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Equivalence Relations and S5

G. E. HUGHES

1 An equivalence relation is commonly defined as one which is reflexive,
symmetrical, and transitive. This paper* starts from the problem of finding a
pair of conditions on a dyadic relation which together yield equivalence but
neither of which by itself yields either reflexiveness or symmetry or transitivity.
It will be shown that there are infinitely many such pairs of conditions.

There is a parallel problem in modal logic, that of finding a pair of for-
mulas which, if added to the minimal normal modal logic K, yield precisely 55,
but neither of which, when added to K, yields either Lp D p or p D LMp or
Lp D LLp as a theorem. It will be shown that there are infinitely many such
pairs of formulas.

2 One solution to the second problem is provided by the following for-
mulas:

A LMLp D p
B MLp D LMLLp.

Since in S5 an affirmative modality is equivalent to its last member, it is
clear that A and B are theorems of S5 and hence that S5 contains K + A + B.
For the converse it is sufficient to derive MLp D Lp and Lp D p. We first note
that A is interdeducible in the field of K with its dual:

A1 pDMLMp.

We then have:

MLp D Lp [B, A(Lp/p) X Syll]
Lp D p [A\Lp/p)9 B(MLp/p), A(LMLp/p), A X Syll]

*I acknowledge with gratitude the help given to me by Dr. R. L. Epstein in preparing this
paper. In particular, he is responsible for the generalizations of conditions Y and Z in
Section 4.
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That neither Lp D p nor p D LMp nor Lp D LLp is a theorem of K + A or
of K + B can be shown as follows. The frames of Figures 1 and 2 are frames for
K + A and K + B respectively. Yet since neither frame is reflexive or symmetri-
cal or transitive, the three formulas mentioned can be falsified in each of them.
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For good measure we can also show that neither A nor B is a theorem of
K + LpDp (T) or of K + pDLMp (B°) or of K + LpDLLp (S4°). These systems
are known to be characterized by the classes of all reflexive, symmetrical, and
transitive frames respectively. However,

(i) In the model on the reflexive transitive frame of Figure 3 in which
V(p) ~\y\tAv& false at x

(ii) In the model on the symmetrical frame of Figure 4 in which V(p) =
Φ, A is false at x

(iii) In the model on the reflexive transitive frame of Figure 5 in which
V(p) = \y\, B is false at x

(iv) In the model on the symmetrical frame of Figure 6 in which V(p) =
{y\, B is false at>>.
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3 K + A and K + B are characterized respectively by the classes of all frames
satisfying the following conditions Y and Z:

Y \fx3z(xRz Λ \fw(zRw D wRx))
Z (xRy Λ xRz) D 3w(zRw Λ \/υ(wR2v D yRv)).

The proofs of soundness are left to the reader. We prove completeness by
the method of canonical models.

3.1 Completeness of K + A We have to show that in the canonical model
(W, R, V) for K + A,R satisfies Y. Let x be any point in W. What is needed is to
show that there is some point z e W such that: (i) xRz, and (ii) every point to
which z is related is related to x. It is sufficient to prove that

T=\ot:Laex\ U \LMβ: βex\

is consistent, for: (a) if Γ is consistent there will be some z e W such that Γ C z ;
(b) since \a: La ex \ C z, we shall have xRz; and (c) since {LMβ: β e x\ C z, then
if zRw we shall have \Mβ: β e x\ C w, and hence wRx.
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Suppose that Γ is inconsistent. Then for some wff's La, βu . . ., βn e x,

h α 3 ~ ( L M β l Λ . . . /\LMβn).

Hence by K,

\~La^>L~(LMβι Λ. . .ΛLMβn).

Hence, since La e x, we have L ~(LMβx Λ . . . Λ LMβn) e xy and thus

(•) ~M(LMβx Λ . . . *LMβn)ex.

But since βl9 . . ., βn ex, we have, by A',

MZJί(j3 l Λ . . .r\βn)ex

and so, by #, M(LMβ1 Λ . . . Λ IΛίj8Λ) e x.

