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Career Induction for Quantifiers

ROBERT K. MEYER

In [7], I showed that Belnap's method of "career induction" comes to an
unexpected halt at the second degree. While the halt was called for relevant
logics, the method is quite general. What it amounts to, roughly, is that for
a large number of logical systems, one can find, for each formula A in the
vocabulary, a formula A* such that: (i) A* is of the second degree and (ii) A is
provable in the system iff ^4* is provable therein. Thus, for example, if we
could find a decision procedure for the second-degree formulas of R, we could
solve the decision question for all of R. (This question is open.)

The purpose of the present note is to generalize the method, with the
particular aim of showing that first-order relevant logics are also second-degree
reducible. Again, the method remains quite general, so that the decision to
apply it to the analysis of Rx and its kin may be written off to an idiosyncratic
interest of the author. It is to be hoped that readers with other problems will
not be put off by this interest.

It often happens, in logical analysis, that iteration of some particles is
held to increase the complexity of a formula, whereas other particles lead to
no such increase. Thus, for example, iterated occurrences of D in modal logic
are held to increase the "degree of modal involvement", whereas iterated
occurrences of particles like & and ~, being merely truth-functional, do not
increase degree. It is very easy to tie numbers to this scheme. For illustrative
purposes, consider a sentential logic formulated with just two rc-ary connectives
c and C, of which c is to be thought of as degree-nonincreasing and C as degree-
increasing. Then a sensible and familiar specification of the degree of a formula
is the following. The degree of every propositional variable p shall be 0. The
degree of c(Au . . .9An) shall be the greatest among the degrees of Au . . ., An.
And the degree of C(AX, . . ., An) shall be one greater than the maximal degree
of the Aj. It is easy to see that what this scheme measures is the depth of
nesting of the degree-raising connective C among the formulas A of our sample
language.
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This scheme has been applied to a number of logics. In relevant logics,
for example, Belnap [4] counted the relevant implication -> as degree-increas-
ing, and the truth-functional connectives &, v, ~ and the quantifiers Vx, 3x as
degree-nonincreasing. (The scheme has obvious consequences for defined
connectives; for example, the relevant complication *> as defined in [ 1 ] is also
degree-increasing, by one.) On the scheme, [4] provides a complete semantics
and a decision procedure for the first-degree formulas of E and R, and a com-
plete semantics as well for the first-degree formulas of the relevant predicate
logics Ex and Rx. This limitation of relevant complexity is moreover important,
since, although there is now a complete semantics for all of E and R, improve-
ment of Belnap's results on the other two points (decidability and quantifica-
tional completeness) has been hard to come by. Even the second degree has
proved recalcitrant. Reference 7 and this paper show why. If the technical
problems of relevant logic could be solved at the second degree, they could be
solved. Period. But, one hopes, they may be a little easier to solve there.

1 Propositional logics I now summarize the method of [7], in a slightly
generalized way. (For more motivational details and discussion of application
to relevant logics, see that paper.) This method is intended for sentential logics.
As ingredients of a sentential logic, we expect at least the following (as primi-
tive or defined notions), with the attached properties.

Notion Property

Sentential variables Admits substitution rule
Equivalence <> Replacement rule is derivable, \~A <> A
Conjunction & Binds premisses in deduction, admits &/
Implication D Satisfies deduction theorem, admits DE
Other particles None required.

Other than the very ordinary specifications just listed (which, however, do
require slightly more spelling out), no requirements were placed on & sentential
logic in [7] but the ones just listed. In particular, it need not be assumed that
the equivalence «> is defined or definable in terms of the implication D.

Suppose now that we are given a sentential logic S, formulated in a
language L. We define a transformation * onZ, that will usually reduce degree,
with the further property that A is a theorem of S iff A* is a theorem of S.
Let A be a given formula of L, and let SUB(A) be the set of all subformulas of
A, including A itself. With each subformula B of A, we associate a sentential
variable pB of L, as follows: if B is an atomic formula q, pB shall be q. Other-
wise pB may be any sentential variable of L, subject to the requirement that
if B and C are distinct subformulas of A, pB and pc shall be distinct sentential
variables. (We assume but do not specify a function that will determine the
pB exactly.)

