Equivalence Relations and S5

G. E. HUGHES

1 An equivalence relation is commonly defined as one which is reflexive, symmetrical, and transitive. This paper* starts from the problem of finding a pair of conditions on a dyadic relation which together yield equivalence but neither of which by itself yields either reflexiveness or symmetry or transitivity. It will be shown that there are infinitely many such pairs of conditions.

There is a parallel problem in modal logic, that of finding a pair of formulas which, if added to the minimal normal modal logic K, yield precisely $S 5$, but neither of which, when added to K, yields either $L p \supset p$ or $p \supset L M p$ or $L p \supset L L p$ as a theorem. It will be shown that there are infinitely many such pairs of formulas.

2 One solution to the second problem is provided by the following formulas:

```
A LMLp\supsetp
B MLp\supsetLMLLp.
```

Since in $S 5$ an affirmative modality is equivalent to its last member, it is clear that A and B are theorems of $S 5$ and hence that $S 5$ contains $K+A+B$. For the converse it is sufficient to derive $M L p \supset L p$ and $L p \supset p$. We first note that A is interdeducible in the field of K with its dual:
$A^{\prime} \quad p \supset M L M p$.
We then have:

$$
\begin{array}{lr}
M L p \supset L p & {[B, A(L p / p) \times \text { Syll }]} \\
L p \supset p & {\left[A^{\prime}(L p / p), B(M L p / p), A(L M L p / p), A \times \text { Syll }\right]}
\end{array}
$$

[^0]That neither $L p \supset p$ nor $p \supset L M p$ nor $L p \supset L L p$ is a theorem of $K+A$ or of $K+B$ can be shown as follows. The frames of Figures 1 and 2 are frames for $K+A$ and $K+B$ respectively. Yet since neither frame is reflexive or symmetrical or transitive, the three formulas mentioned can be falsified in each of them.

Fig. 1

Fig. 2

For good measure we can also show that neither A nor B is a theorem of $K+L p \supset p(T)$ or of $K+p \supset L M p\left(B^{0}\right)$ or of $K+L p \supset L L p\left(S 4^{0}\right)$. These systems are known to be characterized by the classes of all reflexive, symmetrical, and transitive frames respectively. However,
(i) In the model on the reflexive transitive frame of Figure 3 in which $V(p)=\{y\}, A$ is false at x
(ii) In the model on the symmetrical frame of Figure 4 in which $V(p)=$ \varnothing, A is false at x
(iii) In the model on the reflexive transitive frame of Figure 5 in which $V(p)=\{y\}, B$ is false at x
(iv) In the model on the symmetrical frame of Figure 6 in which $V(p)=$ $\{y\}, B$ is false at y.

Fig. 5

Fig. 6

Fig. 3 Fig. 4
$3 \quad K+A$ and $K+B$ are characterized respectively by the classes of all frames satisfying the following conditions Y and Z :

```
Y }\forallx\existsz(xRz\wedge\forallw(zRw\supsetwRx)
Z (xRy^xRz)\supset\existsw(zRw\wedge\forallv(w\mp@subsup{R}{}{2}v\supsetyRv)).
```

The proofs of soundness are left to the reader. We prove completeness by the method of canonical models.
3.1 Completeness of $K+\boldsymbol{A}$ We have to show that in the canonical model $\langle W, R, V\rangle$ for $K+A, R$ satisfies Y. Let x be any point in W. What is needed is to show that there is some point $z \in W$ such that: (i) $x R z$, and (ii) every point to which z is related is related to x. It is sufficient to prove that

$$
\Gamma=\{\alpha: L \alpha \in x\} \cup\{L M \beta: \beta \in x\}
$$

is consistent, for: (a) if Γ is consistent there will be some $z \in W$ such that $\Gamma \subseteq z$; (b) since $\{\alpha: L \alpha \in x\} \subseteq z$, we shall have $x R z$; and (c) since $\{L M \beta: \beta \in x\} \subseteq z$, then if $z R w$ we shall have $\{M \beta: \beta \in x\} \subseteq w$, and hence $w R x$.

