Automorphisms of ω-Cubes

J. C. E. DEKKER

1 Preliminaries The word set is used for a collection of numbers, class for a collection of sets. We write ε for the set of all numbers, o for the empty set of numbers, card Γ for the cardinality of the collection Γ, and $P_{\text {fin }}(\alpha)$ for the class of all finite subsets of α. If f is a function of n variables, i.e., a mapping from a subcollection of ε^{n} into ε, we denote its domain and range by δf and ρf respectively. A collection of functions is called a family. The image under f of the number n is denoted by f_{n} or $f(n)$, sometimes by both in the same context. We write $\alpha \sim \beta$ for α equivalent to $\beta, \alpha \simeq \beta$ for α recursively equivalent to β, and $\alpha \oplus \beta$ for the symmetric difference of α and β. The collection of all recursive equivalence types (RETs) is denoted by Ω, that of all isols by Λ. Moreover, $\Omega_{0}=\Omega-(0), \Lambda_{0}=\Lambda-(0), \varepsilon_{0}=\varepsilon-(0)$. The reader is referred to [4] and [8] for the basic properties of RETs and isols. Let $\left\langle\rho_{n}\right\rangle$ be the canonical enumeration of the class $\mathcal{P}_{\text {fin }}(\varepsilon)$, i.e., let $\rho_{0}=o$ and

$$
\rho_{n+1}=\left\{\begin{array}{l}
\left(a_{1}, \ldots, a_{k}\right), \text { where } \\
n+1=2^{a(1)}+\ldots+2^{a(k)} \\
a_{1}, \ldots, a_{k} \text { distinct. }
\end{array}\right.
$$

Put $r_{n}=\operatorname{card} \rho_{n}$, then r_{n} is a recursive function. If σ is a finite set, can σ denotes the canonical index of σ, i.e., the unique number i such that $\sigma=\rho_{i}$. For $\alpha \subset \varepsilon$, $i \in \varepsilon$,

$$
\begin{aligned}
& {[\alpha ; i]=\left\{x \mid \rho_{x} \subset \alpha \& r_{x}=i\right\}, 2^{\alpha}=\left\{x \mid \rho_{x} \subset \alpha\right\} \text { so that }} \\
& \alpha \simeq \beta \Rightarrow(\forall i)[[\alpha ; i] \simeq[\beta ; i]], \alpha \simeq \beta \Rightarrow 2^{\alpha} \simeq 2^{\beta} .
\end{aligned}
$$

If f is a function of one variable, $\delta f^{*}=2^{\delta f}, f^{*}(0)=0$ and

$$
f^{*}\left(2^{a(1)}+\ldots+2^{a(k)}\right)=2^{f a(1)}+\ldots+2^{f a(k)}
$$

for distinct elements a_{1}, \ldots, a_{k} of δf. Equivalently,

$$
\delta f^{*}=2^{\delta f}, \rho_{f}^{*}(x)=f\left(\rho_{x}\right)
$$

It is readily seen that

$$
\begin{equation*}
f 1-1 \Rightarrow f^{*} 1-1, f \neq g \Rightarrow f^{*} \neq g^{*},(f g)^{*}=f^{*} g^{*} \tag{1}
\end{equation*}
$$

We briefly review the material of [5] which is relevant to the present paper. Note that the vertices of $Q^{n}=(0,1)^{n}$ can be interpreted as the characteristic functions of subsets of $(0, \ldots, n-1),(1, \ldots, n)$ or any other finite set of cardinality n. This suggests the possibility of defining Q^{n} in terms of $p_{\text {fin }}(\nu)$. With a nonempty set ν we associate the (directed) cube $Q^{\nu}=\left\langle 2^{\nu}, \leqslant\right\rangle$, where $x \leqslant y \Longleftrightarrow \rho_{x} \subset \rho_{y}$, for $x, y \in 2^{\nu}$; we call Q^{ν} the ω-cube on the set ν. An isomorphism from Q^{μ} onto Q^{ν} is a one-to-one mapping g from 2^{μ} onto 2^{ν} such that $x \leqslant y \Rightarrow g(x) \leqslant g(y)$, for $x, y \in 2^{\mu}$, or equivalently, $\rho_{x} \subset \rho_{y} \Rightarrow \rho_{g(x)} \subset \rho_{g(y)}$, for $x, y \in 2^{\mu}$. An isomorphism is an ω-isomorphism, if it has a partial recursive one-to-one extension. The ω-cubes Q^{μ} and Q^{ν} are isomorphic (ω-isomorphic) if there is at least one isomorphism (ω-isomorphism) between them. These equivalence relations are denoted by \cong and \cong_{ω}. For $N \in \Omega_{0}$ we define $Q^{N}=Q^{\nu}$, for any $\nu \in N$. It can be proved that $Q^{\mu} \cong Q^{\nu} \Longleftrightarrow \mu \sim \nu$, while $Q^{\mu} \cong_{\omega} Q^{\nu} \Longleftrightarrow$ $\mu \simeq \nu$. Thus Q^{N} is uniquely determined by N up to ω-isomorphism, just as Q^{n} is uniquely determined by n up to isomorphism. We call n the dimension of Q^{n} and Q^{ν}, for card $\nu=n ; N$ is the ω-dimension of Q^{N} and Q^{ν}, for $\operatorname{Req} \nu=N$. In symbols,

$$
\begin{aligned}
& n=\operatorname{dim} Q^{\nu} \\
& N=\operatorname{dim} Q^{n}, \text { for card } \nu=n, n \in \varepsilon_{0}, \\
& \omega
\end{aligned}
$$

