Notre Dame Journal of Formal Logic Volume 22, Number 2, April 1981

Automorphisms of ω -Cubes

J. C. E. DEKKER

1 **Preliminaries** The word set is used for a collection of numbers, class for a collection of sets. We write ε for the set of all numbers, o for the empty set of numbers, card Γ for the cardinality of the collection Γ , and $\mathcal{P}_{fin}(\alpha)$ for the class of all finite subsets of α . If f is a function of n variables, i.e., a mapping from a subcollection of ε^n into ε , we denote its domain and range by δf and ρf respectively. A collection of functions is called a *family*. The image under f of the number n is denoted by f_n or f(n), sometimes by both in the same context. We write $\alpha \sim \beta$ for α equivalent to β , $\alpha \simeq \beta$ for α recursively equivalent to β , and $\alpha \oplus \beta$ for the symmetric difference of α and β . The collection of all recursive equivalence types (RETs) is denoted by Ω , that of all isols by Λ . Moreover, $\Omega_0 = \Omega - (0)$, $\Lambda_0 = \Lambda - (0)$, $\varepsilon_0 = \varepsilon - (0)$. The reader is referred to [4] and [8] for the basic properties of RETs and isols. Let $\langle \rho_n \rangle$ be the canonical enumeration of the class $\mathcal{P}_{fin}(\varepsilon)$, i.e., let $\rho_0 = 0$ and

$$\rho_{n+1} = \begin{cases} (a_1, \dots, a_k), \text{ where} \\ n+1 = 2^{a(1)} + \dots + 2^{a(k)}, \\ a_1, \dots, a_k \text{ distinct.} \end{cases}$$

Put $r_n = \operatorname{card} \rho_n$, then r_n is a recursive function. If σ is a finite set, can σ denotes the *canonical index* of σ , i.e., the unique number *i* such that $\sigma = \rho_i$. For $\alpha \subset \varepsilon$, $i \in \varepsilon$,

$$[\alpha; i] = \{x \mid \rho_x \subset \alpha \& r_x = i\}, 2^{\alpha} = \{x \mid \rho_x \subset \alpha\} \text{ so that} \\ \alpha \simeq \beta \Rightarrow (\forall i) [[\alpha; i] \simeq [\beta; i]], \alpha \simeq \beta \Rightarrow 2^{\alpha} \simeq 2^{\beta}.$$

If f is a function of one variable, $\delta f^* = 2^{\delta f}$, $f^*(0) = 0$ and

$$f^*(2^{a(1)} + \ldots + 2^{a(k)}) = 2^{fa(1)} + \ldots + 2^{fa(k)}.$$

for distinct elements a_1, \ldots, a_k of δf . Equivalently,

$$\delta f^* = 2^{\delta f}, \, \rho_{f^*(x)} = f(\rho_x).$$

Received June 23, 1980; revised August 11, 1980

It is readily seen that

(1)
$$f = 1 \to f^* = 1, f \neq g \Rightarrow f^* \neq g^*, (fg)^* = f^*g^*.$$

We briefly review the material of [5] which is relevant to the present paper. Note that the vertices of $Q^n = (0, 1)^n$ can be interpreted as the characteristic functions of subsets of $(0, \ldots, n-1), (1, \ldots, n)$ or any other finite set of cardinality n. This suggests the possibility of defining Q^n in terms of $\mathcal{P}_{\text{fin}}(\nu)$. With a nonempty set ν we associate the (directed) cube $Q^{\nu} = \langle 2^{\nu}, \leqslant \rangle$, where $x \leq y \iff \rho_x \subset \rho_y$, for x, $y \in 2^{\nu}$; we call Q^{ν} the ω -cube on the set ν . An isomorphism from Q^{μ} onto Q^{ν} is a one-to-one mapping g from 2^{μ} onto 2^{ν} such that $x \leq y \Rightarrow g(x) \leq g(y)$, for x, $y \in 2^{\mu}$, or equivalently, $\rho_x \subset \rho_y \Rightarrow \rho_{g(x)} \subset \rho_{g(y)}$, for x, y $\in 2^{\mu}$. An isomorphism is an ω -isomorphism, if it has a partial recursive one-to-one extension. The ω -cubes Q^{μ} and Q^{ν} are isomorphic (ω -isomorphic) if there is at least one isomorphism (ω -isomorphism) between them. These equivalence relations are denoted by \cong and \cong_{ω} . For $N \in \Omega_0$ we define $Q^N = Q^{\nu}$, for any $\nu \in N$. It can be proved that $Q^{\mu} \cong Q^{\nu} \iff \mu \sim \nu$, while $Q^{\mu} \cong_{\omega} Q^{\nu} \iff$ $\mu \simeq \nu$. Thus Q^N is uniquely determined by N up to ω -isomorphism, just as Q^n is uniquely determined by n up to isomorphism. We call n the dimension of Q^n and Q^{ν} , for card $\nu = n$; N is the ω -dimension of Q^{N} and Q^{ν} , for Req $\nu = N$. In symbols,

$$n = \dim Q^{\nu} = \dim Q^{n}, \text{ for card } \nu = n, n \in \varepsilon_{0},$$

$$N = \dim_{\omega} Q^{\nu} = \dim_{\omega} Q^{N}, \text{ for } Req \nu = N, N \in \Omega_{0}.$$