Suppose that Γ is inconsistent. Then for some wff's $L \alpha, \beta_{1}, \ldots, \beta_{n} \in x$,

$$
\vdash \alpha \supset \sim\left(L M \beta_{1} \wedge \ldots \wedge L M \beta_{n}\right) .
$$

Hence by K,

$$
\vdash L \alpha \supset L \sim\left(L M \beta_{1} \wedge \ldots \wedge L M \beta_{n}\right)
$$

Hence, since $L \alpha \in x$, we have $L \sim\left(L M \beta_{1} \wedge \ldots \wedge L M \beta_{n}\right) \in x$, and thus
(*) $\quad \sim M\left(L M \beta_{1} \wedge \ldots \wedge L M \beta_{n}\right) \in x$.
But since $\beta_{1}, \ldots, \beta_{n} \in x$, we have, by A^{\prime},

$$
M L M\left(\beta_{1} \wedge \ldots \wedge \beta_{n}\right) \in x
$$

and so, by $K, M\left(L M \beta_{1} \wedge \ldots \wedge L M \beta_{n}\right) \in x$.
But this contradicts $(*)$; therefore Γ is consistent, as required.
3.2 Completeness of $K+\boldsymbol{B} \quad$ Let $\langle W, R, V\rangle$ be the canonical model for $K+B$, and let x, y, z be any points in W such that $x R y$ and $x R z$. We have to prove that there is some $w \in W$ such that: (i) $z R w$ and (ii) for every v such that $w R^{2} v$, we have $y R v$. It is sufficient to show that

$$
\Gamma=\{\alpha: L \alpha \in z\} \cup\{L L \beta: L \beta \in y\}
$$

is consistent; for suppose some $w \in W$ includes Γ, then: (a) since $\{\alpha$: $L \alpha \in z\} \subseteq w$, we have $z R w$, and (b) since $\{L L \beta: L \beta \in y\} \in w$, then for any v such that $w R^{2} v$ we have $\{\beta: L \beta \in y\} \subseteq v$, and so $y R v$.

Suppose that Γ is inconsistent. Then for some $L \alpha \in z$ and some $L \beta \in y$,

$$
\vdash \alpha \supset \sim L L \beta
$$

Hence by K,

$$
\vdash M L \alpha \supset M L \sim L L \beta .
$$

Now $L \alpha \in z$ and $x R z$; so $M L \alpha \in x$, and therefore

$$
M L \sim L L \beta \in x
$$

Hence by K,
(**) $\sim L M L L \beta \in x$.
But since $L \beta \in y$ and $x R y$, we have $M L \beta \in x$, and hence by B :

$$
L M L L \beta \in x
$$

which contradicts (**). Therefore Γ is consistent as required.
4 The results of Sections 2 and 3 amount to an indirect proof that conditions Y and Z together yield equivalence, and thus provide one solution to the first problem of Section 1. (We shall give a direct proof in a moment.)

Conditions Y and Z can be generalized as follows. For each $n \in$ Nat $(\geqslant 1)$, we define

```
Yn }\quad\forallx\existsz(xRz\wedge\forallw(z\mp@subsup{R}{}{n}w\supsetwRx)
Zn}\quad(xRy\wedgexRz)\supset\existsw(zRw\wedge\forallv(w\mp@subsup{R}{}{n+1}v\supsety\mp@subsup{R}{}{n}v))
```

We shall show that if n is odd, then if R satisfies Y_{n} and Z_{n} then R is symmetrical, reflexive, and transitive, i.e., is an equivalence relation. Since the original Y and Z are simply Y_{1} and Z_{1} respectively, the proof will clearly cover them.

We note that each Y_{n} explicitly includes seriality, i.e., the condition that $\forall x \exists z(x R z)$.

Proof that R is symmetrical: Suppose $a R b$. Then by Y_{n} there is some c such that
(1) $a R c$
(2) $\forall x\left(c R^{n} x \supset x R a\right)$.

Since $a R c \wedge a R c$ (by (1)), then by Z_{n} there is some d such that
(3) $c R d$
(4) $\forall x\left(d R^{n+1} x \supset c R^{n} x\right)$.

Now by seriality there is some e such that
(5) $d R^{n-1} e$.
(This holds even if $n=1$, for then $e=d$.) Then from (3) and (5) we have $c R^{n} e$. Hence by (2),
(6) $e R a$.

Now from (5), (6), and $a R b$ we have $d R^{n+1} b$; hence by (4) we have $c R^{n} b$ and so, by (2), $b R a$.