We use the word graph in the sense of a simple, connected, countable graph with at least one vertex. Such a graph will be represented by an ordered pair $G=\langle\beta, \eta\rangle$, where $\beta \subset \varepsilon$ and $\eta \subset[\beta ; 2]$; a vertex of G is therefore identified with a number, while an edge of G is identified with the canonical index of the set consisting of its endpoints. The relation $\operatorname{can}(p, q) \in \eta$ between the vertices p and q of $G=\langle\beta, \eta\rangle$ is also written: p adj q. With a nonempty set ν we associate the graph $Q_{\nu}=\left\langle 2^{\nu}, \eta\right\rangle$, where

$$
\eta=\left\{\operatorname{can}(x, y) \in\left[2^{\nu} ; 2\right] \mid \operatorname{card}\left(\rho_{x} \oplus \rho_{y}\right)=1\right\}
$$

An isomorphism from $Q_{\mu}=\left\langle 2^{\mu}, \theta\right\rangle$ onto $Q_{\nu}=\left\langle 2^{\nu}, \eta\right\rangle$ is a one-to-one mapping g from 2^{μ} onto 2^{ν} such that $\operatorname{can}(x, y) \in \theta$ implies $\operatorname{can}\left(g_{x}, g_{y}\right) \in \eta$, for $x, y \in 2^{\mu}$. An isomorphism is an ω-isomorphism, if it has a partial recursive one-to-one extension. The graphs Q_{μ} and Q_{ν} are isomorphic (ω-isomorphic), if there is at least one isomorphism (ω-isomorphism) between them. These equivalence relations between graphs are denoted by \cong and $\cong{ }_{\omega}$. For $N \in \Omega_{0}$ we define $Q_{N}=Q_{\nu}$, for any $\nu \in N$. It can be proved that $Q_{\mu} \cong Q_{\nu} \Longleftrightarrow \mu \sim \nu$, while $Q_{\mu} \cong{ }_{\omega} Q_{\nu} \Longleftrightarrow \mu \simeq \nu$. Thus Q_{N} is uniquely determined by N up to ω-isomorphism just as Q_{n} is uniquely determined by n up to isomorphism. We call 2^{n} the order of Q_{n} and Q_{ν}, for card $\nu=n$, and 2^{N} the order of Q_{N} and Q_{ν}, for Req $\nu=N$. In symbols,

$$
\begin{aligned}
& 2^{n}=o Q_{\nu}=o Q_{n}, \text { for card } \nu=n, n \in \varepsilon_{0}, \\
& 2^{N}=o Q_{\nu}=o Q_{N}, \text { for } \operatorname{Req} \nu=N, N \in \Omega_{0} .
\end{aligned}
$$

We shall need two propositions of [5].

Proposition A1.1 ([5], P1.1) Let g be a one-to-one mapping from 2^{μ} onto 2^{ν}. Then
(a) g is an isomorphism from Q^{μ} onto Q^{ν} iff $g=f^{*}$, for some one-to-one function from μ onto ν,
(b) g is an ω-isomorphism from Q^{μ} onto Q^{ν} iff $g=f^{*}$, for some one-to-one function f from μ onto ν with a partial recursive one-to-one extension.
Proposition A1.2 ([5], P3.2) Let g be an isomorphism (ω-isomorphism) from Q_{μ} onto Q_{ν}. Then g is an isomorphism (ω-isomorphism) from Q^{μ} onto Q^{ν} iff $g(0)=0$.

For a function $f(x)$ we define $\pi f=\{x \in \delta f \mid f(x) \neq x\}$. Let f be a permutation of the set ν. Then f is a finite permutation of ν, if πf is finite; f is an ω-permutation of ν, if it has a partial recursive one-to-one extension. We write $\operatorname{Per}(\nu)$ for the family of all permutations of $\nu, \operatorname{Per}_{\omega}(\nu)$ for the family of all ω-permutations of ν, and P_{ν} for the family of all finite permutations of ν. For the groups under composition formed by these three families we have

$$
P_{\nu} \leqslant \operatorname{Per}_{\omega}(\nu) \leqslant \operatorname{Per}(\nu)
$$

If ν is finite these three groups are the same. If ν is denumerable we have $\operatorname{Per}_{\omega}(\nu)<\operatorname{Per}(\nu)$, since card $\operatorname{Per}_{\omega}(\nu)=\aleph_{0}$, while card $\operatorname{Per}(\nu)=c$. We shall need a characterization of the sets ν for which $P_{\nu}=\operatorname{Per}_{\omega}(\nu)$. This clearly depends only on Req ν. An RET N is multiple-free, if every even predecessor of N is finite. Trivially, every finite RET is multiple-free. Let $R=\operatorname{Req} \varepsilon$. If $A \in \Omega-\Lambda$, we have $R \leqslant A$, where $R=2 R$, hence A is not multiple-free. Thus every multiplefree RET is an isol. There are exactly c infinite isols which are not multiplefree, since every infinite isol which is even or odd is not multiple-free. There also are c infinite isols which are multiple-free, e.g., all infinite, indecomposable isols and every isol which is the sum of two incomparable indecomposable isols ([4], T49).

Proposition A1.3 ([2], P7, due to B. Cole) Let $N=\operatorname{Req} \nu$. Then $P_{\nu}=$ $\operatorname{Per}_{\omega}(\nu)$ iff N is a multiple-free isol.