We use the word graph in the sense of a simple, connected, countable graph with at least one vertex. Such a graph will be represented by an ordered pair $G = \langle \beta, \eta \rangle$, where $\beta \subset \varepsilon$ and $\eta \subset [\beta; 2]$; a vertex of G is therefore identified with a number, while an edge of G is identified with the canonical index of the set consisting of its endpoints. The relation $can(p,q) \in \eta$ between the vertices p and q of $G = \langle \beta, \eta \rangle$ is also written: p adj q. With a nonempty set ν we associate the graph $Q_{\nu} = \langle 2^{\nu}, \eta \rangle$, where

$$\eta = \{\operatorname{can}(x, y) \in [2^{\nu}; 2] | \operatorname{card}(\rho_x \oplus \rho_y) = 1\}.$$

An isomorphism from $Q_{\mu} = \langle 2^{\mu}, \theta \rangle$ onto $Q_{\nu} = \langle 2^{\nu}, \eta \rangle$ is a one-to-one mapping g from 2^{μ} onto 2^{ν} such that $\operatorname{can}(x, y) \in \theta$ implies $\operatorname{can}(g_x, g_y) \in \eta$, for $x, y \in 2^{\mu}$. An isomorphism is an ω -isomorphism, if it has a partial recursive one-to-one extension. The graphs Q_{μ} and Q_{ν} are isomorphic (ω -isomorphic), if there is at least one isomorphism (ω -isomorphism) between them. These equivalence relations between graphs are denoted by \cong and \cong_{ω} . For $N \in \Omega_0$ we define $Q_N = Q_{\nu}$, for any $\nu \in N$. It can be proved that $Q_{\mu} \cong Q_{\nu} \iff \mu \sim \nu$, while $Q_{\mu} \cong_{\omega} Q_{\nu} \iff \mu \simeq \nu$. Thus Q_N is uniquely determined by N up to ω -isomorphism just as Q_n is uniquely determined by n up to isomorphism. We call 2^n the order of Q_n and Q_{ν} , for card $\nu = n$, and 2^N the order of Q_N and Q_{ν} , for $Req \ \nu = N$. In symbols,

$$2^{n} = oQ_{\nu} = oQ_{n}, \text{ for card } \nu = n, n \in \varepsilon_{0},$$

$$2^{N} = oQ_{\nu} = oQ_{N}, \text{ for } Req \ \nu = N, N \in \Omega_{0}.$$

We shall need two propositions of [5].

Proposition A1.1 ([5], P1.1) Let g be a one-to-one mapping from 2^{μ} onto 2^{ν} . Then

- (a) g is an isomorphism from Q^{μ} onto Q^{ν} iff $g = f^*$, for some one-to-one function f from μ onto ν ,
- (b) g is an ω -isomorphism from Q^{μ} onto Q^{ν} iff $g = f^*$, for some one-to-one function f from μ onto ν with a partial recursive one-to-one extension.

Proposition A1.2 ([5], P3.2) Let g be an isomorphism (ω -isomorphism) from Q_{μ} onto Q_{ν} . Then g is an isomorphism (ω -isomorphism) from Q^{μ} onto Q^{ν} iff g(0) = 0.

For a function f(x) we define $\pi f = \{x \in \delta f | f(x) \neq x\}$. Let f be a permutation of the set ν . Then f is a *finite* permutation of ν , if πf is finite; f is an ω -permutation of ν , if it has a partial recursive one-to-one extension. We write $Per(\nu)$ for the family of all permutations of ν , $Per_{\omega}(\nu)$ for the family of all ω -permutations of ν , and P_{ν} for the family of all finite permutations of ν . For the groups under composition formed by these three families we have

$$P_{\nu} \leq Per_{\omega}(\nu) \leq Per(\nu).$$

If ν is finite these three groups are the same. If ν is denumerable we have $Per_{\omega}(\nu) < Per(\nu)$, since card $Per_{\omega}(\nu) = \aleph_0$, while card $Per(\nu) = c$. We shall need a characterization of the sets ν for which $P_{\nu} = Per_{\omega}(\nu)$. This clearly depends only on $Req \nu$. An RET N is multiple-free, if every even predecessor of N is finite. Trivially, every finite RET is multiple-free. Let $R = Req \varepsilon$. If $A \in \Omega - \Lambda$, we have $R \leq A$, where R = 2R, hence A is not multiple-free. Thus every multiple-free, since every infinite isol which is even or odd is not multiple-free. There also are c infinite isols which are multiple-free, e.g., all infinite, indecomposable isols and every isol which is the sum of two incomparable indecomposable isols ([4], T49).

Proposition A1.3 ([2], P7, due to B. Cole) Let $N = Req \nu$. Then $P_{\nu} = Per_{\omega}(\nu)$ iff N is a multiple-free isol.

2 Automorphisms of Q^{ν} and Q_{ν} An automorphism of Q^{ν} (of Q_{ν}) is an isomorphism g from Q^{ν} (from Q_{ν}) onto itself; g is an ω -automorphism of Q^{ν} (of Q_{ν}), if it has a partial recursive one-to-one extension. We define:

Aut Q^{ν} = the family of all automorphisms of Q^{ν} , Aut_{ω} Q^{ν} = the family of all ω -automorphisms of Q^{ν} , Aut Q_{ν} = the family of all automorphisms of Q_{ν} , Aut_{ω} Q_{ν} = the family of all ω -automorphisms of Q_{ν} .

