl))adj can(py U(a)), i.e.,/(x)adj/(^).

Remark: Let a € p, / = ca\2\ then / e ^wrw Qv. However, /(0) = 2fl, hence
f 4 Aut^ Qv by A2.2. Thus^w/^ Qv <Aut^ Qv, whenever v is nonempty.

Definition For a e"Pfin(t).

I i, ifa = o,

Caiiy- • -'Ca(kh if a^o, carda = /c, OL = (au . . .,ak).
Proposition A2.4 For every finite set a, ca is a recursive permutation oft.
Moreover, cac@ = ca® ,̂ for a, (5 e 'Pfin{t). Also, ca is an involution for a =£ 0.

Proof: Let a e 1°fin(z). The first statement follows immediately from the
definition of ca. Now assume a, jS e *Pfin(£), 7 = ce n j3. Then 7 is finite and
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cacp = ca-(p)Cp-.(P), for each p e 7. We conclude that caCp = c^-^c^-y, where
a - 7, ]3 - 7 are disjoint; then cac^ = C(a_7)U^_7) = ca0/3. Let a =£ 0; then ca=£ /
and c\ = ca0Q = c0 = /. Thus ca is an involution.

Notations: If v is known from the context,

c#=ca\2
v, c*= cj2", ioraev,ae Pfin(y\

Cv = \cZ\ae{>fin(v)\.

Proposition A2.5 The mapping 0(a) = ca from "Pfmit) onto Ct is an iso-
morphism from the group i'Pfmiz), ®) onto the group formed by Q under
composition. Similarly, the mapping 0(o:) = c* is an isomorphism from the
group ('Pfmiv), ®) onto the group formed by Cv under composition.

Proof: Since 0(a © j3) = cac^ it suffices to show that 0 is one-to-one. For
a , / 3 e ^ ( e ) ,

a^j3=>a©j3^o=» cae^ ̂  / => c^c^ =£i=>ca=t c}1 ^ca^c^.

Remark: If v is infinite, the Abelian group ('Pfmiv), ®) is isomorphic to Z^0, i.e.,
the direct sum of No copies of Z2.

If H and K are subgroups of a group G with unit element /, we say that G
is the semidirect product of H by K (written: G = H X K), if HK = G, H n A: =
(0, # < G. We call G the cf/recr product of # and A:, if we also have K < G, i.e.,
if both 77 and K are normal subgroups of G.

Proposition A2.6 For ̂  C e,

(a) AutQv = CvXAutQv,
(b) i4MfwQi; = CI,X,4MfCl,G

I\

Proof: To prove (a) it suffices to show:

(1) feAut Qv -> (3*)(3/i)[/=s/! &g e C, &A e^l^r Qv],
(2) C,n^wr(2^ = (i),
(3) Cv<AutQv.

Re{\). Let feAut QVy / (0) = b,p = pbi then 0 e ^ O ) and c# e Cv. Hence
^V(O) = 0, c^ x /e ^w/1 Q" and c$- c$ Vis an expression of / in the desired
form.

Re (2)./e Cp n Aut Qv =>/(0) = 0 &/e C, =>/= c#= 1.
/^^ (3). We only need to show

(cfhylCv(c$h) C Cv, for 0 e ?&(?), h e Aut Qv.

Since cflCvc#= Cv, it suffices to prove that h'lCvh C Cy, for A e ylwr Qv. Note
that c^can(^) = can(0 © ̂ ), for ^ e "Pfin(y). Assume h e Aut Qv and g e Cv, say
h = /* , for / e ftr (?) and g = c ,̂ for ]8 e ̂ ( i * ) . Put 7 = f'\P\ then 7 e ^ M ,
and for a e "Pfmiv),

/f VKcan a) = (/*r1c^/*(can a) = (/" 1)*^/*(can a) =
( / " ^ [ c a n / C a ) ] = (/"1)*can[jS e/(a)] =

can/"1^ ©/(a)] = cant/"1^) © a] = can(7 © a) = c#(a).
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Thus h'lgh e Cv. We have proved that h"lCvh C Cv. We now consider (b). First
of all, Cv consists of co-automorphisms of Qu, hence Cv < Aut^ Qv, while
Autu Qv <Aut(j0 Qv. To finish the proof of (b) it suffices to show that

(1') fe Aut^ Qv =* (3s)(3/i)[/ = gh 8cgeCv8che Aut^ Qv],

since the co-analogues (2') and (3') of (2) and (3) follow immediately from (2)
and (3). Let / e Aut» Qv, / (0) = b, p = ph. Then / = c$-c$f, where c# e Cv,
c$fe Aut Qv. Both cf and / have partial recursive one-to-one extensions, hence
so has cff. It follows that c%fe Aut^ Qv.

Remark: If card v> 2 the two semidirect products are not direct. First con-
sider the product in (a). Let p, q e v, p =£ q, f the permutation of v which
interchanges p and q, and h = /* . Put g = Cp, then g e Cu, hence g e Aut Qv.
Since g = g"1 we have ghg e g Aut Qvg~l. However, ghg(0) = gh(2p) = g(2fip)) =
g(2i) = 2P + 2«, so thatghg(0) =t 0 andg/zg 4 Aut Qv\ thus Aut QV <Aut Qv is
false. The functions g and h can also be used to show that Aut^ Qv <\Autw 2^!
is false.