2 Automorphisms of Q^{ν} and Q_{ν} An automorphism of Q^{ν} (of Q_{ν}) is an isomorphism g from Q^{ν} (from Q_{ν}) onto itself; g is an ω-automorphism of Q^{ν} (of Q_{ν}), if it has a partial recursive one-to-one extension. We define:

$$
\begin{aligned}
& \text { Aut } Q^{\nu}=\text { the family of all automorphisms of } Q^{\nu} \\
& \text { Aut }_{\omega} Q^{\nu}=\text { the family of all } \omega \text {-automorphisms of } Q^{\nu}, \\
& \text { Aut } Q_{\nu}=\text { the family of all automorphisms of } Q_{\nu} \\
& \text { Aut }{ }_{\omega} Q_{\nu}=\text { the family of all } \omega \text {-automorphisms of } Q_{\nu}
\end{aligned}
$$

These four families are groups under composition. In case ν is finite we have $A u t_{\omega} Q^{\nu}=A u t Q^{\nu}$ and $A u t_{\omega} Q_{\nu}=A u t Q_{\nu}$, since every function with a finite domain is partial recursive. For an elementary discussion of the relationship between the groups $A u t Q^{\nu}$ and $A u t Q_{\nu}$ in the special case $\nu=(1, \ldots, n)$, see [7], Ch. I Section 9. Henceforth the set ν need not be finite, unless this is explicitly stated. If we take $\mu=\nu$ in Propositions A1.1 and A1.2 we obtain:

Proposition A2.1 Let g be a permutation of 2^{ν}. Then
(a) $g \in$ Aut Q^{ν} iff $g=f^{*}$, for some $f \in \operatorname{Per}(\nu)$,
(b) $g \in A u t_{\omega} Q^{\nu}$ iff $g=f^{*}$, for some $f \in \operatorname{Per}_{\omega}(\nu)$.

Proposition A2.2 Let $g \in A u t Q_{\nu}\left[\right.$ or $\left.\in A u t_{\omega} Q_{\nu}\right]$. Then $g \in A u t Q^{\nu}[$ or ϵ $\left.A u t_{\omega} Q^{\nu}\right]$ iff $g(0)=0$.

Remark: Let the mapping ϕ have $\operatorname{Per}(\nu)$ as domain and let $\phi(f)=f^{*}, \phi_{\omega}=$ $\phi \mid \operatorname{Per}_{\omega}(\nu)$. Then we see by (1) and A2.1 that ϕ is an isomorphism from $\operatorname{Per}(\nu)$ onto Aut Q^{ν}, while ϕ_{ω} is an isomorphism from $\operatorname{Per}_{\omega}(\nu)$ onto $A u t_{\omega} Q^{\nu}$. The mapping ϕ_{ω} is effective in the sense that given any $f \in \operatorname{Per}_{\omega}(\nu)$, say by a definition of a partial recursive one-to-one extension \bar{f} of f, we can find a definition of a partial recursive one-to-one extension of f^{*}, namely \bar{f}^{*}.

We now turn to the question of how $A u t_{\omega} Q_{\nu}$ can be expressed in terms of $A u t_{\omega} Q^{\nu}$. The identity function on ε will be denoted by i.

Definition For $a \in \varepsilon$,

$$
\delta c_{a}=\varepsilon, c_{a}(x)=\left\{\begin{array}{l}
x+2^{a}, \text { for } a \notin \rho_{x} \\
x-2^{a}, \text { for } a \in \rho_{x}
\end{array}\right.
$$

Note that c_{a} is a recursive function, $\pi c_{a}=\varepsilon$, and $c_{a} c_{b}=c_{b} c_{a}$, for $a, b \in \varepsilon$.
Proposition A2.3 Let $a \in \varepsilon$. Then the function c_{a} is a recursive permutation of ε, an involution and a recursive automorphism of the graph Q_{ε}.
Proof: Let $a \in \varepsilon$. From now on we keep a fixed and write $f=c_{a}$. The recursive function f is an involution, since $f^{2}=i$ and $f(0) \neq 0$; hence f is a recursive permutation of ε.

Assume x adj y, i.e., $\operatorname{card}\left(\rho_{x} \oplus \rho_{y}\right)=1$. Then either: (1) $\rho_{x} \oplus \rho_{y}=(a)$ or (2) $\rho_{x} \oplus \rho_{y}=(b)$, for some $b \neq a$. If (1) holds, $\rho_{x}=\rho_{y} \cup(a)$, where $a \notin \rho_{y}$, or $\rho_{y}=\rho_{x} \cup(a)$, where $a \notin \rho_{x}$. We may assume without loss of generality that $\rho_{x}=\rho_{y} \cup(a)$, where $a \notin \rho_{y}$. Then $x=y+2^{a}, y=x-2^{a}$, hence $f(x)=y, f(y)=x$ and $f(x)$ adj $f(y)$. Now assume (2) holds. Since ρ_{x} and ρ_{y} only differ in b, where $b \neq a$ we have: either $a \in \rho_{x} \cap \rho_{y}$ or $a \notin \rho_{x} \cup \rho_{y}$. In the former case $\left(\rho_{x}-(a)\right) \oplus$ $\left(\rho_{y}-(a)\right)$ has cardinality 1 , hence $\operatorname{can}\left(\rho_{x}-(a)\right) \operatorname{adj} \operatorname{can}\left(\rho_{y}-(a)\right)$, i.e., $f(x) \operatorname{adj} f(y)$. In the latter case, $\left(\rho_{x} \cup(a)\right) \oplus\left(\rho_{y} \cup(a)\right)$ has cardinality 1 , hence $\operatorname{can}\left(\rho_{x} \cup(a)\right)$ adj $\operatorname{can}\left(\rho_{y} \cup(a)\right)$, i.e., $f(x) \operatorname{adj} f(y)$.

Remark: Let $a \in \nu, f=c_{a} \mid 2^{\nu}$, then $f \in A u t_{\omega} Q_{\nu}$. However, $f(0)=2^{a}$, hence $f \notin A u t_{\omega} Q^{\nu}$ by A2.2. Thus $A u t_{\omega} Q^{\nu}<A u t_{\omega} Q_{\nu}$, whenever ν is nonempty.

