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Word Problems for Bidirectional,

Single-Premise Post Systems
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Introduction A bidirectional, single-premise Post system is a Post canoni-
cal form F where, if R; > R, is a rule, then R, = R, is also g rule. One class
of bidirectional Post systems, the Thue systems first defined in [7], have
been extensively studied. Thue systems with unsolvable word problems were
shown to exist by Post [5] and, more recently, Overbeek [4] demonstrated
that this class of problems represents every recursively enumerable (r.e.)
many-one degree of unsolvability. In this paper we extend Overbeek’s re-
sult to include bidirectional extensions of Post normal systems, tag systems,
and the one-letter systems introduced by Hosken [1].

Post Systems Let X be a finite set of symbols and let Q,, Q,, ..., @, be
new symbols called operational variables. A word over £ U {Qy, Q,, . . ., On},
containing at least one operational variable, is called a word form. An iden-
tification of the operational variables Q,, Q,, ..., Q, is a set of pairs
{(Qi, W)Il <i < n}where each W;is a word over . Let Y =y,0;1,0;, . ..
YmQi,,Ym+ be a word form where yy, yy, ..., Y+ are words over ¥ and
in Qiys - - -» Qiy, are operational variables. Then Y’ is the result of apply-
ing the identification ® = {(Q;, Wy)|l < i<n}to Y, denoted Y®, if Y' =
Wi vaWi, oo Y Wiy Ym+1-

A single-premise Post system F = (Z,V,P) issuch that Z is a finite alphabet,
V is a finite set of operational variables, and P is a finite set of rules, each of
the form R, = R,, where R, and R, are word forms. Let W, and W, be words
over . Then W, is said to be an immediate successor of W, in F, denoted
(W,, W,)r, if there exists some rule of P, R, > R,, and some identification &
of ¥V such that R? = W, and R} = W,. W, is said to be derivable from W, in F,
denoted [W,, W,]1F (or [W,, W,], whenever F is understood from context), if
there exists a sequence Y,, Y,,..., Yx, where £ = 1, of words over Z such
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that Y, = W,, Yy = W, and for each j, 1 <j <k, (¥}, Yj+)F. The length of the
above derivation is k — 1 and each Y; is said to be in the derivation of W,
from W,.

A Post normal system N = (Z,{Q}, P) is a Post system where each rule is
of the form aQ = Qf, for o and 8§ words over Z. Let N =(Z,{Q}, P) be a Post
normal system where Z ={a, a,, .. ., an}. Then N is called a tag system if there
exist a constant positive integer d, called the deletion number of N, and for
each i, 1 <i<n, aword W;, uniquely corresponding to g;, such that

n
P=J{a:WQ > QW;|W is a word over = and |W|=d - 1}.

i=1

A restricted Post canonical form (RPCF) R = ({1},{X}, P) is a system where
each rule is of the form X?1° > X¢1¢ (where Y? represents z consecutive oc-
currences of Y). These one-letter forms are more commonly viewed as systems
operating on natural numbers. In this case each rule is of the form ax + b —
c¢x +d where a, b, ¢, and d are natural numbers. The natural number n, is said
to be an immediate successor of », if there is a rule ax + b = cx + d such that,
for some natural number y, both n, =ay + b and n, = cy +d. The association of
this latter formulation with canonical systems is clear when we interpret a
string of # consecutive 1’s as representing the natural number #.

Bidirectional Post Systems Let F, =(Z, V, P,) be a single-premise Post sys-
tem. The inverse of F; (sometimes denoted F[') is the system F, = (2, V, P,)
where P, contains the rule R, = R, just in case P, contains R; = R,. The rules
in F, are in effect the inverses of those in F,. While the inverses of semi-Thue
and Thue systems are themselves semi-Thue and Thue systems, respectively,
the inverses of Post normal systems are not normal and the inverses of tag
systems are not tag systems.

The bidirectional extension of any single-premise system F; = (Z, V, P,) is
the system F3 = (2, V, P, U P,) where P, is the set of rules contained in the
inverse of F,. The primary research reported here concerns properties of the
word problems for bidirectional extensions of Post normal systems, tag sys-
tems, and RPCF’s.

Decision Problems for Post Systems If F=(Z, V, P)isaPost system then
the word problem for F is the problem of determining for arbitrary W, and W,
over X whether or not [W,, W,]. The confluence problem for F is the problem
of determining for arbitrary W, and W, over £ whether or not there is a W,
over T such that [W,, W3] and [W,, W;]. The decision problem for F with
axiom A over X is the problem of determining for arbitrary W over £ whether
or not [A4,W]. The general word problem (general confluence problem, general
decision problem with axiom) for a class of systems, e.g., all tag systems, all
Post normal systems, etc., is the family of word problems (confluence prob-
lems, decision problems with axiom) for all such systems.