These four families are groups under composition. In case ν is finite we have $Aut_{\omega} Q^{\nu} = Aut Q^{\nu}$ and $Aut_{\omega} Q_{\nu} = Aut Q_{\nu}$, since every function with a finite domain is partial recursive. For an elementary discussion of the relationship between the groups $Aut Q^{\nu}$ and $Aut Q_{\nu}$ in the special case $\nu = (1, ..., n)$, see [7], Ch. I Section 9. Henceforth the set ν need not be finite, unless this is explicitly stated. If we take $\mu = \nu$ in Propositions A1.1 and A1.2 we obtain:

Proposition A2.1 Let g be a permutation of 2^{ν} . Then

(a) g ∈ Aut Q^ν iff g = f*, for some f ∈ Per(ν),
(b) g ∈ Aut_ω Q^ν iff g = f*, for some f ∈ Per_ω(ν).

Proposition A2.2 Let $g \in Aut Q_{\nu}$ [or $\in Aut_{\omega} Q_{\nu}$]. Then $g \in Aut Q^{\nu}$ [or $\in Aut_{\omega} Q^{\nu}$] iff g(0) = 0.

Remark: Let the mapping ϕ have $Per(\nu)$ as domain and let $\phi(f) = f^*$, $\phi_{\omega} = \phi | Per_{\omega}(\nu)$. Then we see by (1) and A2.1 that ϕ is an isomorphism from $Per(\nu)$ onto $Aut Q^{\nu}$, while ϕ_{ω} is an isomorphism from $Per_{\omega}(\nu)$ onto $Aut_{\omega} Q^{\nu}$. The mapping ϕ_{ω} is effective in the sense that given any $f \in Per_{\omega}(\nu)$, say by a definition of a partial recursive one-to-one extension \overline{f} of f, we can find a definition of a partial recursive one-to-one extension of f^* , namely $\overline{f^*}$.

We now turn to the question of how $Aut_{\omega} Q_{\nu}$ can be expressed in terms of $Aut_{\omega} Q^{\nu}$. The identity function on ε will be denoted by *i*.

Definition For $a \in \varepsilon$,

$$\delta c_a = \varepsilon, c_a(x) = \begin{cases} x + 2^a, \text{ for } a \notin \rho_x. \\ x - 2^a, \text{ for } a \in \rho_x. \end{cases}$$

Note that c_a is a recursive function, $\pi c_a = \varepsilon$, and $c_a c_b = c_b c_a$, for $a, b \in \varepsilon$.

Proposition A2.3 Let $a \in \varepsilon$. Then the function c_a is a recursive permutation of ε , an involution and a recursive automorphism of the graph Q_{ε} .

Proof: Let $a \in \varepsilon$. From now on we keep a fixed and write $f = c_a$. The recursive function f is an involution, since $f^2 = i$ and $f(0) \neq 0$; hence f is a recursive permutation of ε .

Assume x adj y, i.e., $\operatorname{card}(\rho_x \oplus \rho_y) = 1$. Then either: (1) $\rho_x \oplus \rho_y = (a)$ or (2) $\rho_x \oplus \rho_y = (b)$, for some $b \neq a$. If (1) holds, $\rho_x = \rho_y \cup (a)$, where $a \notin \rho_y$, or $\rho_y = \rho_x \cup (a)$, where $a \notin \rho_x$. We may assume without loss of generality that $\rho_x = \rho_y \cup (a)$, where $a \notin \rho_y$. Then $x = y + 2^a$, $y = x - 2^a$, hence f(x) = y, f(y) = xand f(x) adj f(y). Now assume (2) holds. Since ρ_x and ρ_y only differ in b, where $b \neq a$ we have: either $a \in \rho_x \cap \rho_y$ or $a \notin \rho_x \cup \rho_y$. In the former case $(\rho_x - (a)) \oplus$ $(\rho_y - (a))$ has cardinality 1, hence $\operatorname{can}(\rho_x - (a))$ adj $\operatorname{can}(\rho_y - (a))$, i.e., f(x) adj f(y). In the latter case, $(\rho_x \cup (a)) \oplus (\rho_y \cup (a))$ has cardinality 1, hence $\operatorname{can}(\rho_x \cup (a))$ adj $\operatorname{can}(\rho_y \cup (a))$, i.e., f(x) adj f(y).

Remark: Let $a \in v$, $f = c_a | 2^{\nu}$, then $f \in Aut_{\omega} Q_{\nu}$. However, $f(0) = 2^a$, hence $f \notin Aut_{\omega} Q^{\nu}$ by A2.2. Thus $Aut_{\omega} Q^{\nu} < Aut_{\omega} Q_{\nu}$, whenever ν is nonempty.

Definition For $\alpha \, \epsilon \, \mathcal{P}_{fin}(\epsilon)$.

$$\delta c_{\alpha} = \varepsilon, c_{\alpha} = \begin{cases} i, & \text{if } \alpha = o, \\ c_{a(1)} \cdot \ldots \cdot c_{a(k)}, & \text{if } \alpha \neq o, \text{ card } \alpha = k, \alpha = (a_1, \ldots, a_k). \end{cases}$$

Proposition A2.4 For every finite set α , c_{α} is a recursive permutation of ε . Moreover, $c_{\alpha}c_{\beta} = c_{\alpha^{\oplus}\beta}$, for α , $\beta \in \mathcal{P}_{fin}(\varepsilon)$. Also, c_{α} is an involution for $\alpha \neq 0$.