Definition For $\alpha \in P_{f i n}(\varepsilon)$.

$$
\delta c_{\alpha}=\varepsilon, c_{\alpha}= \begin{cases}i, & \text { if } \alpha=0, \\ c_{a(1)} \cdot \ldots \cdot c_{a(k)}, & \text { if } \alpha \neq 0, \operatorname{card} \alpha=k, \alpha=\left(a_{1}, \ldots, a_{k}\right) .\end{cases}
$$

Proposition A2.4 For every finite set α, c_{α} is a recursive permutation of ε. Moreover, $c_{\alpha} c_{\beta}=c_{\alpha \oplus \beta}$, for $\alpha, \beta \in P_{\text {fin }}(\varepsilon)$. Also, c_{α} is an involution for $\alpha \neq 0$.
Proof: Let $\alpha \in P_{f i n}(\varepsilon)$. The first statement follows immediately from the definition of c_{α}. Now assume $\alpha, \beta \in P_{\text {fin }}(\varepsilon), \gamma=\alpha \cap \beta$. Then γ is finite and
$c_{\alpha} c_{\beta}=c_{\alpha-(p)} c_{\beta-(p)}$, for each $p \in \gamma$. We conclude that $c_{\alpha} c_{\beta}=c_{\alpha-\gamma} c_{\beta-\gamma}$, where $\alpha-\gamma, \beta-\gamma$ are disjoint; then $c_{\alpha} c_{\beta}=c_{(\alpha-\gamma) \cup(\beta-\gamma)}=c_{\alpha \oplus \beta}$. Let $\alpha \neq 0$; then $c_{\alpha} \neq i$ and $c_{\alpha}^{2}=c_{\alpha \oplus \alpha}=c_{o}=i$. Thus c_{α} is an involution.
Notations: If ν is known from the context,

$$
\begin{aligned}
c_{a}^{\#}=c_{a} \mid 2^{\nu}, c_{\alpha}^{\#} & =c_{\alpha} \mid 2^{\nu}, \text { for } a \in \nu, \alpha \in P_{f i n}(\nu), \\
C_{\nu} & =\left\{c_{\alpha}^{\left.\# \mid \alpha \in P_{f i n}(\nu)\right\} .}\right.
\end{aligned}
$$

Proposition A2.5 The mapping $\phi(\alpha)=c_{\alpha}$ from $p_{\text {fin }}(\varepsilon)$ onto C_{ε} is an isomorphism from the group $\left\langle\mathcal{P}_{\text {fin }}(\varepsilon), \oplus\right.$ 〉 onto the group formed by C_{ε} under composition. Similarly, the mapping $\phi(\alpha)=c_{\alpha}^{\#}$ is an isomorphism from the group $\left\langle P_{\text {fin }}(\nu), \oplus\right\rangle$ onto the group formed by C_{ν} under composition.
Proof: Since $\phi(\alpha \oplus \beta)=c_{\alpha} c_{\beta}$ it suffices to show that ϕ is one-to-one. For $\alpha, \beta \in P_{\text {fin }}(\varepsilon)$,

$$
\alpha \neq \beta \Rightarrow \alpha \oplus \beta \neq o \Rightarrow c_{\alpha \oplus \beta} \neq i \Rightarrow c_{\alpha} c_{\beta} \neq i \Rightarrow c_{\alpha} \neq c_{\beta}^{-1} \Rightarrow c_{\alpha} \neq c_{\beta} .
$$

Remark: If ν is infinite, the Abelian group $\left\langle\mathcal{P}_{\text {fin }}(\nu), \oplus\right\rangle$ is isomorphic to $Z_{2}^{{ }^{\circ}}$, i.e., the direct sum of \aleph_{0} copies of \mathbf{Z}_{2}.

If H and K are subgroups of a group G with unit element i, we say that G is the semidirect product of H by K (written: $G=H \times K$), if $H K=G, H \cap K=$ (i), $H \triangleleft G$. We call G the direct product of H and K, if we also have $K \triangleleft G$, i.e., if both H and K are normal subgroups of G.

Proposition A2.6 For $\nu \subset \varepsilon$,
(a) Aut $Q_{\nu}=C_{\nu} \times$ Aut Q^{ν},
(b) $A u t_{\omega} Q_{\nu}=C_{\nu} \times A u t_{\omega} Q^{\nu}$.

Proof: To prove (a) it suffices to show:
(1) $f \in$ Aut $Q_{\nu} \Rightarrow(\exists g)(\exists h)\left[f=g h \& g \in C_{\nu} \& h \in A u t Q^{\nu}\right]$,
(2) $C_{\nu} \cap$ Aut $Q^{\nu}=(\mathrm{i})$,
(3) $C_{\nu} \triangleleft A u t Q_{\nu}$.
$\operatorname{Re}(1)$. Let $f \in$ Aut $Q_{\nu}, f(0)=b, \beta=\rho_{b}$, then $\beta \in P_{f i n}(\nu)$ and $c_{\beta}^{\#} \in C_{\nu}$. Hence $c_{\beta}^{\#-1} f(0)=0, c_{\beta}^{\#-1} f \in A u t Q^{\nu}$ and $c_{\beta}^{\#} \cdot c_{\beta}^{\#-1} f$ is an expression of f in the desired form.
$\operatorname{Re}(2) . f \in C_{\nu} \cap A u t Q^{\nu} \Rightarrow f(0)=0 \& f \in C_{\nu} \Rightarrow f=c_{o}^{\#}=i$.
$R e$ (3). We only need to show

$$
\left(c_{\beta}^{\#} h\right)^{-1} C_{\nu}\left(c_{\beta}^{\#} h\right) \subset C_{\nu}, \text { for } \beta \in P_{f i n}(\nu), h \in A u t Q^{\nu} .
$$