Note that this result holds whether n is odd or even.
Proof that R is reflexive: Let a be any element. Then by Y_{n} there is some b such that
(1) $a R b$
(2) $\forall x\left(b R^{n} x \supset x R a\right)$.

From (1), by symmetry, we have $b R a$ and, therefore, if n is odd, $b R^{n} a$. Hence by (2), we have $a R a$.

Proof that R is transitive: Suppose $a R b$ and $b R c$. We can assume symmetry and reflexiveness. By Y_{n} there is some d such that
(1) $c R d$
(2) $\forall x\left(d R^{n} x \supset x R c\right)$.

Moreover, since $a R a$ and $a R b$, there is (by Z_{n}) some e such that
(3) $b R e$
(4) $\forall x\left(e R^{n+1} x \supset a R^{n} x\right)$.

We note that by symmetry, (3) gives $e R b$. Suppose now that $n=1$. Then by $e R b$ and $b R c$ (given) we have $e R^{2} c$; so by (4) we have $a R c$. Suppose now that $n>1$. Then by $e R b, b R c$, (1), and reflexiveness we have $e R^{n+1} d$. Hence by (4) we have $a R^{n} d$; hence by symmetry we have $d R^{n} a$, and so by (2) we again have $a R c$.

We note that the oddness of n is essential to the proof of reflexiveness, but that, given reflexiveness, transitivity follows whether n is odd or even. We also note without proof that if n is even, R satisfies the condition that if $x R^{3} y$ then $x R y$.

That neither reflexiveness nor symmetry nor transitivity follows from any Y_{n} or Z_{n} by itself can be shown from the fact that in Figures 7 and 8 we have models for Y_{n} and Z_{n} respectively. Clearly neither is reflexive or symmetrical or transitive.

Fig. 7

Fig. 8

5 Corresponding to the conditions Y_{n} and Z_{n} respectively are the modal formulas (for each $n \geqslant 1$)
$A_{n} \quad L M^{n} L p \supset p$
$B_{n} \quad M L^{n} p \supset L M L^{n+1} p$.
Clearly the A and B of Section 2 are A_{1} and B_{1} respectively. Since in $S 5$ every affirmative modality is equivalent to its last member, each A_{n} and each B_{n} is a theorem of $S 5$; so $S 5$ always contains $K+A_{n}+B_{n}$. We now show that if n is odd, $K+A_{n}+B_{n}$ contains $S 5$. To do so it is sufficient to derive $p \supset L M p$, $L p \supset p$ and $L p \supset L L p$.

We note that each A_{n} is interdeducible in the field of K with its dual
$A_{n}^{\prime} \quad p \supset M L^{n} M p$
(1) $M L^{n} M(p \supset p) \quad\left[A_{n}^{\prime}(p \supset p / p), \mathrm{PC}\right]$
(2) $M L^{n} M(p \supset p) \supset M(p \supset p) \quad[K]$
(3) $\quad M(p \supset p) \quad[(1),(2) \times \mathrm{MP}]$
(4) $\quad L p \supset M p$
$[(3) \times K]$.
All subsequent theorems will be of the form $\alpha \supset X p$, where X is an affirmative modality. Clearly (4) enables us to replace L by M anywhere in the consequent of such a theorem.

(5)	$M L^{n} M p \supset L M L^{n+1} M p$	$\left[B_{n}(M p / p)\right]$
(6)	$M L^{n} M p \supset L M^{n} L L M p$	$[(5) \times(4)]$
(7)	$L M^{n} L L M p \supset L M p$	$\left[A_{n}(L M p / p)\right]$
(8)	$p \supset L M p$	$\left[A_{n}^{\prime},(6),(7) \times\right.$ Syll $]$
(9)	$M L p \supset p$	$[(8) \times$ Duality $]$
(10)	$L L p \supset p$	$[(4)(L p / p),(9) \times$ Syll $]$.

(9) and (10) enable us to delete $M L$ and any even number of consecutive L 's in the consequent of a theorem.

$$
\begin{align*}
& L p \supset M L^{n} M L p \tag{11}\\
& L p \supset M L^{n} p \tag{12}
\end{align*}
$$

$$
\left[A_{n}^{\prime}(L p / p)\right]
$$

$$
[(11) \times(9)]
$$

Now since n is odd, $n-1$ is even. Hence:

$$
\begin{array}{lr}
L p \supset p & {[(12) \times(9) \times(10)]} \\
L p \supset L M L L^{n} p & {\left[(12), B_{n} \times \text { Syll }\right]} \\
L p \supset L^{n+1} p & {[(14) \times(9)]}
\end{array}
$$

Now if $n=1,(15)=L p \supset L L p$; and if $n>1$ we have

$$
\begin{equation*}
L p \supset L L p \tag{16}
\end{equation*}
$$

[(15), (13) \times Syll (as often as required)].
(8), (13), and (16) are the required theorems.