Let G, and G, be a pair of general decision problems (that is, classes of
decision problems such as the general confluence problem for tag systems)
then G, is said to be many-one reducible to G, if there exists an effective
mapping ¥ of the problems P in G, into the problems ¥(p) in G, such that, if
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p is nonrecursive, then p is of the same many-one degree as ¥(p). Every non-
recursive r.e. many-one degree is said to be represented by G, if the general
decision problem for r.e. sets is many-one reducible to G,.

Deterministic Systems Let F = (Z, V, P) be a Post system. Then F is said
to be deterministic if, for each word W over Z, (W, W,)r and (W, W,)r implies
that W, = W,. Thus, each word has at most one unique immediate successor.
The confluence problem for a deterministic system is equivalent to the word
problem for its bidirectional extension as is shown by the following.

Theorem 1 Let F; be a deterministic Post system, let I be its inverse, and
let Fj3 be its bidirectional extension. Then the confluence problem for Fj is of
the same one-one degree (that is, is isomorphic) to the word problem for F;.

Proof: Let W, and W, be any two words over F,’s alphabet. Then W, and
W, conflue in F) just in case there is some word Wj such that [W,, W;3]F, and
[W2, Ws3lg,. But then [W,, W;lg, and [W;, W, ]p;, and consequently [W,, W, ]g,.
Hence, if W, and W, conflue in F, then W, derives W, in F;.

Going in the other direction, assume [W,, W,lg,. Let W, = U, W, = U,
and (Uy, U)p,, - - -5 (Up-1, Up)F, represent a derivation in F such that there is
no shorter length path from W, to W,. We claim that there must exist some j,
0 <j <mn, such that (Upn, Unudr, 1 S m <j, and (Uy, Unudp,, ] <m <n.
This, in effect, says that once a rule from F, is used we can never again choose
one from F;. If this claim were false then for some &, (Ur, Ug+t)r, and (Ug-y,
Ue)r,- But, since F, is deterministic Ugyy = Ug-, and there is a derivation of
length » — 3, contradicting the fact that » — 1 is minimal. Thus our claim is
verified. But then [Wy, Ujy]F, and [Ujyy, W2l g, which implies that [W,, Ujy]F,
and [W,, Uj4,1F, and hence W, and W, conflue in F).

Word Problems for Bidirectional Extensions The general word problems
for bidirectional extensions of tag and, consequently, Post normal systems may
be trivially shown to represent every r.e. many-one degree. This is accomplished
as follows.

Lemma 1 Every nonrecursive r.e. many-one degree is represented by the
general confluence problem for tag systems.

Proof: While not explicitly claimed there, this result follows from the con-
struction in Hughes [2] and the fact that every r.e. many-one degree is repre-
sented by the general confluence problem for register machines [3].

Theorem 2 Every nonrecursive r.e. many-one degree is represented by each
of the general word problems for the bidirectional extensions of tag and Post
normal systems.

Proof: Tag systems are clearly deterministic and thus, by Theorem 1, the
confluence problem for a tag system is of the same many-one degree as the
word problem for its bidirectional extension. Thus the degree result of Lem-
ma 1 may be carried over to the general word problem for bidirectional exten-
sions of tag systems. The result for Post normal systems is a consequence of
the fact that every tag system is also a Post normal system.
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The case for the bidirectional extensions of restricted Post canonical
forms is not demonstrated as easily as was done for tag systems. Our basis
for the result is in the work of Overbeek [3] in which he established that every
nonrecursive r.e. many-one degree is represented by the confluence problem for
n-register machines. What will be shown here is an effective procedure which
when given an arbitrary n-register machine R will produce a bidirectional RPCF
F such that the confluence problem for R is of the same many-one degree as
the word problem for F.

An n-register machine R is a system having » registers each capable of
storing any nonnegative integer. R is defined by an ordered set of m rules,
each having one of the forms:

ADD;(j), where 0<i<nand 1 <j<m+ l;0r
SUB;(j,k), where 0<i<n,1<jsm+land I<k<sm+ 1.

A configuration of R is an (n + 1)-tuple Z = (h,ro, 1y, . . ., h—;) Where
1 < h<m+ 1 and each #; is a natural number. If Z = (h,ry, 1y, . . ., 1,-) and
Z' = (j, So» S15- - -» Sp-y) are configurations of R, then Z' is the immediate
successor of Z in R if either

a. rule h is ADD;(j), s;=r;+ 1,and s; = r, for ¢t #i; or
b. rule & is SUB;(j,k), ;> 0,s;=r;— 1,and s, = r; for t #1i; or
c. rule 2 is SUB;(k,j),r;=0,and s; =r; for 0 < ¢ <nm.

If » = m + 1, none of the rules apply; this case can be thought of as a
terminal configuration.

We shall now demonstrate an effective procedure which when applied to
an arbitrary n-register machine R, produces a bidirectional RPCF F such that
the confluence problem for R is of the same many-one degree as the word
problem for F.