Since $c_{\beta}^{\#-1} C_{\nu} c_{\beta}^{\#}=C_{\nu}$, it suffices to prove that $h^{-1} C_{\nu} h \subset C_{\nu}$, for $h \in A u t Q^{\nu}$. Note that $c_{\beta}^{\#} \operatorname{can}(\xi)=\operatorname{can}(\beta \oplus \xi)$, for $\xi \in P_{\text {fin }}(\nu)$. Assume $h \in A u t Q^{\nu}$ and $g \in C_{\nu}$, say $h=f^{*}$, for $f \in \operatorname{Per}(\nu)$ and $g=c_{\beta}^{\#}$, for $\beta \in P_{\text {fin }}(\nu)$. Put $\gamma=f^{-1}(\beta)$, then $\gamma \in P_{\text {fin }}(\nu)$, and for $\sigma \in \mathcal{P}_{\text {fin }}(\nu)$,

$$
\begin{gathered}
h^{-1} g h(\operatorname{can} \sigma)=\left(f^{*}\right)^{-1} c_{\beta}^{\#} f^{*}(\operatorname{can} \sigma)=\left(f^{-1}\right)^{*} c_{\beta}^{\#} f^{*}(\operatorname{can} \sigma)= \\
\left(f^{-1}\right)^{*} c_{\beta}^{\#}[\operatorname{can} f(\sigma)]=\left(f^{-1}\right)^{*} \operatorname{can}[\beta \oplus f(\sigma)]= \\
\operatorname{can} f^{-1}[\beta \oplus f(\sigma)]=\operatorname{can}\left[f^{-1}(\beta) \oplus \sigma\right]=\operatorname{can}(\gamma \oplus \sigma)=c_{\gamma}^{\#}(\sigma) .
\end{gathered}
$$

Thus $h^{-1} g h \in C_{\nu}$. We have proved that $h^{-1} C_{\nu} h \subset C_{\nu}$. We now consider (b). First of all, C_{ν} consists of ω-automorphisms of Q_{ν}, hence $C_{\nu} \leqslant A u t_{\omega} Q_{\nu}$, while $A u t_{\omega} Q^{\nu} \leqslant A u t_{\omega} Q_{\nu}$. To finish the proof of (b) it suffices to show that
(1') $\quad f \in A u t_{\omega} Q_{\nu} \Rightarrow(\exists g)(\exists h)\left[f=g h \& g \in C_{\nu} \& h \in A u t_{\omega} Q^{\nu}\right]$,
since the ω-analogues (2') and (3') of (2) and (3) follow immediately from (2) and (3). Let $f \in A u t_{\omega} Q_{\nu}, f(0)=b, \beta=\rho_{b}$. Then $f=c_{\beta}^{\#} \cdot c_{\beta}^{\#} f$, where $c_{\beta}^{\#} \in C_{\nu}$, $c_{\beta}^{\#} f \in A u t Q^{\nu}$. Both $c_{\beta}^{\#}$ and f have partial recursive one-to-one extensions, hence so has $c_{\beta}^{\#} f$. It follows that $c_{\beta}^{\#} f \in A u t_{\omega} Q^{\nu}$.
Remark: If card $\nu \geqslant 2$ the two semidirect products are not direct. First consider the product in (a). Let $p, q \in \nu, p \neq q, f$ the permutation of ν which interchanges p and q, and $h=f^{*}$. Put $g=c_{p}^{\#}$, then $g \in C_{\nu}$, hence $g \in$ Aut Q_{ν}. Since $g=g^{-1}$ we have $g h g \in g$ Aut $Q^{\nu} g^{-1}$. However, $g h g(0)=g h\left(2^{p}\right)=g\left(2^{f(p)}\right)=$ $g\left(2^{q}\right)=2^{p}+2^{q}$, so that $\operatorname{ghg}(0) \neq 0$ and $g h g \notin$ Aut Q^{ν}; thus Aut $Q^{\nu} \triangleleft$ Aut Q_{ν} is false. The functions g and h can also be used to show that $A u t_{\omega} Q^{\nu} \triangleleft A u t_{\omega} Q_{\nu}$ is false.
3ω-Groups Consider countable groups $G=\langle\nu, g\rangle$, where $\nu \subset \varepsilon, g$ is the group operation and $h(x)=x^{-1}$, for $x \in \nu$. If such a group G is finite, i.e., if the set ν is finite, the functions g and h are partial recursive, but if G is denumerable, this need not be the case. The group $G=\langle\nu, g\rangle$ is r.e., if ν is r.e. and g is partial recursive (hence so is h). We call G an ω-group, if both g and h have partial recursive extensions. Thus every r.e. group is an ω-group and so is each of its subgroups. ω-groups were introduced by Hassett [6] and also studied by Applebaum [1]-[3]. The order $o G$ of the ω-group $G=\langle\nu, g\rangle$ is defined as Req ν; thus $o G$ has the usual meaning iff G is finite. An ω-isomorphism from the ω-group $G_{1}=\left\langle\nu_{1}, g_{1}\right\rangle$ onto the ω-group $G_{2}=\left\langle\nu_{2}, g_{2}\right\rangle$ is an isomorphism from G_{1} onto G_{2} with a partial recursive one-to-one extension. G_{1} is ω-isomorphic to G_{2} (written: $G_{1} \cong_{\omega} G_{2}$), if there is at least one ω-isomorphism from G_{1} onto G_{2}. Two finite groups are therefore ω-isomorphic iff they are isomorphic. Let $N \in \Omega_{0}, \nu \in N$. In this section we shall show that the group P_{ν} of all finite permutations of ν can be represented by (i.e., is isomorphic to) an ω-group \mathbf{P}_{ν} of order N !, while the group $C_{\nu}=\left\{c_{\alpha}^{\#} \mid \alpha \in P_{\text {fin }}(\nu)\right\}$ can be represented by an ω-group $\mathbf{Z}_{2}(\nu)$ of order 2^{N}. We first define a Gödel-numbering for the family P_{ε} of all finite permutations of ε. Let i again denote the identity mapping on ε and let q_{n-1} stand for the $n^{\text {th }}$ odd prime number, for $n \geqslant 1$.