We now lay down some defining axioms1 for the pB: If B is atomic, the
defining axiom for pB shall be

(1) PB^PB-
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Otherwise, where B is of the form cBx . . . Bn, where c is an «-ary connective,
the defining axiom shall be

(2) p B * cpBχ . . . p B n .

Given the replacement property of «*, the effect of these defining axioms,
taken together, is to make each subformula B in SUB(A) equivalent to pB.

Let now AX{A) be the conjunction of all the defining axioms for thep^.
Consider the formula

(3) AX(A)DpA,

which we shall henceforth take as the A * we are seeking. On the elementary
properties that we have been assuming for S, it is easy to see that this A * will
be provable in S iff A itself is provable in 5. For, by iteration of replacement
properties, pA is derivable in S from A and the members of AX(A). Applying
the deduction theorem for D, and using the binding properties of &, the
following is a theorem of S.

(4) A D.AX(A)DpA(i.e.,A DA*).

Accordingly, if A is a theorem of S, so by DE is A*. On the other hand, sup-
pose that A* is a theorem of S. Simply substitute B foτpB throughout (3), for
each B in SUB(A). It is easy to see that the antecedent of (3) is, on this sub-
stitution, a conjunction of explicit identities B ** B, which, by our assumption
that o is reflexive and by &/, is a theorem of S. By DE, so also is ̂ 4 a theorem
of S, since on our specifications it is A itself which is substituted forp^. So>4
is a theorem of S iff A* is a theorem of S, as claimed.

Moreover, the transformation which takes A into (3) will usually reduce
degree. How it will reduce degree is a function of the degrees to be assigned to
sentential variables and logical particles. We make the assumption that the
conjunction & itself is degree-nonincr easing, that sentential variables are
assigned degree 0, and that other particles increase degree by at most one.
We allow that sentential constants, to be consistent with the scheme, may
be assigned either degree 0 or degree 1, the latter counting as the degree-
increasing option for such constants, if present.

There are now four cases for how much we have reduced degree, in
general. In the worst case, all particles (except &, but including «> and D) are
degree-increasing. In that case, A * will be, at worst, a third-degree formula. For
the pB will be 0-degree, the cpB ,,.B will be first-degree, the pB «> cpB ., ,B

will be the second-degree (and hence AX(A), which is the conjunction of such
formulas, will be second-degree). So (3) itself, which hasAX(A) as antecedent,
will be bumped up to the third degree by its main implication. If neither of *>
or D are degree-increasing, then two of the bumping up stages are omitted and
A * is, at worst, a first-degree formula. The intermediate two cases occur when
just one of «*, D is degree-increasing, in which case A * is, at worst, a second-
degree formula. (This was the basis for the reduction for the relevant logics
themselves in [7], where ** was taken as relevant and degree-increasing, and D
was taken as material and degree-nonincreasing, producing a second-degree
reduction.)
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While we have required of what is here called a sentential logic that it
shall have all the properties that we have listed, and while they are quite
ordinary properties that most sentential logics of general interest can be shown
to have without further fuss, there are a few points on which the reader needs
to be cautioned. The first is that the replacement rule for -o be derivable. This
means, on usage freely borrowed from Curry [6], that the rule must hold
under hypothesis. For, in assuming A and AX(A) on hypothesis and then
applying the replacement rule (repeatedly), we are able to derive pA, which
is the basis for tht theorem scheme (4). But while most systems of logic will
support a replacement rule for a suitably chosen <*, they will not necessarily
support it as a derivable rule, but merely as an admissible rule (again, in the
Lorenzen-Curry sense), which, if added to the primitive rules of a given system,
does not produce any new theorems. So, while the replacement rule for <> is
the common situation even in its stronger, derivable form (as is witnessed by its
presence in relevant logics, which differ from the norm on most points on
which it is possible reasonably to differ), there are many interesting situations
(in weak modal logics, for example), in which this rule will be underivable. If
such systems are denied here the honorific title "sentential logic", it is not
that they are uninteresting, but merely that we are uninterested in them for
the purposes of this paper.