J co-Groups Consider countable groups G - (v, g), where v C c, g is the
group operation and /z(x) = x"1, for x e v. If such a group G is finite, i.e., if the
set v is finite, the functions g and h are partial recursive, but if G is denumer-
able, this need not be the case. The group G = (p, g) is re., if v is r.e. andg is
partial recursive (hence so is h). We call G an co-group, if both g and h have
partial recursive extensions. Thus every r.e. group is an co-group and so is each
of its subgroups, co-groups were introduced by Hassett [6] and also studied by
Applebaum [ 1 ]-[3]. The order oG of the co-group G = (pt g) is defined as Req P;
thus oG has the usual meaning iff G is finite. An co-isomorphism from the
co-group Gj = (ph gx) onto the co-group G2 = (P2, £2^ is a n isomorphism from Gx

onto G2 with a partial recursive one-to-one extension. Gx is oo-isomorphic to G2

(written: Gj = w G2), if there is at least one co-isomorphism from Gx onto G2.
Two finite groups are therefore co-isomorphic iff they are isomorphic. Let
TV e £20, p e N. In this section we shall show that the group Pv of all finite
permutations of P can be represented by (i.e., is isomorphic to) an co-group P,,
of order TV!, while the group Cv - \c%la e "Pfin(p)\ can be represented by an
co-group Z2(P) of order 2N. We first define a Godel-numbering for the family P^
of all finite permutations of e. Let / again denote the identity mapping on e and
let qn-i stand for the nth odd prime number, for n > 1.

Notations: For / e Pt, p C e,

(1, , i f / = f ,
f ={ n

\2"+1 U [« (* / ) ] A ( 0 + 1 , i f / ^ /, TT/= Uo, • • ., x,),
v /=0

Pe = <r?, p), where 77 = f / I / e Pe!, p(l g) = &
? v = (p, pu), w h e r e p = {fe T ^ I T T / C P \ , p v = p \ p X p .

Thus 77 is an infinite, recursive set, p a partial recursive function and Pe a
r.e. group isomorphic to Pt. Moreover, for every choice of the set pt Pv is an
co-group isomorphic to Pv.
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In order to represent the group Ce by a r.e. group it suffices by A2.5 to do
this for the group < /^ (£ ) , e>.

Notations: For v C e,

Z2(e) = <2E, g), where g(x, y) = can (px © py),
Z2OO = <2"> ̂  where gv = g\ 2V X 2".

Clearly, 2C = e and Z2(e) is a r.e. group, while Z2(p) < Z2(e), for ^ Ce . More-
over, the group Cv can be represented by the co-group Z2(v).

Proposition A3.1 For ju, v C e,

(a) /x ~ j ; <==> PM ̂ w Py ,
(b) ^ ^ Z 2 W = W Z 2 W .

Proof: (a) The => part follows immediately from the definitions of the concepts
involved and of f The <= part is due to Applebaum ([3], Section 3). (b) Let
JU ̂  v, say JU C 8q, q(fx) = y, where q is a partial recursive one-to-one function.
P u t / = q*, then 2^ C 5/, /(2M) = 2", where/is also a partial recursive one-to-one
function. Moreover, for x, y e bf,

g[f(x),f(y)] = can[p/(jc) © p/^)] = can[p^*(x) © p^*^)]
= can[^(px) © q(py)] = can ̂ [px © py] = can ^ ( x > / )
= can pq*g(x,y) = ̂ *?U, J>) = M x , ̂ )-

Thus / is an isomorphism from Z2(5/) onto Z2(p/), while /12M is an co-
isomorphism from Z2(/x) onto Z2(^).

Definition Z^ = Z2(^), PTV = P*,, for v e N, N e £l0.

In view of A3.1 the co-groups Z^ and P^ are unique up to co-isomorphism.

Proposition A3.2 oZ^ = 2N and oPN = N!, for N e £l0.

Proof: Let for v e Pfin(t), <$>(y) = [x\px C v\9 V(v) = \fe ryk/C j;}, then $ and
^ are recursive, combinatorial operators inducing the functions 2n and n\
respectively. Hence for N = Req v, we have oZ^ = Req <&(v) = 2N and
o?N = Req ^(p)=N\.

4 The main result

Theorem Let v e N and N e £20. Then

(a) Aut^ Qv = Cv X Aut^ Qv, i.e., Aut^ Qv is the semidirect product of Cv by
Aut^ Q\

(b) the group Cv can be represented by the oo-group Z^ of order 2N,
(c) if N is a multiple-free isol, the group Aut^ Qv can be represented by the

co-group fyy of order N\,
(d) / / Â  is a multiple-free isol, the group Aut^ Qv can be represented by an

co-group of order 2N-N\

Proof: Parts (a), (b), and (c) follow from A1.3, A2.5, A2.6, A3.2 and the
Remark following A2.2. To prove (d) assume that N is a multiple-free isol. We
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shall use the recursive function j(x, y) = x + (x + y)(x + y + l)/2. Define a set £„
and a function /^ by:

Pv = \j(a,f)\ae2»&fePv\,
bhv = fiv, hvj(a, f) = c%f*, where a = pa.