Notations: For $f \in P_{\varepsilon}, \nu \subset \varepsilon$,

$$
\begin{aligned}
& \tilde{f}=\left\{\begin{array}{l}
1, \\
2^{n+1} \prod_{i=0}^{n}\left[q\left(x_{i}\right)\right]^{f x(i)+1}, \text { if } f \neq i, \pi f=\left(x_{0}, \ldots, x_{n}\right),
\end{array}\right. \\
& \mathbf{P}_{/ \varepsilon}=\langle\eta, p\rangle, \text { where } \eta=\left\{\widetilde{f} \mid f \in P_{\varepsilon}\right\}, p(\widetilde{f}, \tilde{g})=\widetilde{f g}, \\
& \mathbf{P}_{\nu}=\left\langle\widetilde{\nu}, p_{\nu}\right\rangle, \text { where } \widetilde{\nu}=\{\widetilde{f} \in \eta \mid \pi f \subset \nu\}, p_{\nu}=p \mid \tilde{\nu} \times \tilde{\nu} .
\end{aligned}
$$

Thus η is an infinite, recursive set, p a partial recursive function and \mathbf{P}_{ε} a $r . e$. group isomorphic to P_{ε}. Moreover, for every choice of the set ν, \mathbf{P}_{ν} is an ω-group isomorphic to P_{ν}.

In order to represent the group C_{ε} by a r.e. group it suffices by A 2.5 to do this for the group $\left\langle\mathcal{P}_{\text {fin }}(\varepsilon), \oplus\right\rangle$.

Notations: For $\nu \subset \varepsilon$,

$$
\mathbf{Z}_{2}(\varepsilon)=\left\langle 2^{\varepsilon}, g\right\rangle, \text { where } g(x, y)=\operatorname{can}\left(\rho_{x} \oplus \rho_{y}\right),
$$

$$
\mathbf{Z}_{2}(\nu)=\left\langle 2^{\nu}, g_{\nu}\right\rangle, \text { where } g_{\nu}=g \mid 2^{\nu} \times 2^{\nu}
$$

Clearly, $2^{\varepsilon}=\varepsilon$ and $\mathbf{Z}_{2}(\varepsilon)$ is a r.e. group, while $\mathbf{Z}_{2}(\nu) \leqslant \mathbf{Z}_{2}(\varepsilon)$, for $\nu \subset \varepsilon$. Moreover, the group C_{ν} can be represented by the ω-group $\mathbf{Z}_{2}(\nu)$.

Proposition A3.1 For $\mu, \nu \subset \varepsilon$,
(a) $\mu \simeq \nu \Longleftrightarrow \mathbf{P}_{\mu} \cong_{\omega} \mathbf{P}_{\nu}$,
(b) $\mu \simeq \nu \Rightarrow Z_{2}(\mu) \cong{ }_{\omega} Z_{2}(\nu)$.

Proof: (a) The \Rightarrow part follows immediately from the definitions of the concepts involved and of \widetilde{f}. The \Leftarrow part is due to Applebaum ([3], Section 3). (b) Let $\mu \simeq \nu$, say $\mu \subset \delta q, q(\mu)=\nu$, where q is a partial recursive one-to-one function. Put $f=q^{*}$, then $2^{\mu} \subset \delta f, f\left(2^{\mu}\right)=2^{\nu}$, where f is also a partial recursive one-to-one function. Moreover, for $x, y \in \delta f$,

$$
\begin{aligned}
g[f(x), f(y)] & =\operatorname{can}\left[\rho_{f(x)} \oplus \rho_{f(y)}\right]=\operatorname{can}\left[\rho_{q^{*}(x)} \oplus \rho_{q^{*}(y)}\right] \\
& =\operatorname{can}\left[q\left(\rho_{x}\right) \oplus q\left(\rho_{y}\right)\right]=\operatorname{can} q\left[\rho_{x} \oplus \rho_{y}\right]=\operatorname{can} q \rho_{g(x, y)} \\
& =\operatorname{can} \rho_{q^{*} g(x, y)}=q^{*} g(x, y)=f g(x, y) .
\end{aligned}
$$

Thus f is an isomorphism from $\mathbf{Z}_{\mathbf{2}}(\delta f)$ onto $\mathbf{Z}_{\mathbf{2}}(\rho f)$, while $f \mid 2^{\mu}$ is an ω isomorphism from $\mathbf{Z}_{2}(\mu)$ onto $\mathbf{Z}_{2}(\nu)$.

Definition $\quad \mathbf{Z}_{2}^{N}=\mathbf{Z}_{2}(\nu), \mathbf{P}_{N}=\mathbf{P}_{\nu}$, for $\nu \in N, N \in \Omega_{0}$.
In view of A3.1 the ω-groups \mathbf{Z}_{2}^{N} and \mathbf{P}_{N} are unique up to ω-isomorphism.
Proposition A3.2 $o \mathbf{Z}_{2}^{N}=2^{N}$ and $o \mathbf{P}_{N}=\mathbf{N}$!, for $N \in \Omega_{0}$.
Proof: Let for $\nu \in P_{f i n}(\varepsilon), \Phi(\nu)=\left\{x \mid \rho_{x} \subset \nu\right\}, \Psi(\nu)=\{\tilde{f} \in \eta \mid \pi f \subset \nu\}$, then Φ and Ψ are recursive, combinatorial operators inducing the functions 2^{n} and n ! respectively. Hence for $N=\operatorname{Req} \nu$, we have $o Z_{2}^{N}=\operatorname{Req} \Phi(\nu)=2^{N}$ and ${ }_{o} \mathbf{P}_{N}=\operatorname{Req} \Psi(\nu)=N!$.