Of the properties presupposed for &, I have not much to say. The model
that I have in mind for & is truth-functional conjunction, though all that I
use of that model is the thought that conjunctions can be asserted iff their
conjuncts can be asserted. Since & tends to be the particle with the most stable
properties over a large variety of logical systems, most systems will treat these
assumptions in their stride. Interesting, however, are systems in which the
truth-functional & is absent, like some fragments of R, but in which its place
is taken by an intensional conjunction o. Suffice it to say here that, by being
careful, we can adapt the above argument to such situations. But note that
the point of the argument remains only if o itself can be counted as degree-
nonincreasing (for AX(A) is typically a long conjunction). While such reckon-
ing may be useful for some purposes, it is less natural than our standard
assumption that & is degree-nonincreasing, when we think of degree itself as
a measure of the departure of a formula from a truth-functional norm.

The properties of D are more interesting. For one thing, while a system
usually provides little choice as to which connective shall count as its <> (if
replacement is to be a derivable rule, only the strongest candidate is likely
to do—for example, strict equivalence in modal logics, not mere material
equivalence), we may have some choice of D. Since the crucial property is the
deduction theorem, we need only satisfy ourselves that the following is true:
If C is derivable in S from A,B, then A D. B D C is a theorem of S. (This is
derivability in the ordinary sense, which [ 1 ] calls "Official".) For example,
there are a couple of connectives definable in R with the necessary properties:
the material implication D, and an intuitionist sort of implication as well.
Caution: if we choose D to be a strict implication, in the modal sense, or a
relevant one, it does not necessarily satisfy such a deduction theorem. But
such connectives will ordinarily satisfy some form of the deduction theorem,
whence again we can often reinstate the argument so that it goes through with
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a strong -> as the principal connective of the A* defined by (3). If we do this
for R or E in particular, for example, our reduction still goes through, though
in this case it is a third-degree reduction rather than a second-degree one,
since -> (unlike the material D used to define A* in [7]) is naturally taken as
degree-increasing. Finally, we have assumed that the rule DE of modus ponens
for our chosen implication is admissible in S. While, ordinarily, this is the most
uncontroversial of principles, it can become controversial if the chosen D is not
the preferred implication of the system. Thus, for example, the reduction
of [7] depended for the relevant logics on the nontrivial result that DE is
admissible in these systems for material implication.

2 Quantification theory Having summarized and supplemented [7] with
these remarks, we now turn to the real business of this paper, which is to
extend the above techniques to quantification theory. The key step in reducing
degree above lay in letting a sentential variable pB stand in for a formula B.
We did this, using the equivalence «> of an arbitrary system S, by assuming
defining axioms that, essentially, recapitulated the formation rules that
produced B in the first place. The key properties of o that went into this
recapitulation were congruence properties.

We ask ourselves, what are the appropriate congruence properties in
predicate logic (which we assume formulated with predicate letters, but
without function symbols or identity)? What the sentential analogy suggests is
that our defining axioms should now set every subformula B of A equivalent
to a predicate letter. While that thought is not exactly well-formed, it is near
enough to being well-formed that we can make use of it. For each open
formula B(xϊ9 . . .,*„) of a first-order language stands for, in Russell's termi-
nology, a propositional function. In particular, where exactly xu . . ,,xn are
free in B(xl9 . . .,xn), this formula may be viewed as an rc-ary propositional
function, whose arguments are ^-tuples of objects of an intended domain and
whose values are propositions. In order to reduce complexity, we should
identify this propositional function with one determined by an «-ary atomic
predicate FB. If we had the machinery we could introduce something like
Church's λ notation (to distinguish expressions denoting functions from open
formulas, by writing the former as \xλ. . . λxnB(x1,. . .,xn)). Thus, using
ordinary ' = ' for equality between propositional functions, we would want
defining axioms, on analogy to those that we had before, which would identify
each such λ expression (corresponding to a subformula of a given A) with an
FB, in the sense that FB = \xx . . . \xnB(xli. . ., xn) would be derivable in an
appropriate sense from defining axioms. For we could then use FB to do the
work of the propositional function determined by a complicated B.

