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Predicate-Functors and the Limits of

Decidability in Logic

ARIS NOAH

1 In this paper,* we use predicate-functor logic to probe the limits of
decidability. Quine's assertion that polyadic logic remains decidable as long as
there are no permutations or recurrences of predicate places is given precise
formulation and tested through consideration of two well-defined subsystems
of Quine's full system of predicate-functor logic.

Quine's rationale for developing predicate-functor logic (see [3] and [4])
is that predicate-functors provide a tool for a discriminating analysis of various
syntactical functions carried out by the bound variables of quantification.
Distinct functions are apportioned to distinct functors, whose combined use
can express exactly what can be expressed in the quantifier-variable notation of
first-order quantification theory.

Quine's analysis has led him to the conclusion that

the essential services of the variable are the permutation of predicate places and
the linking of predicate places by identity. The permutation job is discharged in
our predicate-functor logic by the functors '/?/', and the linking job by the self
functor iS\ . . . The existential force of quantification, at any rate, is no essential
or distinctive service of the variable; it is carried as well by the cropping functor
'J ' and, for that matter, by the Boolean '=£ A'. ([3], p. 304).

*I would like to give full credit to Fred Sommers of Brandeis University for setting me on
the track which led to the results presented in this paper. Sommers has developed a very
interesting algebraic system of logic. Part of his algebra is very closely analogous to what is
here called "restricted predicate-functor logic", and it was the study of that system that led
me to the isolation and exploration of the restricted system of predicate-functor logic. I
would also like to thank W. V. Quine for reading a draft of this paper and suggesting a
number of helpful revisions.
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Quine thinks that his analysis can illuminate the limits of decidability in
logic. He asserts that decision procedures cease to be generally available at the
precise point where the variable is called upon to perform its two essential
functions of permutation and identification of predicate places (i.e., precisely
at the point where translation of quantificational schemata into predicate-
functor language would essentially involve the functors 'pt and \S") (see [4],
p. 282).

Quine's thesis would imply that polyadic logic remains decidable, like
monadic logic, as long as there are no permutations or recurrences of predicate
places. As evidence for this, Quine presents a set of polyadic schemata which
despite their complexity do not involve such permutations or recurrences, and
shows that they are decidable. The set FS of "fluted" schemata, is defined as
follows:

Every predicate letter has the same variable 'JC' as its first argument, though this
repeated letter may in its different occurrences be bound by different occur-
rences of '(*)' or '(3x)\ Every predicate letter has one and the same letter y as
its second argument, if any; and so on. And, a final requirement, each occur-
rence of a y quantifier stands in the scope of some '#' quantifier; each occur-
rence of a V quantifier stands in the scope of some y quantifier; and so on.
([4], p. 282).

The decision procedure for fluted schemata is based on a method worked out
by Herbrand for monadic predicate logic and extended by Quine to all fluted
schemata, as described in [1]. In what follows, we will show that FS corre-
sponds to a system of predicate-functor logic employing only three primitive
functors.

2 The restricted system of predicate-functor logic (RPF), contains only the
following three primitive functors: the Boolean complement functor '- ' , the
(existential) cropping functor ' 3 ' (we use this symbol to underscore its corres-
pondence to the existential quantifier), and a special restricted form of Quine's
Boolean intersection functor, which we shall call homogeneous conjunction
functor ('•'). Whereas Quine's Boolean intersection functor compounds predi-
cates of varying degrees n, m, our homogeneous conjunction functor is defined
only for predicates of the same degree.

Translation back and forth from quantification theory to restricted
predicate-functor logic is carried out on the basis of the following equivalences:

(1) ( F n G " ) x 1 . . . x n = F n x x . . . x n - G n x x . . . x n

( 2 ) (-F")x1...xn = -Fnxl...xn

(3) (3Fn)Xl . . . xn-x = (3xn)F
nxx . . . xn-xxn

(where '3Fn* represents a predicate of degree n - 1). For convenience, we can
further define a universal cropping functor corresponding to universal quantifi-
cation, as follows:

(4) (VFn)Xl . . . *„_! = (Vxn)F
nxx . . . Xn-ixn.

(Obviously, 'VFW' is equivalent to ' - 3 - Fn\) We can also define functors cor-
responding to sentential alternation and material implication, as follows:
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(5) ( F « v G " ) X l . . . x n = F n x , . . . x n \ i G " X l . . . x n

( 6 ) (Fn •+ G " ) x , . . . x n = F " x x . . . * „ - • G n x x . . . x n .

(Generally, to each truth-functional connective corresponds a predicate-functor.
In fact, the connective can be seen as a special case of the more generic predi-
cate-functor, used to join only predicates of null degree, i.e., closed sentences.)
The following equivalence concerns the identity predicate1:

(7) Ixy=.x=y.