None of these three is a theorem either of $K+A_{n}$ or of $K+B_{n}$ (for any n). This is proved by the fact the frames illustrated in Figures 7 and 8 are frames for $K+A_{n}$ and $K+B_{n}$ respectively, but all three formulas can be falsified in each.

Completeness proofs for $K+A_{n}$ and $K+B_{n}$ relative to the classes of frames satisfying Y_{n} and Z_{n} respectively (for any $n \geqslant 1$) can be obtained by straightforward generalizations of the completeness proofs given in Section 3.

6 For any even $n(\geqslant 2), K+A_{n}+B_{n}$ yields a system, weaker than $S 5$, which is characterized by the class of frames in which R is serial, symmetrical, and such that if $x R^{3} y$ then $x R y$. It is equivalent to the system obtained by adding to K the axioms $L p \supset M p, p \supset L M p$, and $L p \supset L L L p$. The proof is left to the reader.

The system in question does not appear to be equivalent to any of the standard ones in the literature.

7 We turn now to the relations of the Y_{n} 's and the Z_{n} 's among themselves.
(a) If $m>n, Z_{n}$ entails Z_{m}.

Proof: $B_{n}\left(L^{m-n} p / p\right)=B_{m}$.
(b) If $m<n, Z_{n}$ does not entail Z_{m}.

Proof: The model of Figure 8 in Section 4 satisfies Z_{n} but not Z_{m} for $m<n$.
Thus the Z_{n} 's form a sequence in descending order of strength. The situation with respect to the Y_{n} 's, however, is more complex.
(c) If $m>1$, then Y_{1} and Y_{m} are independent.

Proof: (i) The model of Figure 9 is a model for Y_{1}, as is easy to check. But this model does not satisfy Y_{m} for $m>1$.

Fig. 9
For consider x_{0}. The only points to which it is related are x_{1} and x_{2}. Now from each of these we can reach x_{0} (or for that matter x_{1}) in m steps, for any $m>1$. But x_{0} is not related to itself (nor is x_{1} related to x_{0}). Hence Y_{1} does not entail Y_{m}. (ii) That Y_{m} does not entail Y_{1} for $m>1$ is a special case of the next result, (d).
(d) If m is not of the form $n+r(n+2)$, then Y_{n} does not entail Y_{m}.

Proof: The model of Figure 7 satisfies Y_{n}. Clearly it contains $n+2$ points, and the only point to which x_{0} is related is x_{1}. Now it is evident that n steps will take us from x_{1} to x_{n+1}, and also that any multiple of $n+2$ further steps will again take us to x_{n+1}; but any other number of steps will take us to some point other than x_{n+1}, and no such other point is related to x_{0}. Hence Y_{m} is not satisfied if m is not of the form $n+r(n+2)$.
(e) If $n>1$ and m is of the form $n+r(n+2)$, then Y_{n} entails Y_{m}.

Proof: We can prove this by showing how to derive $A_{n+r(n+2)}$ (for arbitrary r) as a theorem of $K+A_{n}(n>1)$. The key step in the proof is the derivation of the perhaps surprising theorem $M L p \supset L L p$.

Assume K and

$$
A_{n} \quad L M^{n} L p \supset p(n>1)
$$

We note as before that the dual of A_{n} is
$A_{n}^{\prime} \quad p \supset M L^{n} M p$
and that as in Section 5 we can derive (1) $L p \supset M p$. We then have:

$$
\begin{array}{lcr}
\text { (2) } & L M p \supset M L^{n} M L M p & {\left[A_{n}^{\prime}(L M p / p)\right]} \\
\text { (3) } & \supset M L\left(p \supset L^{n-1} M L M p\right) & {[K]} \tag{K}
\end{array}
$$

(4) $\sim L M p \supset M L \sim p$
(5) $\quad \supset M L\left(p \supset L^{n-1} M L M p\right)$
[K]

$$
\begin{equation*}
M L\left(p \supset L^{n-1} M L M p\right) \tag{6}
\end{equation*}
$$