Essentially, this will be our plan, although, since we do not have the λ
notation in a first-order language, we shall have to simulate it. Ordinarily, we
can simulate it quite easily, by causing to be derivable from our defining
axioms sentences of the form

(5) \/xx... \/xn(FBXl . . . xn<>B{xu . . ., *„) ) ,

where FB is the new predicate letter that we have picked to go with a given
complex formulaB, in exactly the variables xl9 . . ., xn (occurring free).
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So our plan will be as before, except that it is formulas of the form (5)
that we wish to be derivable in S from the defining axioms determined by a
given A. Once again, let SUB(A) be the class of all subformulas of a given
formula A. With each B in SUB(A), we now associate a predicate letter FB,
as follows. If B is an atomic formula Gxx. . . xn, FB shall be G. Otherwise, as
before, FB may be any predicate letter, provided that it is distinct from all
the Fc, C e SUB(A) and C distinct from B. Again, since the number of sub-
formulas of any formula is finite, there is no problem about specifying a
definite plan to pick the FB. Note that the plan has different effects at the
atomic level and at the molecular level. For example, if B is Fxy and C is Fyx
and D is Fyz and E is Fyy, all of FB, Fc, FD, and FE are just F. But, where P
is any formula, all of FB&p, Fc&p, etc., are different.

Where B is an atomic formula Gxx . . . xn, FB is an rc-ary predicate letter,
since it is just G. This is the case whether the xz are distinct or not. But where
B is nonatomic, we shall determine the «-adicity of FB strictly by the number
of free variables which occur in B (and not by the number of occurrences of
free variables in case any are repeated). We do not count bound variables.
That is, where exactly n variables occur free in B, we call B an n-ary formula.
And FB, in this case, shall be an n-ary predicate letter. In particular, if B is a
sentence (no free variables), FB shall be a 0-ary predicate letter (i.e., a sentential
variable).

As before, we now wish to chase up the formation tree of our given
formula A in order to lay down defining axioms. They are essentially as before,
except that we have to be careful to assure that the rc-ariness comes out right.
This time all our defining axioms shall be the universal closures of the formulas
actually displayed (gotten, let us say, by prefacing universal quantifiers in the
order in which free variables, if any, occur in the formula in question). But we
may abuse language to the extent of sometimes referring to the formulas
themselves as axioms. As before, where B is atomic the defining axiom for B
shall be just

(6) B^B.

(To the reader who was curious before, and who remains so, as to why these
explicit identities have been chosen as defining axioms, the reason is that,
for some versions of the deduction theorem for relevant implications, they
are needed. While we have not dwelt on the point, which doesn't touch on
our main concerns, we include it to smooth a few more applications of our
methods to the One True Logic.)

Suppose now that B is of the form cBx. . . Bn, where B is an «-ary con-
nective. We may assume that we have already laid down defining axioms for
each of the B{, of the form

(7) Bi»BΪ,

for each /, and that B\ is of the form FB{xx. . . xn, where xί9. . ., xn are all the
variables that occur free in Bt itself. Let yu . . .,ym be exactly the variables
that occur free in B, without repetitions. Then our defining axiom shall be

(8) FBy1...ym*cB[...B'n.
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Note that exactly the same variables occur free on the left and right sides
of (8). (On the right, however, a j>, may occur more than once, which is not
permitted on the left.)