3 We will show now that any closed quantificational schema that is
"fluted" in Quine's sense is translatable into the language of RPF. The method
of translation is based on the equivalences of Section 2.

First, we drive all quantifiers as far in as possible. We thus get a schema
such as the following:

(3x){-Ax-(Bx -> (3y)[Rxy .v. (Sxy-Txy) .v. ~(3z)(Fxyz v ~Gxyz)])\.

(Truth-functions of closed component schemata such as the above are trans-
lated by translating each closed component schema according to the method
outlined below.)

We begin with the innermost quantifier. Its scope must be a truth-
functional combination of open sentence schemata all the predicate letters of
which represent predicates of the same degree (in this case, they are both three-
place predicates), followed by the same variables (x, y, z) in identical sequence
(xyz). Thus, the entire scope can be "homogeneously compounded" into a
single complex (three-place) predicate schema, using equivalences (1), (2), (5),
and (6) (in this example, (2) and (5)):

Fxyz v -Gxyz = ( F v ~G)xyz.

We now use equivalence (3) (or (4)) to "crop" this predicate down to a two-
place predicate, as follows:

(3z)(F y ~G)xyz = (3(F y ~G))xy.

Furthermore:

-(3z)(Fy -G)xyz = (~3(Fy ~G))xy.

We now consider the scope of the next innermost quantifier, in this case X3y)\
It again consists of a truth-functional combination of open sentence schemata
(including the complex two-place predicate schema into which the innermost
quantifier and its scope have been transformed), which can be "homogeneously
compounded" into a single complex predicate schema, thus:

{[Rxy .v. (Sxy-Txy)] v (-3(F v -G))xy\ = \[R v (S-T)] v (-3(F v ~G))\xy.

We proceed as follows:

(3y)\[R v (S-T)] v ( -3(F v ~G))\xy = (3 \[R v (S-T)] v ( -3(F v ~G))])x.

Now we can compound this last predicate in x with the other predicates in x,
and then, again, crop it:
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(3x)(-Ax(Bx -> (3 \[R v ( 5 - D ] v (~3(F v -G))!)*))
= 3(-A1-\Bl^3[(R2v(S2--T2))v(-3(F3v-G3))]\).

The result is a schema of RPF (the superscripts make explicit the degree of the
various predicate letters).

4 Let us now show that every schema of RPF is translatable into a fluted
schema in FS. Take the following schema of RPF:

3\A! -> [(B1 • 3(R2 v S2)) .v. 3(i?2 -* (3F3 v 3G3))]}.

(Again, truth-functions of such "closed" predicate-functor schemata can be
translated by translating each component "closed" schema according to the
method outlined below.) This time we start with the outermost cropping
functor and, applying equivalence (3) of Section 2, we get:

(3x){Al -> [(B1-3(R2 v S2)) .v. 3(R2 -> (3F3 v 3G3))]Jx.

Applying (6) to the complex predicate in x, we get:

(3x)\A xx -> [(Bl-3(R2 v S2)) .v. 3(R2 -> (3F3 v 3G3))]*5.

Applying (5) to the consequent, we get:

(3x)\A1x -> [(Bl-3(R2 v S2))x .v. [3(R2 -> (3F3 v 3G3))]*]}.

We proceed to restore x to every predicate letter, by applying (1) to the
first component of the alternation:

(B'-BiR2 vS2))x =Blx-(3(R2 \/S2))x.

But: (3(^2v^2)x = (3^) (^ 2 v5 2 )^ (by (3))

and: (R2 \/S2)xy =R2xy v S2xy (by (5)).

Thus, the whole first component of the alternation becomes:

Blx-(3y)(R2xy v S2xy).

Applying (3) to the second component of the alternation we get:

(3(#2 -> (3F3 v 3G3)))x = (3j^)(^2 -̂  (3F3 v 3G3))xy.

But: ( ^ 2 - > ( 3 F 3 v 3 G 3 ) ) ^ = ^ 2 ^ - > ( 3 F 3 v 3 G 3 ) ^ (by (6)).

By (5),

(3F3 v 3G3)xy = (3F3)xy v (3G3)xy.

So far, the second component of the alternation has been translated into:

(3y)[R2xy -* ((3F3)xy v (3G3)x>>)].

Using (3), we get:
(3F3);cy = (3z)F3;cyz
(3G3)xy = (3z)G3xyz.

Therefore, the second component finally becomes:

(3y)[R2xy -> ((3z)F3xyz .v. (3z)G3x^z)].
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Thus, the original schema has been translated into:

(3x)\Ax -+ [(Bx-(3y)(Rxy v Sxy))
.v. (3y)(Rxy -> ((3z)Fxyz .v. (3z)Gxyz))]\,

a fluted schema.