Proof: Let $\alpha \in \mathcal{P}_{fin}(\varepsilon)$. The first statement follows immediately from the definition of c_{α} . Now assume α , $\beta \in \mathcal{P}_{fin}(\varepsilon)$, $\gamma = \alpha \cap \beta$. Then γ is finite and

 $c_{\alpha}c_{\beta} = c_{\alpha-(p)}c_{\beta-(p)}$, for each $p \in \gamma$. We conclude that $c_{\alpha}c_{\beta} = c_{\alpha-\gamma}c_{\beta-\gamma}$, where $\alpha - \gamma$, $\beta - \gamma$ are disjoint; then $c_{\alpha}c_{\beta} = c_{(\alpha-\gamma)}\cup_{(\beta-\gamma)} = c_{\alpha\oplus\beta}$. Let $\alpha \neq o$; then $c_{\alpha}\neq i$ and $c_{\alpha}^2 = c_{\alpha\oplus\alpha} = c_o = i$. Thus c_{α} is an involution.

Notations: If v is known from the context,

$$c_a^{\#} = c_a | 2^{\nu}, c_{\alpha}^{\#} = c_{\alpha} | 2^{\nu}, \text{ for } a \in \nu, \alpha \in \mathcal{P}_{fin}(\nu),$$
$$C_{\nu} = \{ c_{\alpha}^{\#} | \alpha \in \mathcal{P}_{fin}(\nu) \}.$$

Proposition A2.5 The mapping $\phi(\alpha) = c_{\alpha}$ from $\mathcal{P}_{fin}(\varepsilon)$ onto C_{ε} is an isomorphism from the group $\langle \mathcal{P}_{fin}(\varepsilon), \oplus \rangle$ onto the group formed by C_{ε} under composition. Similarly, the mapping $\phi(\alpha) = c_{\alpha}^{\#}$ is an isomorphism from the group $\langle \mathcal{P}_{fin}(\nu), \oplus \rangle$ onto the group formed by C_{ν} under composition.

Proof: Since $\phi(\alpha \oplus \beta) = c_{\alpha}c_{\beta}$ it suffices to show that ϕ is one-to-one. For $\alpha, \beta \in \mathcal{P}_{fin}(\varepsilon)$,

$$\alpha \neq \beta \Rightarrow \alpha \oplus \beta \neq o \Rightarrow c_{\alpha \oplus \beta} \neq i \Rightarrow c_{\alpha}c_{\beta} \neq i \Rightarrow c_{\alpha} \neq c_{\beta}^{-1} \Rightarrow c_{\alpha} \neq c_{\beta}$$

Remark: If ν is infinite, the Abelian group $\langle \mathcal{P}_{fin}(\nu), \oplus \rangle$ is isomorphic to $\mathbb{Z}_{2}^{\aleph_{0}}$, i.e., the direct sum of \aleph_{0} copies of \mathbb{Z}_{2} .

If H and K are subgroups of a group G with unit element i, we say that G is the *semidirect* product of H by K (written: $G = H \times K$), if HK = G, $H \cap K = (i)$, $H \triangleleft G$. We call G the *direct* product of H and K, if we also have $K \triangleleft G$, i.e., if both H and K are normal subgroups of G.

Proposition A2.6 For $\nu \subset \varepsilon$,

(a) Aut $Q_{\nu} = C_{\nu} \times Aut Q^{\nu}$,

(b) $Aut_{\omega} Q_{\nu} = C_{\nu} \times Aut_{\omega} Q^{\nu}$.

Proof: To prove (a) it suffices to show:

- (1) $f \in Aut \ Q_{\nu} \Rightarrow (\exists g)(\exists h)[f = gh \& g \in C_{\nu} \& h \in Aut \ Q^{\nu}],$
- (2) $C_{\nu} \cap Aut \ Q^{\nu} = (i),$
- (3) $C_{\nu} \triangleleft Aut Q_{\nu}$.

Re (1). Let $f \in Aut Q_{\nu}$, f(0) = b, $\beta = \rho_b$, then $\beta \in \mathcal{P}_{fin}(\nu)$ and $c_{\beta}^{\#} \in C_{\nu}$. Hence $c_{\beta}^{\#^{-1}}f(0) = 0$, $c_{\beta}^{\#^{-1}}f \in Aut Q^{\nu}$ and $c_{\beta}^{\#} \cdot c_{\beta}^{\#^{-1}}f$ is an expression of f in the desired form.

Re (2). $f \in C_{\nu} \cap Aut \ Q^{\nu} \Rightarrow f(0) = 0 \& f \in C_{\nu} \Rightarrow f = c_o^{\#} = i.$ Re (3). We only need to show

$$(c_{\beta}^{\#}h)^{-1}C_{\nu}(c_{\beta}^{\#}h) \subseteq C_{\nu}$$
, for $\beta \in \mathcal{P}_{fin}(\nu)$, $h \in Aut Q^{\nu}$.