But this contradicts (*); therefore Γ is consistent, as required.

3.2 Completeness ofK + B Let (W, R, V) be the canonical model for K + B,
and let x, y, z be any points in W such that xRy and xRz. We have to prove that
there is some w e W such that: (i) zRw and (ii) for every υ such that wR2v, we
have yRυ. It is sufficient to show that

Γ=\a:Laez] U \LLβ\ Lβ e y\

is consistent; for suppose some w e W includes Γ, then: (a) since {a: Laezl C w,
we have zRw, and (b) since \LLβ\ Lβ e y\ e w, then for any υ such that wR2v
we have {β: Lβ e y\ C v, and so yRυ.

Suppose that Γ is inconsistent. Then for some La e z and some Lβ e y,

\-aD~LLβ.

Hence by K,

\~MLaΏML~LLβ.

Now La e z and xRz; so MLa e x, and therefore

ML~LLβex.

Hence by K,

(**) ^LMLLβex.

But since Lβ e y and xRy, we have MLβ e x, and hence by B:

LMLLβex

which contradicts (**). Therefore Γ is consistent as required.

4 The results of Sections 2 and 3 amount to an indirect proof that condi-
tions Y and Z together yield equivalence, and thus provide one solution to the
first problem of Section 1. (We shall give a direct proof in a moment.)

Conditions Y and Z can be generalized as follows. For each n e Nat (>1),
we define

Yn \fx3z(xRz Λ Vw(zRnw D wRx))
Zn (xRy Λ xRz) D 3w(zRw Λ Vυ(wRn+1v D yRnv)).
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We shall show that if n is odd, then if R satisfies Yn and Zn then R is
symmetrical, reflexive, and transitive, i.e., is an equivalence relation. Since the
original Y and Z are simply Yx and Zx respectively, the proof will clearly cover
them.

We note that each Yn explicitly includes seriality, i.e., the condition that
\fx3z(xRz).

Proof that R is symmetrical: Suppose aRb. Then by Yn there is some c such
that

(1) aRc

(2) \fx(cRnx D xRa).

Since aRc Λ aRc (by (1)), then by Zn there is some d such that

(3) cRd

(4) Vx(dRn+ίχDcRnx).

Now by seriality there is some e such that

(5) dRn'ιe.

(This holds even if n = 1, for then e = d.) Then from (3) and (5) we have cRne.
Hence by (2),

(6) eRa.

Now from (5), (6), and aRb we have dRn+1b; hence by (4) we have cRnb and
so, by (2), bRa.

Note that this result holds whether n is odd or even.

Proof that R is reflexive: Let a be any element. Then by Yn there is some b
such that

(1) aRb
(2) Mx(bRnx D xRa).

From (1), by symmetry, we have bRa and, therefore, if n is odd, bRna. Hence
by (2), we have aRa.

Proof that R is transitive: Suppose aRb and bRc. We can assume symmetry and
reflexiveness. By Yn there is some d such that

(1) cRd

(2) Vx(dRnχDxRc).

Moreover, since aRa and aRb, there is (by Zn) some e such that

(3) bRe

(4) \/x(eRn+ιxDaRnx).

We note that by symmetry, (3) gives eRb. Suppose now that n-\. Then by
eRb and bRc (given) we have eR2c; so by (4) we have aRc. Suppose now that
n > 1. Then by eRb, bRc, (1), and reflexiveness we have eRn+ιd. Hence by (4)
we have aRnd; hence by symmetry we have dRna, and so by (2) we again have
aRc.
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We note that the oddness of n is essential to the proof of reflexiveness, but
that, given reflexiveness, transitivity follows whether n is odd or even. We also
note without proof that if n is even, R satisfies the condition that if xR3y then
xRy.

That neither reflexiveness nor symmetry nor transitivity follows from any
Yn or Zn by itself can be shown from the fact that in Figures 7 and 8 we have
models for Yn and Zn respectively. Clearly neither is reflexive or symmetrical or
transitive.

o—^o—•*. . .—•o o-^o-*-. . m-—*o3
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Fig. 7 Fig. 8

5 Corresponding to the conditions Yn and Zn respectively are the modal
formulas (for each n> \)

An LMnLp D p
Bn MLnp D LMLn+ιp.