5 Predicate-functor analysis of FS has revealed that despite the apparent
complexity of its schemata, it employs only three primitive functors. They are
the same functors used by Quine in his predicate-functor equivalent of monadic
logic, which he calls "Boolean algebra of predicates" ([2], pp. 96-110 and [4],
p. 280). From the point of view of predicate-functor logic, the syntactical com-
plexity of a system is not a matter of its extralogical list of predicates but a
matter of the set of primitive functors it employs. Therefore, RPF can be seen
as the widest "Boolean" system, including as special cases monadic logic (RPF
with monadic predicates), propositional logic (RPF with null-degree predicates,
where the functor ' 3 ' becomes immaterial), and the Boolean elaboration of
polyadic logic.

It would be very satisfying at this point to conclude, with Quine, that the
limits of decidability coincide with the limits of the Boolean part of logic.
Unfortunately there is an intermediate step that separates RPF from a clearly
undecidable system of predicate-functor logic employing Quine's trouble-
making functors 'p/' and 'S\ This intermediate step, which we can call mini-
mally extended system of predicate-functor logic (for short, MEPF), employs
the Boolean complement functor, the existential cropping functor, and Quine's
nonhomogeneous conjunction functor. There are no permutations or recur-
rences of predicate places in its quantificational equivalent. Yet we do not
know whether MEPF is decidable or not.

If and when we get a definite answer to this question, however, we will be
in possession of a precise characterization of the limits of decidability in logic:
they will coincide with the limits of either RPF or MEPF.

6 Failing a conclusive answer to this question, we will briefly point out
that the Quine-Herbrand decision procedure is rendered inapplicable beyond
the strict confines of RPF.

As RPF is essentially a polyadic elaboration of monadic logic, so is Quine's
decision procedure for "fluted" polyadic schemata an elaboration of Herbrand's
method for monadic schemata. Herbrand's method proceeds by putting any
monadic quantificational formula into a normal form consisting of an alterna-
tion of independent "constituent quantifications". The latter "serve as its
mutually independent truth arguments, that is arguments that it is a truth
function of, just as the pure truth-functional formula has its sentence letters"
([ 1 ], p. 59). We can then construct the formula's "Herbrand truth table", which
assigns a truth value to the formula for each assignment of truth values to all 2n

constituent quantifications in those n predicate letters, and thus test it for
validity. The "Herbrand truth table" of a "fluted" polyadic formula also assigns
a truth value to it for each assignment of truth values to its large number of
independent constituent quantifications; it is only a matter of exhausting an
always finite number of possibilities.
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The key to this extended method is, of course, the mutual independence
of the formula's constituent quantifications; otherwise they couldn't serve as
the formula's independent truth arguments. It is just this crucial requirement
that can no longer be safeguarded once we move beyond RPF.

The cropping functors, which "crop" predicate schemata into closed sen-
tence schemata or further predicate schemata (of lower degree), are in RPF
always attached to homogeneous predicate-schemata: this is the essence of the
system, safeguarded by its very formation rules (homogeneous conjunction
functor).

The effect of introducing the nonhomogeneous conjunction functor is to
lose homogeneity. An example of a schema of this slightly enlarged system
would be the following:

3{A1'3[A1-R2'3(AlR2F3)]\.

In RPF we could never run into a situation like the above: the homo-
geneity of the conjunction functor would ensure that A1 could not possibly
recur within the scope of the second cropping functor, and that R2 could not
possibly reappear within the scope of the third cropping functor. But the exten-
sion of Quine's decision procedure [ 1 ] to all fluted schemata crucially depends
on this factor: the inner structure of the scope of a cropping functor must be
assumed free of occurrences of any predicate letter appearing outside that
scope, otherwise the mutual independence of the constituent quantifications
cannot be safeguarded.2 Therefore, Quine's decision procedure is rendered
inapplicable beyond the confines of RPF.

NOTES

1. For translation of schemata involving constant singular terms, see [3], p. 305.

2. Quine's decision procedure outlined in [1] does not extend to all fluted schemata, but
only to a special category of them, which Quine calls "homogeneous" (i.e., the variables
must stand in a fixed order after the predicate letters, the quantifiers must be nested
always in that order, and, furthermore, all predicate letters must be of the same degree).
Quine also remarks: "A further proviso was that all the predicate letters have the same
number of argument places; but this appears superfluous" ([4], p. 282). The reason that
proviso turns out to be superfluous is precisely the nonrecurrence of predicate letters
appearing outside the scopes of quantifiers within these very scopes. Given this, Quine's
decision procedure can be extended to all fluted schemata. But without this, it is rendered
inapplicable.
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