Since $c_{\beta}^{\#^{-1}}C_{\nu}c_{\beta}^{\#} = C_{\nu}$, it suffices to prove that $h^{-1}C_{\nu}h \subset C_{\nu}$, for $h \in Aut Q^{\nu}$. Note that $c_{\beta}^{\#}can(\xi) = can(\beta \oplus \xi)$, for $\xi \in \mathcal{P}_{fin}(\nu)$. Assume $h \in Aut Q^{\nu}$ and $g \in C_{\nu}$, say $h = f^*$, for $f \in Per(\nu)$ and $g = c_{\beta}^{\#}$, for $\beta \in \mathcal{P}_{fin}(\nu)$. Put $\gamma = f^{-1}(\beta)$, then $\gamma \in \mathcal{P}_{fin}(\nu)$, and for $\sigma \in \mathcal{P}_{fin}(\nu)$,

$$h^{-1}gh(\operatorname{can} \sigma) = (f^*)^{-1}c_{\beta}^{\#}f^*(\operatorname{can} \sigma) = (f^{-1})^*c_{\beta}^{\#}f^*(\operatorname{can} \sigma) = (f^{-1})^*c_{\beta}^{\#}[\operatorname{can} f(\sigma)] = (f^{-1})^*\operatorname{can}[\beta \oplus f(\sigma)] = \operatorname{can}[f^{-1}[\beta \oplus f(\sigma)] = \operatorname{can}[f^{-1}(\beta) \oplus \sigma] = \operatorname{can}(\gamma \oplus \sigma) = c_{\gamma}^{\#}(\sigma).$$

Thus $h^{-1}gh \in C_{\nu}$. We have proved that $h^{-1}C_{\nu}h \subset C_{\nu}$. We now consider (b). First of all, C_{ν} consists of ω -automorphisms of Q_{ν} , hence $C_{\nu} \leq Aut_{\omega} Q_{\nu}$, while $Aut_{\omega} Q^{\nu} \leq Aut_{\omega} Q_{\nu}$. To finish the proof of (b) it suffices to show that

(1')
$$f \in Aut_{\omega} Q_{\nu} \Rightarrow (\exists g)(\exists h)[f = gh \& g \in C_{\nu} \& h \in Aut_{\omega} Q^{\nu}],$$

since the ω -analogues (2') and (3') of (2) and (3) follow immediately from (2) and (3). Let $f \in Aut_{\omega} Q_{\nu}$, f(0) = b, $\beta = \rho_b$. Then $f = c_{\beta}^{\#} \cdot c_{\beta}^{\#} f$, where $c_{\beta}^{\#} \in C_{\nu}$, $c_{\beta}^{\#} f \in Aut Q^{\nu}$. Both $c_{\beta}^{\#}$ and f have partial recursive one-to-one extensions, hence so has $c_{\beta}^{\#} f$. It follows that $c_{\beta}^{\#} f \in Aut_{\omega} Q^{\nu}$.

Remark: If card $\nu \ge 2$ the two semidirect products are not direct. First consider the product in (a). Let $p, q \in \nu, p \ne q, f$ the permutation of ν which interchanges p and q, and $h = f^*$. Put $g = c_p^{\#}$, then $g \in C_{\nu}$, hence $g \in Aut Q_{\nu}$. Since $g = g^{-1}$ we have $ghg \in g$ Aut $Q^{\nu}g^{-1}$. However, $ghg(0) = gh(2^p) = g(2^{f(p)}) = g(2^q) = 2^p + 2^q$, so that $ghg(0) \ne 0$ and $ghg \notin Aut Q^{\nu}$; thus $Aut Q^{\nu} \triangleleft Aut Q_{\nu}$ is false. The functions g and h can also be used to show that $Aut_{\omega} Q^{\nu} \triangleleft Aut_{\omega} Q_{\nu}$ is false.

3 ω -Groups Consider countable groups $G = \langle v, g \rangle$, where $v \subset \varepsilon, g$ is the group operation and $h(x) = x^{-1}$, for $x \in v$. If such a group G is finite, i.e., if the set v is finite, the functions g and h are partial recursive, but if G is denumerable, this need not be the case. The group $G = \langle v, g \rangle$ is r.e., if v is r.e. and g is partial recursive (hence so is h). We call G an ω -group, if both g and h have partial recursive extensions. Thus every r.e. group is an ω -group and so is each of its subgroups. ω -groups were introduced by Hassett [6] and also studied by Applebaum [1]-[3]. The order oG of the ω -group $G = \langle v, g \rangle$ is defined as Req v; thus oG has the usual meaning iff G is finite. An ω -isomorphism from the ω -group $G_1 = \langle v_1, g_1 \rangle$ onto the ω -group $G_2 = \langle v_2, g_2 \rangle$ is an isomorphism from G_1 onto G_2 with a partial recursive one-to-one extension. G_1 is ω -isomorphic to G_2 (written: $G_1 \cong_{\omega} G_2$), if there is at least one ω -isomorphism from G_1 onto G_2 . Two finite groups are therefore ω -isomorphic iff they are isomorphic. Let $N \in \Omega_0$, $\nu \in N$. In this section we shall show that the group P_{ν} of all finite permutations of ν can be represented by (i.e., is isomorphic to) an ω -group \mathbf{P}_{ν} of order N!, while the group $C_{\nu} = \{c_{\alpha}^{\#} | \alpha \in \mathcal{P}_{fin}(\nu)\}$ can be represented by an ω -group $\mathbf{Z}_2(\nu)$ of order 2^N . We first define a Gödel-numbering for the family $P_{\mathbf{g}}$ of all finite permutations of ε . Let *i* again denote the identity mapping on ε and let q_{n-1} stand for the n^{th} odd prime number, for $n \ge 1$.