Clearly the A and B of Section 2 are A x and Bx respectively. Since in S5 every
affirmative modality is equivalent to its last member, each An and each Bn is a
theorem of S5\ so S5 always contains K + An + Bn. We now show that if n is
odd, K + An + Bn contains S5. To do so it is sufficient to derive p D LMp,
Lp D p and Lp D LLp.

We note that each An is interdeducible in the field of K with its dual

An pDMLnMp

(1) MLnM(pDp) [A'n(pDp/p),?C]
(2) MLnM(pDp)DM(pDp) [K]
(3) M(pDp) [(1),(2)XMP]
(4) LpDMp f(3)X^].

All subsequent theorems will be of the form a D Xp, where X is an affirmative
modality. Clearly (4) enables us to replace L by M anywhere in the consequent
of such a theorem.

(5) MLnMp D LMLn+ίMp [Bn(Mp/p)]
(6) MLnMp D LMnLLMp [(5) X (4)]
(7) LMnLLMpDLMp [An(LMp/p)]
(8) pDLMp U;,(6),(7)XSyll]
(9) MLpDp [(8) X Duality]

(10) LLp D p [(4)(Ip/p), (9) X Syll].

(9) and (10) enable us to delete ML and any even number of consecutive L's in
the consequent of a theorem.

(11) Lp D MLnMLp [A'n(Lp/p)]
(12) Lp^MLnp [(11)X(9)].

Now since n is odd, n - 1 is even. Hence:
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(13) LpDp [(12)X(9)X(10)]
(14) LpDLMLL"p [(12),5Π X Syll]
(15) LpDLn+1p [(14) X (9)].

Now if n = 1, (15) = Lp D LLp; and if n > 1 we have

(16) LpDLLp [(15), (13) X Syll (as often as required)].

(8), (13), and (16) are the required theorems.
None of these three is a theorem either of K + An or of K + Bn (for any ή).

This is proved by the fact the frames illustrated in Figures 7 and 8 are frames
for K + An and K + Bn respectively, but all three formulas can be falsified in
each.

Completeness proofs for K + An and K + Bn relative to the classes of
frames satisfying Yn and Zn respectively (for any n > 1) can be obtained by
straightforward generalizations of the completeness proofs given in Section 3.

6 For any even n (>2), K + An+Bn yields a system, weaker than 55, which
is characterized by the class of frames in which R is serial, symmetrical, and
such that if xR3y then xRy. It is equivalent to the system obtained by adding
to K the axioms Lp D Mp, p D LMp, and Lp D LLLp. The proof is left to the
reader.

The system in question does not appear to be equivalent to any of the
standard ones in the literature.

7 We turn now to the relations of the Yn's and the Zrt's among themselves.

(a) lϊm>n, Zn entails Zm.

Proof: Bn(Lm-«p/p)=Bm.

(b) If m < n, Zn does not entail Zm.

Proof: The model of Figure 8 in Section 4 satisfies Zn but not Zm for m<n.

Thus the Zn's form a sequence in descending order of strength. The situa-
tion with respect to the Yn% however, is more complex.

(c) If m > 1, then Yγ and Ym are independent.

Proof: (i) The model of Figure 9 is a model for Yu as is easy to check. But this
model does not satisfy Ym for m > 1.

X3 O - O χ2

Fig. 9

For consider x0. The only points to which it is related are x1 and x2- Now from
each of these we can reach x0 (or for that matter x^inm steps, for any m > 1.
But x0 is not related to itself (nor is xx related to x0). Hence Yx does not entail
Ym. (ii) That Ym does not entail Yx for m > 1 is a special case of the next
result, (d).
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(d) If m is not of the form n + r(n + 2), then Yn does not entail Ym.