Finally we come to the quantifiers. (Their accommodation is, after all, the
point of the extension of the method.) So let B be of the form QxC, where Q
is a quantifier (or any other 1-place variable-binding operator that works
syntactically like a quantifier). As in the last case, we assume that yu . . ,,ym

are exactly the variables that occur free in B, and that we have added a defining
axiom for C of the form

(9) C'oC",

where the free variables of C are yu . . ., ym, and possibly x (in the interesting
case where the Qx of QxC is not vacuous). Then our defining axiom for B shall
be

(10) FBy1...ym^QxC.

We can now form A* as before, given A. Let AX(A) be the conjunction of all
defining axioms for subformulas of A. (We cease abusing language to recall
that AX(A) is itself a closed formula.) Let A' be the atomic formula which
occurs on the left-hand side of the defining axiom for A itself. Then let A* be
the analogue of (3), namely

(11) AX(A)DA'.

We now wish to show that, in every predicate logic S9 A and A* are again
deductively equivalent, in the sense that one is a theorem of S iff the other is.
To begin with, the biconditional <* of a sentential logic is now in general too
weak to justify a derivable replacement rule (unless one wants to go through a
lot of explanation as to what " derivable" is now to mean). For such a rule now
goes naturally not with formulas B o C but with their closures. Let us waste a
definition, calling the wanted notion exact equivalence and symbolizing it
by '='.

(12) B = C=df\/xί... Vxn(B o C),

where xu . . ., xn are, in the order of occurrence, the variables that occur free
in B o C. Note that, disabusing language, our actual defining axioms are all
exact equivalences.

Our specification of a predicate logic now mirrors our specification of a
sentential logic.

Notion Property

Predicate variables Admits substitution rule
Exact equivalence = Derivable replacement rule, \~A = A
Conjunction & As before
Implication D As before
Other particles None required.

The argument for the deductive equivalence of A and A* is now as before.
If A is a theorem of the predicate logic S, and one assumes the defining axioms
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for A and its subformulas on hypothesis, a succession of replacements of exact
equivalents, looking up the construction tree for A, will yield A' as before,
whence the deduction theorem will yield A*. Going the other way, suppose
A* is a theorem. For each atomic expression FByx. . ,ym in A*, substitute
B(yi> - J ym) (according to the specifications of, say, [5]). This again turns
the antecedent of A * into a conjunction of exact equivalences and its conse-
quent into A (modulo some well-known nuisances, which are greatly eased by
thinking of the substitution as of \yx. . . λymB(yl9 . . .,ym) for FB). Then
again apply DE to get A.

While we have defined exact equivalence = in a way agreeable to the
predicate logics that one might meet in practice, nothing in our actual argu-
ment for the deductive equivalence of A and A* in predicate logics S prevents
that notion from being taken as primitive. For what counts are the reflexivity
of = and its replacement properties under hypothetical extension. We also
assume that =, whether primitive or defined, shall increase degree by one at
most. On the definition (12), it suffices for this end to add to our previous
specifications that & shall be degree-nonincreasing and that <* shall increase
degree by one at most, which specifications remain in force, that the universal
quantifier V shall also be degree-nonincreasing. Again, if we use degree to
measure the non-truth-functional involvement of a formula, these specifications
remain natural.

Finally, we can prove a theorem.

Reducibility theorem Every predicate logic is third-degree reducible, i.e.,
every formula A of a predicate logic S, where S is subject to the conditions
above, is deductively equivalent to a formula A * which is of at most the third
degree. If, in addition, at least one of =, D is degree-nonincreasing, then S is
second-degree reducible. If both of these particles are degree-nonincreasing,
then S is first-degree-reducible.

Observation: All previous assumptions about degree remain in force. Since
we assume V degree-nonincreasing, it suffices for = to be degree-nonincreasing
that o should be, where the definition (12) is assumed. While we assume that
no primitive particle increases degree by more than one, note that it does not
matter for our results if all particles except & and V are counted as degree-
increasing, and that reductions in degree are got whenever one or both of «>,
D is degree-nonincreasing (as before), leaving all particles not specifically
mentioned to be degree-increasing or not, as we choose.