Notations: For $f \in P_{\varepsilon}, \nu \subset \varepsilon$,

$$\widetilde{f} = \begin{cases} 1, & , \text{ if } f = i, \\ 2^{n+1} \prod_{i=0}^{n} [q(x_i)]^{f_{X}(i)+1}, & \text{ if } f \neq i, \pi f = (x_0, \dots, x_n), \\ \mathbf{P}_{\varepsilon} = \langle \eta, p \rangle, & \text{ where } \eta = \{\widetilde{f} \mid f \in P_{\varepsilon}\}, p(\widetilde{f}, \widetilde{g}) = \widetilde{fg}, \\ \mathbf{P}_{\nu} = \langle \widetilde{\nu}, p_{\nu} \rangle, & \text{ where } \widetilde{\nu} = \{\widetilde{f} \in \eta \mid \pi f \subset \nu\}, p_{\nu} = p \mid \widetilde{\nu} \times \widetilde{\nu}. \end{cases}$$

Thus η is an infinite, recursive set, p a partial recursive function and \mathbf{P}_{ε} a *r.e.* group isomorphic to P_{ε} . Moreover, for every choice of the set ν , \mathbf{P}_{ν} is an ω -group isomorphic to P_{ν} .

In order to represent the group C_{ε} by a *r.e.* group it suffices by A2.5 to do this for the group $\langle \mathcal{P}_{fin}(\varepsilon), \oplus \rangle$.

Notations: For $\nu \subset \varepsilon$,

 $\begin{aligned} \mathbf{Z}_{2}(\mathbf{\epsilon}) &= \langle 2^{\mathbf{\epsilon}}, g \rangle, \text{ where } g(x, y) = \operatorname{can} (\rho_{x} \oplus \rho_{y}), \\ \mathbf{Z}_{2}(\nu) &= \langle 2^{\nu}, g_{\nu} \rangle, \text{ where } g_{\nu} = g | 2^{\nu} \times 2^{\nu}. \end{aligned}$

Clearly, $2^{\varepsilon} = \varepsilon$ and $Z_2(\varepsilon)$ is a *r.e.* group, while $Z_2(\nu) \leq Z_2(\varepsilon)$, for $\nu \subset \varepsilon$. Moreover, the group C_{ν} can be represented by the ω -group $Z_2(\nu)$.

Proposition A3.1 For μ , $\nu \subset \varepsilon$,

(a) $\mu \simeq \nu \iff \mathbf{P}_{\mu} \cong_{\omega} \mathbf{P}_{\nu}$, (b) $\mu \simeq \nu \Rightarrow \mathbf{Z}_{2}(\mu) \cong_{\omega} \mathbf{Z}_{2}(\nu)$.

Proof: (a) The \Rightarrow part follows immediately from the definitions of the concepts involved and of \tilde{f} . The \Leftarrow part is due to Applebaum ([3], Section 3). (b) Let $\mu \simeq \nu$, say $\mu \subset \delta q$, $q(\mu) = \nu$, where q is a partial recursive one-to-one function. Put $f = q^*$, then $2^{\mu} \subset \delta f$, $f(2^{\mu}) = 2^{\nu}$, where f is also a partial recursive one-to-one function. Moreover, for x, y $\epsilon \delta f$,

$$g[f(x), f(y)] = \operatorname{can}[\rho_{f(x)} \oplus \rho_{f(y)}] = \operatorname{can}[\rho_{q^*(x)} \oplus \rho_{q^*(y)}]$$

= $\operatorname{can}[q(\rho_x) \oplus q(\rho_y)] = \operatorname{can} q[\rho_x \oplus \rho_y] = \operatorname{can} q\rho_{g(x,y)}$
= $\operatorname{can} \rho_{q^*g(x,y)} = q^*g(x, y) = fg(x, y).$

Thus f is an isomorphism from $Z_2(\delta f)$ onto $Z_2(\rho f)$, while $f \mid 2^{\mu}$ is an ω -isomorphism from $Z_2(\mu)$ onto $Z_2(\nu)$.

Definition $\mathbf{Z}_{2}^{N} = \mathbf{Z}_{2}(\nu), \mathbf{P}_{N} = \mathbf{P}_{\nu}, \text{ for } \nu \in N, N \in \Omega_{0}.$

In view of A3.1 the ω -groups \mathbf{Z}_2^N and \mathbf{P}_N are unique up to ω -isomorphism.

Proposition A3.2 $oZ_2^N = 2^N \text{ and } oP_N = N!, \text{ for } N \in \Omega_0.$

Proof: Let for $\nu \in \mathcal{P}_{fin}(\varepsilon)$, $\Phi(\nu) = \{x | \rho_x \subset \nu\}$, $\Psi(\nu) = \{\tilde{f} \in \eta | \pi f \subset \nu\}$, then Φ and Ψ are recursive, combinatorial operators inducing the functions 2^n and n! respectively. Hence for $N = Req \nu$, we have $o\mathbf{Z}_2^N = Req \Phi(\nu) = 2^N$ and $o\mathbf{P}_N = Req \Psi(\nu) = N!$.