Proof: The model of Figure 7 satisfies Yn. Clearly it contains n + 2 points, and
the only point to which x0 is related is q. Now it is evident that n steps will
take us from x1 to xn+ί, and also that any multiple of n + 2 further steps will
again take us to xn+ϊ; but any other number of steps will take us to some point
other than xn+1, and no such other point is related to x0. Hence Ym is not satis-
fied if m is not of the form n + r(n + 2).

(e) If 77 > 1 and m is of the form n + r(n + 2), then Yn entails Ym.

Proof: We can prove this by showing how to derive An+r(n+2) (f° r arbitrary r)
as a theorem of K + An (n> 1). The key step in the proof is the derivation of
the perhaps surprising theorem MLp D LLp.

Assume K and

An LMnLpDp(n>\).

We note as before that the dual of An is

An pDMLnMp

and that as in Section 5 we can derive (1) Lp D Mp. We then have:

(2) LMp D MLnMLMp [An(LMp/p)]

(3) D ML(p D Ln~ιMLMp) [K]
(4) -LMpDML-p [K]
(5) DML{p-DLn~ιMLMp) [K]
(6) ML(p D Ln~ιMLMp) [(3), (5) X PC]
(7) LMnL(p D Ln~ιMLMp) [(6), K, (1)]
(8) pDLn'ιMLMp [(7),ΛΠXMP]
(9) LMMp D LMMLn" ιMLMp [ (8), K]

(10) DLMnLMLMp [X (1)]
( 1 1 ) LMMpDMLMp [(10),An]
(12) LMLpDMLLp [(11), Duality].

We note that if we have a theorem of the form a D Xβ, where X is an affirma-
tive modality, then (12) enables us to replace LML by MLL anywhere in X.

(13) LMLMLp DMLLMLp [(\2)(MLp/p)}
(14) DMLMLLp [X(12)]
(15) DMMLLLp [X(12)]
(16) D MMLiMLp D LLp) [K]
(17) -LMLMLp D MLMLM~p [K]
(18) DMMLLM-p [X(12)]
(19) D MML(MLp D LLp) [K]
(20) MML(MLpDLLp) [(16), (19) X PC]
(21) LMnL(MLp D LLp) [(20), Jf, (1)]
(22) MLp D LLp [ ( 2 1 ) , ^ X MP].

(22) enables us to replace ML by LL anywhere in I in a theorem of the form
a D Xβ. Now let m = n + r(n + 2). Clearly Λj,, ̂ (ΛΓL'Vtfp/p) X Syll yields
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(23) p^MLnMMLnMp

and hence by repetition we have

(24) p D MLnMMLnM . . . MLnMp

where MLnM occurs r + 1 times.
It is easy to see that there are n + 2 + r(n + 2) operators in the modality in (24).
We can now use (22) to replace each M except the first and the last by L, thus
giving ourselves n + r(n + 2) ZΛ. We thus have

(25) pDMLn+^n+2)Mp,

which is^4w.
The upshot of (c)-(e) is that if n Φ m then Yn and Ym are independent

except when n > 1 and m = n mod(n + 2), in which case Yn entails Ym, but not
conversely.

We note the following corollary of the proof in (e):

T + An = 5 5 for any n> 1.

Proof: T gives the theorem LLp D Lp, and this with (22) yields MLp D Lp, and
hence a standard basis for S5.

8 The results obtained in Section 7 enable us to generalize the results of
Sections 4 and 5 even further. For we can now prove the following:

For any odd n > 1 and any k (even or odd) > 1, K + An + Bjc = S5, and Yn and
Zfc yield equivalence.

Proof: If rc is odd then for every even r, n + r(rc + 2) is also odd. Hence no
matter how large k may be, there will always be some odd m> k such that m =
n + r(;7 + 2) for some r. By (e) in Section 7, Am is a theorem of K + An by (a),
Bm is a theorem of K + B/d hence K + An + 2?# contains A" + ̂ 4m + £ w , and by
Section 5 the latter yields S5. Similarly, by Section 7(e) and (a), Yn and Zk

entail Ym and Zm, respectively, and by Section 4 these together yield
equivalence.
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