Proof: As indicated, with the remarks limiting the degree of A * being justi-
fied as in the sentential case.

As in the sentential case, the most familiar logics turn out to be predicate
logics, and are hence third-degree reducible at worst, however degree is
measured. Of course classical and intuitionist first-order logics are predicate
logics in our sense. So are some first-order extensions of standard modal
logics—e.g., the first-order extension of S5 originally proposed by Barcan
in [3]. Illustratively, however, I shall again consider the case of relevant logics,
with an eye on the uncompleted task of furnishing the first-order versions of
these logics with a complete model-theoretic semantics. (A proposal was made
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in [9], but, at least so far, there is no way of knowing whether it, or some
variant thereof, is the correct proposal.) Again, we count degree as it was
counted in [4]. The truth-functional connectives, including & and the material
D, are degree-nonincreasing; so are the quantifiers. Relevant implication -» (and
accordingly the relevant coimplication <> and the exact equivalence = defined
therefrom by (12)) is degree-increasing. Under these conditions

Corollary Let S be any of the relevant logics E, R, T, RM, and EM, and
let Sx be the corresponding first-order logic. (Formulations of all of these
first-order systems will be found in [2], building on the sentential base offered
in [1]. Axioms for quantifiers are as in [4], essentially.) Then Sx is second-
degree reducible.

Proof: We need only verify that the logics in question meet our conditions
on a predicate logic. The formulation of the systems with unrestricted axiom
schemes is the key ingredient in guaranteeing the substitution rule for predicate
letters. The replacement rule for exact equivalence can be shown derivable in
the usual way. Conjunction has its ordinary properties. Again we prefer for this
purpose to choose material implication as our D, since it is degree-nonincreas-
ing. The rule DE may be shown admissible for Sx as it was shown admissible
for Rx in particular in [8]. The deduction theorem for D may also be estab-
lished in the ordinary way and = is of course reflexive. This is all that is
required that Sx should be a predicate logic in our sense, falling accordingly
under the case of the theorem where = is degree-increasing and D is degree-
nonincreasing. Thus relevant predicate logics are second-degree reducible as
well, and once again the degree of relevant involvement need go no further
than 2.

NOTE

1. Defining axioms in a sense are not to be taken as logical axioms, although in some cases
as here they will be theorems of logic.

REFERENCES

[1] Anderson, A. R. and N. D. Belnap, Jr., Entailment, Volume I, Princeton University
Press, Princeton, New Jersey, 1975.

[2] Anderson, A. R., N. D. Belnap, Jr., and R. K. Meyer, Entailment, Volume II, in prep-
aration.

[3] Barcan, R. C , "The deduction theorem in a functional calculus of first order based on
strict implication," The Journal of Symbolic Logic, vol. 11 (1946), pp. 115-118.

[4] Belnap, N. D., Jr., "Intensional models for first-degree formulas," The Journal of
Symbolic Logic, vol. 32 (1967), pp. 1-22.

[5] Church, A., Introduction to Mathematical Logic, Princeton University Press, Princeton,
New Jersey, 1956.

[6] Curry, H. B., Foundations of Mathematical Logic, McGraw-Hill, New York, 1963.



548 ROBERT K. MEYER

[7] Meyer, R. K., "Career induction ends here (and here =2)," Journal of Philosophical
Logic, vol. 8 (1979), pp. 361-371.

[8] Meyer, R. K., J. M. Dunn, and H. Leblanc, "Completeness of relevant quantification
theories," Notre Dame Journal of Formal Logic, vol. 15 (1974), pp. 97-121.

[9] Routley, R. and R. K. Meyer, "The semantics of entailment 1," pp. 199-243 in Truth,

Syntax and Modality, eά., H. Leblanc, North-Holland, Amsterdam, 1973.

Philosophy Department
The Australian National University
Canberra ACT 2600, Australia