4 The main result

Theorem Let $v \in N$ and $N \in \Omega_0$. Then

- (a) $Aut_{\omega} Q_{\nu} = C_{\nu} \times Aut_{\omega} Q^{\nu}$, i.e., $Aut_{\omega} Q_{\nu}$ is the semidirect product of C_{ν} by $Aut_{\omega} Q^{\nu}$,
- (b) the group C_{ν} can be represented by the ω -group \mathbf{Z}_{2}^{N} of order 2^{N} ,
- (c) if N is a multiple-free isol, the group $Aut_{\omega} Q^{\nu}$ can be represented by the ω -group \mathbf{P}_N of order N!,
- (d) if N is a multiple-free isol, the group $Aut_{\omega} Q_{\nu}$ can be represented by an ω -group of order $2^{N} \cdot N!$

Proof: Parts (a), (b), and (c) follow from A1.3, A2.5, A2.6, A3.2 and the Remark following A2.2. To prove (d) assume that N is a multiple-free isol. We

shall use the recursive function j(x, y) = x + (x + y)(x + y + 1)/2. Define a set β_{ν} and a function h_{ν} by:

$$\beta_{\nu} = \{ j(a, \tilde{f}) | a \in 2^{\nu} \& \tilde{f} \in \mathbf{P}_{\nu} \},\\ \delta h_{\nu} = \beta_{\nu}, h_{\nu} j(a, \tilde{f}) = c_{\alpha}^{\#} f^{*}, \text{ where } \alpha = \rho_{a}.$$

We claim: (i) h_{ν} maps β_{ν} one-to-one onto $Aut_{\omega}(Q_{\nu})$, and (ii) there is a group operation t_{ν} on β_{ν} such that $G_{\nu} = \langle \beta_{\nu}, t_{\nu} \rangle$ is an ω -group which is isomorphic to $Aut_{\omega} Q_{\nu}$.

Re (i). Let $j(a, \tilde{f}) \in \beta_{\nu}$. Then $a \in 2^{\nu}$, $\alpha \in \mathcal{P}_{fin}(\nu)$, $c_{\alpha}^{\#} \in C_{\nu}$ and $\tilde{f} \in \mathbf{P}_{\nu}$, $f \in P_{\nu}$, $f \in Aut_{\omega} Q^{\nu}$. Thus $c_{\alpha}^{\#}f^{*} \in Aut_{\omega} Q_{\nu}$ by A2.6. If a ranges over 2^{ν} , then $c_{\alpha}^{\#}$ ranges over C_{ν} . Also, if \tilde{f} ranges over \mathbf{P}_{ν} , then f ranges over P_{ν} and since $P_{\nu} = P_{\omega}(\nu)$ (N being multiple-free), f^{*} ranges over $Aut_{\omega} Q^{\nu}$. Thus h_{ν} maps β_{ν} onto $Aut_{\omega} Q_{\nu}$. The fact that $C_{\nu} \cap Aut_{\omega} Q^{\nu} = (i)$ implies that each member of $Aut_{\omega} Q_{\nu}$ can be expressed in exactly one way as $c_{\alpha}^{\#}f^{*}$, with $c_{\alpha}^{\#} \in C_{\nu}$ and $f \in P_{\nu}$; thus the function h_{ν} is one-to-one.

Re (ii). Let for x, $y \in \beta_{\nu}$ the unique element $z \in \beta_{\nu}$ such that $h_{\nu}(z) = s_x s_y$, where $s_x = h_{\nu}(x)$, $s_y = h_{\nu}(y)$, be denoted by $t_{\nu}(x, y)$. Put $G_{\nu} = \langle \beta_{\nu}, t_{\nu} \rangle$, then $G_{\nu} \cong Aut_{\omega} Q_{\nu}$. In order to show that G_{ν} is an ω -group we define $\beta_{\varepsilon}, h_{\varepsilon}, t_{\varepsilon}$ in terms of ε as we defined $\beta_{\nu}, h_{\nu}, t_{\nu}$ in terms of ν . Put $G_{\varepsilon} = \langle \beta_{\varepsilon}, t_{\varepsilon} \rangle$, then $G_{\nu} \leq G_{\varepsilon}$ and it can be proved that G_{ε} is a *r.e.* group. Hence G_{ν} is an ω -group. We note in passing that h_{ε} maps G_{ε} onto a *proper* subgroup of $Aut_{\omega} Q_{\varepsilon}$, since $Req \varepsilon$ is not multiple-free, hence $P_{\varepsilon} \subset_{+} P_{\omega}(\varepsilon)$. Clearly,

$$oG_{\nu} = Req \ \beta_{\nu} = Req \ 2^{\nu} \cdot Req \ P_{\nu} = 2^{N} \cdot N!$$

5 Concluding remarks (A) Uniformity. Let us call an ω -group uniform, if it is a subgroup of a r.e. group. Remmel [9] proved that an ω -group need not be uniform. Let ν be a nonempty set. Then $Z_2(\nu) \leq Z_2(\varepsilon)$ and $P_{\nu} \leq P_{\varepsilon}$, where $Z_2(\varepsilon)$ and P_{ε} are r.e. groups, hence $Z_2(\nu)$ and P_{ν} are uniform ω -groups. In view of the proof of the theorem of Section 4 we conclude that the groups $Aut_{\omega} Q^{\nu}$ and $Aut_{\omega} Q^{\nu}$ can be represented by uniform ω -groups, for every nonzero, multiple-free isol N.