4 The main result

Theorem Let $\nu \in N$ and $N \in \Omega_{0}$. Then
(a) $A u t_{\omega} Q_{\nu}=C_{\nu} \times A u t_{\omega} Q^{\nu}$, i.e., $A u t_{\omega} Q_{\nu}$ is the semidirect product of C_{ν} by $A u t_{\omega} Q^{\nu}$,
(b) the group C_{ν} can be represented by the ω-group \mathbf{Z}_{2}^{N} of order 2^{N},
(c) if N is a multiple-free isol, the group $A u t_{\omega} Q^{\nu}$ can be represented by the ω-group \mathbf{P}_{N} of order $N!$,
(d) if N is a multiple-free isol, the group $A u t_{\omega} Q_{\nu}$ can be represented by an ω-group of order $2^{N} \cdot N$!

Proof: Parts (a), (b), and (c) follow from A1.3, A2.5, A2.6, A3.2 and the Remark following A2.2. To prove (d) assume that N is a multiple-free isol. We
shall use the recursive function $j(x, y)=x+(x+y)(x+y+1) / 2$. Define a set β_{v} and a function h_{ν} by:

$$
\begin{gathered}
\beta_{\nu}=\left\{j(a, \tilde{f}) \mid a \in 2^{v} \& \tilde{f} \in \mathbf{P}_{\nu}\right\} \\
\delta h_{\nu}=\beta_{\nu}, h_{\nu} j(a, \tilde{f})=c_{\alpha}^{\#} f^{*}, \text { where } \alpha=\rho_{a}
\end{gathered}
$$

We claim: (i) h_{ν} maps β_{ν} one-to-one onto $A u t_{\omega}\left(Q_{\nu}\right)$, and (ii) there is a group operation t_{ν} on β_{ν} such that $G_{\nu}=\left\langle\beta_{\nu}, t_{\nu}\right\rangle$ is an ω-group which is isomorphic to $A u t_{\omega} Q_{\nu}$.
Re (i). Let $j(a, \tilde{f}) \in \beta_{\nu}$. Then $a \in 2^{\nu}, \alpha \in P_{f i n}(\nu), c_{\alpha}^{\#} \in C_{\nu}$ and $\tilde{f} \in \mathbf{P}_{\nu}, f \in P_{\nu}$, $f^{*} \in A u t_{\omega} Q^{\nu}$. Thus $c_{\alpha}^{\#} f^{*} \epsilon A u t_{\omega} Q_{\nu}$ by A2.6. If a ranges over 2^{ν}, then $c_{\alpha}^{\#}$ ranges over C_{ν}. Also, if \tilde{f} ranges over \mathbf{P}_{ν}, then f ranges over P_{ν} and since $P_{\nu}=P_{\omega}(\nu)$ (N being multiple-free), f^{*} ranges over $A u t_{\omega} Q^{\nu}$. Thus h_{ν} maps β_{ν} onto $A u t_{\omega} Q_{\nu}$. The fact that $C_{\nu} \cap A u t_{\omega} Q^{\nu}=(i)$ implies that each member of $A u t_{\omega} Q_{\nu}$ can be expressed in exactly one way as $c_{\alpha}^{\#} f^{*}$, with $c_{\alpha}^{\#} \in C_{\nu}$ and $f \in P_{\nu}$; thus the function h_{ν} is one-to-one.
$R e$ (ii). Let for $x, y \in \beta_{\nu}$ the unique element $z \in \beta_{\nu}$ such that $h_{\nu}(z)=s_{x} s_{y}$, where $s_{x}=h_{\nu}(x), s_{y}=h_{\nu}(y)$, be denoted by $t_{\nu}(x, y)$. Put $G_{\nu}=\left\langle\beta_{\nu}, t_{\nu}\right\rangle$, then $G_{\nu} \cong A u t_{\omega} Q_{\nu}$. In order to show that G_{ν} is an ω-group we define $\beta_{\varepsilon}, h_{\varepsilon}, t_{\varepsilon}$ in terms of ε as we defined $\beta_{\nu}, h_{\nu}, t_{\nu}$ in terms of ν. Put $G_{\varepsilon}=\left\langle\beta_{\varepsilon}, t_{\varepsilon}\right\rangle$, then $G_{\nu} \leqslant G_{\varepsilon}$ and it can be proved that G_{ε} is a r.e. group. Hence G_{ν} is an ω-group. We note in passing that h_{ε} maps G_{ε} onto a proper subgroup of $A u t_{\omega} Q_{\varepsilon}$, since Req ε is not multiple-free, hence $P_{\varepsilon} \subset_{+} P_{\omega}(\varepsilon)$. Clearly,

$$
o G_{\nu}=\operatorname{Req} \beta_{\nu}=\operatorname{Req} 2^{\nu} \cdot \operatorname{Req} P_{\nu}=2^{N} \cdot N!
$$