We claim: (i) hv maps /?„ one-to-one onto Autu(Qv), and (ii) there is a group
operation ^ on Pv such that Ĝ  = (f}v, tv) is an co-group which is isomorphic
to Aut^Qv.

Re (i). Let j(a, f) e ft,. Then a e 2\ a e Pfin(y\ c# e Cv a n d / e Pv, fe Pv,
/ * e i4wfw Q". Thus cf/* e ylw^ Q^ by A2.6. If a ranges over 2V', then c£ ranges
over Cv. Also, if / ranges over Pv, then / ranges over Pv and since Pv = P^iy)
(N being multiple-free), / * ranges over Aut^ Qv. Thus hv maps f$v onto ^Iwr^ (?„.
The fact that Cv O ,4wrw Qv = (/) implies that each member of Aut^ Qv can be
expressed in exactly one way as cf/*, with cf e Cv a n d / e P^; thus the function
hv is one-to-one.

Re (ii). Let for x, y e fiv the unique element z e jŜ  such that hv{z) - sxsy,
where sx - hv(x), sy = hv(y), be denoted by tv{x, y). Put Gv = ($Vy tv), then
Gv = ylw/^ Qj,. In order to show that Gv is an co-group we define /3e, /zc, tt in
terms of c as we defined /?„, /zy, ^ in terms of ^. Put Gt = <|3e, rc), then Gv < GE

and it can be proved that Gt is a r.e. group. Hence Gv is an co-group. We note in
passing that ht maps Gt onto a proper subgroup of Autu Qt, since Req t is not
multiple-free, hence Pz C+ P^it). Clearly,

oGv = i^e^ ^ = Req 2V- Req Pv = 2N- N\

5 Concluding remarks (A) Uniformity. Let us call an co-group uniform, if
it is a subgroup of a r.e. group. Remmel [9] proved that an co-group need not
be uniform. Let v be a nonempty set. Then Z2(V) ^ Z2(£) and Pv < Pe, where
Z2(£) and PE are r.e. groups, hence Z2(V) and Pv are uniform co-groups. In view
of the proof of the theorem of Section 4 we conclude that the groups Aut^ Qv

and Aut^ Qv can be represented by uniform co-groups, for every nonzero,
multiple-free isol N.

(B) The simplex. The graph G = (/}, T?> is called an co-graph, if it has a
minimal path algorithm, i.e., if there is an effective procedure which enables us,
given any two distinct vertices of G, to find a shortest path between them. It
was proved in [5] that Qv is an co-graph for every nonempty set v. We briefly
indicate how one can associate with every nonempty set v an co-graph Sv which
is related to a simplex as Qv is related to a cube. Put v* = \2x e t\x e v\ U (1).
Define Sv = <^*, r?>, where rj = [v*\ 2], i.e., let Sv be the complete graph on v*.
Clearly, fi ^ v implies ju* ^ v* and 5M ^ ^ Sv. There is only one minimal path
between two distinct vertices of SVi namely the edge joining them; thus Sv is an
co-graph. Define Syy = Sv, for v e N, N e ^20, then the co-graph SV is unique up to
co-isomorphism. We call N the ^-dimension oiSv and SN. If Sv = <^*, ?7> we have
Req v* = N + 1 and Req rj = [N + 1; 2], the canonical extension of the recur-
sive, combinatorial function n(n + l)/2. Since 17 = [v*\2] we see that every
permutation of v* preserves adjacency, i.e., is an automorphism of Sv. An
automorphism of Sv is called an co-automorphism, if it has a partial recursive
one-to-one extension. Thus Aut Sv - Per(y*) and Aut0JSv = Per^iv*). We
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conclude that for v e N, N e Ao and N multiple-free, the group Aut^ Sv can be
represented by the uniform co-group P^* of order (N + 1)!.

(C) Opposite vertices. Call the RET TV = Req v finite, if the set v is finite,
but infinite, if the set v is infinite. Define the distance d(x, y) between the
vertices x and y of Qv as card(px © py), i.e., as the number of components in
which x and y differ, when they are interpreted as sequences of zeros and ones.
If v and TV are finite, there is for every vertex x of Qv a unique opposite vertex
y, i.e., a vertex y such that d(x, y) assumes its maximal value, namely N. On the
other hand, if v and TV are infinite, we have ld(x, y) e t\y e 2V\ = c, so that x
has no opposite vertex. If we define a diagonal of Qv as a "line-segment" whose
endpoints are vertices of Qv, but not of any r-dimensional face of Qv with
r < N, then Qv has diagonals iff v is finite, i.e., iff N e £. In fact, if TV is finite,
Qv has 2N~l diagonals, since any two opposite vertices determine the same
diagonal.
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