(B) The simplex. The graph $G = \langle \beta, \eta \rangle$ is called an ω -graph, if it has a minimal path algorithm, i.e., if there is an effective procedure which enables us, given any two distinct vertices of G, to find a shortest path between them. It was proved in [5] that Q_{ν} is an ω -graph for every nonempty set ν . We briefly indicate how one can associate with every nonempty set v an ω -graph S_v which is related to a simplex as Q_{ν} is related to a cube. Put $\nu^* = \{2x \in \varepsilon | x \in \nu\} \cup (1)$. Define $S_{\nu} = \langle \nu^*, \eta \rangle$, where $\eta = [\nu^*; 2]$, i.e., let S_{ν} be the complete graph on ν^* . Clearly, $\mu \simeq \nu$ implies $\mu^* \simeq \nu^*$ and $S_{\mu} \cong_{\omega} S_{\nu}$. There is only one minimal path between two distinct vertices of S_{ν} , namely the edge joining them; thus S_{ν} is an ω -graph. Define $S_N = S_{\nu}$, for $\nu \in N$, $N \in \Omega_0$, then the ω -graph S_N is unique up to ω -isomorphism. We call N the ω -dimension of S_{ν} and S_{N} . If $S_{\nu} = \langle \nu^{*}, \eta \rangle$ we have Req $\nu^* = N + 1$ and Req $\eta = [N + 1; 2]$, the canonical extension of the recursive, combinatorial function n(n + 1)/2. Since $\eta = [\nu^*; 2]$ we see that every permutation of v^* preserves adjacency, i.e., is an automorphism of S_v . An automorphism of S_{ν} is called an ω -automorphism, if it has a partial recursive one-to-one extension. Thus $Aut S_v = Per(v^*)$ and $Aut_{\omega} S_v = Per_{\omega}(v^*)$. We conclude that for $\nu \in N$, $N \in \Lambda_0$ and N multiple-free, the group $Aut_{\omega} S_{\nu}$ can be represented by the uniform ω -group $\mathbf{P}_{\nu*}$ of order (N + 1)!.

(C) Opposite vertices. Call the RET $N = Req \nu$ finite, if the set ν is finite, but *infinite*, if the set ν is infinite. Define the distance d(x, y) between the vertices x and y of Q^{ν} as $card(\rho_x \oplus \rho_y)$, i.e., as the number of components in which x and y differ, when they are interpreted as sequences of zeros and ones. If ν and N are finite, there is for every vertex x of Q^{ν} a unique opposite vertex y, i.e., a vertex y such that d(x, y) assumes its maximal value, namely N. On the other hand, if ν and N are infinite, we have $\{d(x, y) \in \varepsilon | y \in 2^{\nu}\} = \varepsilon$, so that x has no opposite vertex. If we define a diagonal of Q^{ν} as a "line-segment" whose endpoints are vertices of Q^{ν} , but not of any r-dimensional face of Q^{ν} with r < N, then Q^{ν} has diagonals iff ν is finite, i.e., iff $N \in \varepsilon$. In fact, if N is finite, Q^{ν} has 2^{N-1} diagonals, since any two opposite vertices determine the same diagonal.

REFERENCES

- Applebaum, C. H., "ω-Homomorphisms and ω-groups," The Journal of Symbolic Logic, vol. 36 (1971), pp. 55-65.
- [2] Applebaum, C. H., "Isomorphisms of ω-groups," Notre Dame Journal of Formal Logic, vol. 12 (1971), pp. 238-248.
- [3] Applebaum, C. H., "A result for π -groups," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 19 (1973), pp. 33-35.
- [4] Dekker, J. C. E. and J. Myhill, "Recursive equivalence types," pp. 67-214 in University of California Publications in Mathematics (N.S.), Vol. 3, 1960.
- [5] Dekker, J. C. E., "Recursive equivalence types and cubes," to appear in Proceedings of the Conference: Aspects of Effective Algebra, held August 1-4, 1979 at Monash University, Clayton, Victoria, Australia.
- [6] Hassett, M. J., "Recursive equivalence types and groups," The Journal of Symbolic Logic, vol. 34 (1969), pp. 13-20.
- [7] Hu, S., Mathematical Theory of Switching Circuits and Automata, University of California Press, Berkeley and Los Angeles, 1968.
- [8] Nerode, A., "Extensions to isols," pp. 362-403 in Annals of Mathematics, Vol. 73, 1961.
- [9] Remmel, J. B., "Effective structures not contained in recursively enumerable structures," to appear in *Proceedings of the Conference: Aspects of Effective Algebra*, held August 1-4, 1979 at Monash University, Clayton, Victoria, Australia.

Institute for Advanced Study Princeton, New Jersey 08540

and

Rutgers University New Brunswick, New Jersey 08903