5 Concluding remarks (A) Uniformity. Let us call an ω-group uniform, if it is a subgroup of a r.e. group. Remmel [9] proved that an ω-group need not be uniform. Let ν be a nonempty set. Then $\mathbf{Z}_{2}(\nu) \leqslant \mathbf{Z}_{2}(\varepsilon)$ and $\mathbf{P}_{\nu} \leqslant \mathbf{P}_{\varepsilon}$, where $\mathbf{Z}_{2}(\varepsilon)$ and \mathbf{P}_{ε} are r.e. groups, hence $\mathbf{Z}_{2}(\nu)$ and P_{ν} are uniform ω-groups. In view of the proof of the theorem of Section 4 we conclude that the groups $A u t_{\omega} Q^{\nu}$ and $A u t_{\omega} Q^{\nu}$ can be represented by uniform ω-groups, for every nonzero, multiple-free isol N.
(B) The simplex. The graph $G=\langle\beta, \eta\rangle$ is called an ω-graph, if it has a minimal path algorithm, i.e., if there is an effective procedure which enables us, given any two distinct vertices of G, to find a shortest path between them. It was proved in [5] that Q_{ν} is an ω-graph for every nonempty set ν. We briefly indicate how one can associate with every nonempty set ν an ω-graph S_{ν} which is related to a simplex as Q_{ν} is related to a cube. Put $\nu^{*}=\{2 x \in \varepsilon \mid x \in \nu\} \cup(1)$. Define $S_{\nu}=\left\langle\nu^{*}, \eta\right\rangle$, where $\eta=\left[\nu^{*} ; 2\right]$, i.e., let S_{ν} be the complete graph on ν^{*}. Clearly, $\mu \simeq \nu$ implies $\mu^{*} \simeq \nu^{*}$ and $S_{\mu} \cong_{\omega} S_{\nu}$. There is only one minimal path between two distinct vertices of S_{ν}, namely the edge joining them; thus S_{ν} is an ω-graph. Define $S_{N}=S_{\nu}$, for $\nu \in N, N \in \Omega_{0}$, then the ω-graph S_{N} is unique up to ω-isomorphism. We call N the ω-dimension of S_{ν} and S_{N}. If $S_{\nu}=\left\langle\nu^{*}, \eta\right\rangle$ we have $\operatorname{Req} \nu^{*}=N+1$ and $\operatorname{Req} \eta=[N+1 ; 2]$, the canonical extension of the recursive, combinatorial function $n(n+1) / 2$. Since $\eta=\left[\nu^{*} ; 2\right]$ we see that every permutation of ν^{*} preserves adjacency, i.e., is an automorphism of S_{ν}. An automorphism of S_{ν} is called an ω-automorphism, if it has a partial recursive one-to-one extension. Thus $A u t S_{\nu}=\operatorname{Per}\left(\nu^{*}\right)$ and $A u t_{\omega} S_{\nu}=\operatorname{Per}_{\omega}\left(\nu^{*}\right)$. We
conclude that for $\nu \in N, N \in \Lambda_{0}$ and N multiple-free, the group $A u t_{\omega} S_{\nu}$ can be represented by the uniform ω-group $\mathbf{P}_{\nu^{*}}$ of order $(N+1)$!.
(C) Opposite vertices. Call the RET $N=\operatorname{Req} \nu$ finite, if the set ν is finite, but infinite, if the set ν is infinite. Define the distance $d(x, y)$ between the vertices x and y of Q^{ν} as $\operatorname{card}\left(\rho_{x} \oplus \rho_{y}\right)$, i.e., as the number of components in which x and y differ, when they are interpreted as sequences of zeros and ones. If ν and N are finite, there is for every vertex x of Q^{ν} a unique opposite vertex y, i.e., a vertex y such that $d(x, y)$ assumes its maximal value, namely N. On the other hand, if ν and N are infinite, we have $\left\{d(x, y) \in \varepsilon \mid y \in 2^{\nu}\right\}=\varepsilon$, so that x has no opposite vertex. If we define a diagonal of Q^{ν} as a "line-segment" whose endpoints are vertices of Q^{ν}, but not of any r-dimensional face of Q^{ν} with $r<N$, then Q^{ν} has diagonals iff ν is finite, i.e., iff $N \in \varepsilon$. In fact, if N is finite, Q^{ν} has 2^{N-1} diagonals, since any two opposite vertices determine the same diagonal.

REFERENCES

[1] Applebaum, C. H., " ω-Homomorphisms and ω-groups," The Journal of Symbolic Logic, vol. 36 (1971), pp. 55-65.
[2] Applebaum, C. H., "Isomorphisms of ω-groups," Notre Dame Journal of Formal Logic, vol. 12 (1971), pp. 238-248.
[3] Applebaum, C. H., "A result for π-groups," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 19 (1973), pp. 33-35.
[4] Dekker, J. C. E. and J. Myhill, "Recursive equivalence types," pp. 67-214 in University of California Publications in Mathematics (N.S.), Vol. 3, 1960.
[5] Dekker, J. C. E., "Recursive equivalence types and cubes," to appear in Proceedings of the Conference: Aspects of Effective Algebra, held August 1-4, 1979 at Monash University, Clayton, Victoria, Australia.
[6] Hassett, M. J., "Recursive equivalence types and groups," The Journal of Symbolic Logic, vol. 34 (1969), pp. 13-20.
[7] Hu, S., Mathematical Theory of Switching Circuits and Automata, University of California Press, Berkeley and Los Angeles, 1968.
[8] Nerode, A., "Extensions to isols," pp. 362-403 in Annals of Mathematics, Vol. 73, 1961.
[9] Remmel, J. B., "Effective structures not contained in recursively enumerable structures," to appear in Proceedings of the Conference: Aspects of Effective Algebra, held August 1-4, 1979 at Monash University, Clayton, Victoria, Australia.

Institute for Advanced Study

Princeton, New Jersey 08540
and
Rutgers University
New Brunswick, New Jersey 08903