$[(3),(5) \times \mathrm{PC}]$
$L M^{n} L\left(p \supset L^{n-1} M L M p\right)$
[(6), $K,(1)]$
(8) $p \supset L^{n-1} M L M p$ [(7), $\left.A_{n} \times \mathrm{MP}\right]$

$$
\begin{equation*}
L M M p \supset L M M L^{n-1} M L M p \tag{7}
\end{equation*}
$$

[(8), K]
$\supset L M^{n} L M L M p$
(11) $\quad L M M p \supset M L M p$
[(10), A_{n}]
$L M L p \supset M L L p$
[(11), Duality].
We note that if we have a theorem of the form $\alpha \supset X \beta$, where X is an affirmative modality, then (12) enables us to replace $L M L$ by $M L L$ anywhere in X.

$$
\begin{array}{cr}
L M L M L p & \supset M L L M L p \\
& \supset M L M L L p \\
& {[(12)(M L p / p)]} \\
& {[\times M L(12)]} \\
\supset M M L(M L p \supset L L p) & {[\times(12)]} \\
\sim L M L M L p & \supset M L M L M \sim p \\
& {[M M L L M \sim p} \\
& \supset M M L(M L p \supset L L p) \\
M M L(M L p \supset L L p) & {[\times(12)]} \\
L M^{n} L(M L p \supset L L p) & {[K]} \\
M L p \supset L L p & {[(16),(19) \times \mathrm{PC}]} \\
& {[(20), K,(1)]} \\
& {\left[(21), A_{n} \times \mathrm{MP}\right] .}
\end{array}
$$

(22) enables us to replace $M L$ by $L L$ anywhere in X in a theorem of the form $\alpha \supset X \beta$. Now let $m=n+r(n+2)$. Clearly $A_{n}^{\prime}, A_{n}^{\prime}\left(M L^{n} M p / p\right) \times$ Syll yields

$$
\begin{equation*}
p \supset M L^{n} M M L^{n} M p \tag{23}
\end{equation*}
$$

and hence by repetition we have

$$
\begin{equation*}
p \supset M L^{n} M M L^{n} M \ldots M L^{n} M p \tag{24}
\end{equation*}
$$

where $M L^{n} M$ occurs $r+1$ times.
It is easy to see that there are $n+2+r(n+2)$ operators in the modality in (24). We can now use (22) to replace each M except the first and the last by L, thus giving ourselves $n+r(n+2) L$'s. We thus have

$$
\begin{equation*}
p \supset M L^{n+r(n+2)} M p \tag{25}
\end{equation*}
$$

which is A_{m}.
The upshot of (c)-(e) is that if $n \neq m$ then Y_{n} and Y_{m} are independent except when $n>1$ and $m \equiv n \bmod (n+2)$, in which case Y_{n} entails Y_{m}, but not conversely.

We note the following corollary of the proof in (e):
$T+A_{n}=S 5$ for any $n>1$.
Proof: T gives the theorem $L L p \supset L p$, and this with (22) yields $M L p \supset L p$, and hence a standard basis for $S 5$.

8 The results obtained in Section 7 enable us to generalize the results of Sections 4 and 5 even further. For we can now prove the following:
For any odd $n>1$ and any k (even or odd) $\geqslant 1, K+A_{n}+B_{k}=S 5$, and Y_{n} and Z_{k} yield equivalence.
Proof: If n is odd then for every even $r, n+r(n+2)$ is also odd. Hence no matter how large k may be, there will always be some odd $m>k$ such that $m=$ $n+r(n+2)$ for some r. By (e) in Section 7, A_{m} is a theorem of $K+A_{n}$; by (a), B_{m} is a theorem of $K+B_{k}$; hence $K+A_{n}+B_{k}$ contains $K+A_{m}+B_{m}$, and by Section 5 the latter yields $S 5$. Similarly, by Section 7(e) and (a), Y_{n} and Z_{k} entail Y_{m} and Z_{m}, respectively, and by Section 4 these together yield equivalence.

Department of Philosophy

Victoria University of Wellington
Wellington, New Zealand

[^0]: *I acknowledge with gratitude the help given to me by Dr. R. L. Epstein in preparing this paper. In particular, he is responsible for the generalizations of conditions Y and Z in Section 4.