Let R be an n-register machine with m rules. Let p; denote the i'! prime
number, with py = 2. The bidirectional RPCF will have the rules:

Set l.pp X <= ppXforn<r<m+n,n<s<m+t+n,andn<t<m+n.
oosbiX < pp X forn<r<m+n,n<s<m+n,and 0<i<n.
pos X <= ppspX forn<r<m+n,n<s<m+n,and 0<i<n.

Set 2. If rule & of R is ADD;(j) then include the rule

Phin-1 X < pj+n-1piX-
If rule 2 of R is SUB;(j,k) then include the rule
Pnan-10iX < Djun- X
and the rules
Pran-1DiX + Pnan-1t < Dken1DiX + Drany t
foreacht, 1 <t <p;.

We now show that the word problem for F is of the same many-one
degree as the confluence problem for R. Let Z = (h,ry, 1y, . . ., 1,—;) be an arbi-
trary configuration of R. We define G(Z) as the natural number pp, -, /P}1. . .
p;’_’l’l. A natural number « is normal if there exists a configuration Z of R such
that G(Z) = a.
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Let Z be an arbitrary configuration of R. We wish to show the following:

1. When applied to normal numbers, the rules of F are deterministic in
a forward (=) or left-to-right direction; G(Z) has at most one forward im-
mediate successor in F, and

2.Z' is the immediate successor of Z in R implies G(Z') is the forward
immediate successor of G(Z) in F.

To show these results, we note that no member of Rule Set 1 can apply
to a normal number «, since a normal number has only one prime factor p,
where n < w < m + n. py, in this case will be pyrn-y, with 1 <A <m + 1, and
o = ppyn-1y. Thus, exactly one of the following will be true:

a. h =m+ 1, and « will have no forward successor in F.

b. Rule 2 of R is ADD;(j). In this case o has the forward successor
Dj+n-1D:) -

c. Rule # of R is SUB;(j,k) and y = p;r for some r. The forward successor
of o will be pjip-y 7.

d. Rule 2 of R is SUB;(j,k) and y is not divisible by p;. Then o = pyep—,
(pir + t) for some natural number r and 1 < ¢ < p;, and « has the for-
ward successor Pxyn-1¥-

This establishes determinism for F in a forward direction for normal
numbers. Let F' be the restriction of F to the forward or left-to-right rules
only. We have then shown the following.

Lemma 2 There is a one-to-one relationship between the confluence prob-
lem for R and the confluence problem for F' restricted to normal numbers.

In addition, Theorem 1 establishes that the confluence problem for F' is
of the same one-one degree as the word problem for F, where each is restricted
to normal numbers. Thus we may conclude

Lemma 3 The word problem for F restricted to normal numbers is of the
same one-one degree as the confluence problem for R.

We now show that questions about abnormal numbers in F (and F') are
either trivially decidable or are reducible to questions about normal numbers.

Let a be an abnormal number. Then « is abnormal due to one of the
following disjoint set of reasons.

1.  is not divisible by any p;, forn <i<m +n.

2. ais divisible by p,ps, wheren <r<m+nandn <s<m +n.

3. o is the product of some y and r where y is normal and r is not divisible
by any p;, with 0 <i<m +n.

Case 1: If a is not divisible by any p;, with n < i < m + n, then none of the
rules can be applied, and so « can derive only itself.
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Case 2: If «a is divisible by p,ps, wheren <r<<m +nand n <s <m +n, then
o is of the form xyz, where x is not divisible by any prime p; where i = n,
y is not divisible by any prime p; whenj <n orj >m +n, and z is not divisible
by any prime p; where i < m + n. Possibly z = 1. Let K be the number of prime
divisors of y greater than 1 (K must be at least 2). K is the number of factors
representing rules. « then derives by Rule Set 1 any 8, where § = uvz; u is not
divisible by any prime p; where i = n, v is not divisible by any prime p; where
j<nmorj>m+n,and v has k prime divisors.

Case 3: 1If o = yr, where y is normal and r is not divisible by any prime p;,
where i < m + n, then by Rule Set 2 « derives any § = xr where y derives x.
Case 3 thus reduces to questions about normal numbers.

As a result, derivability questions about abnormal numbers are either
trivial or they reduce to questions about normal numbers. Combining this with
Lemma 3 and the fact that every nonrecursive r.e. many-one degree is repre-
sented by the general confluence problem for n-register machines, we have
proven the following.

Theorem 3 Every nonrecursive r.e. many-one degree is represented by the
general word problem for bidirectional RPCF’s.

Bidirectional Systems with Axiom We will show in this section that our
results also hold for bidirectional extensions of systems with axiom. We start
by showing that every nonrecursive r.e. many-one degree is represented by the
decision problem for bidirectional RCPF’s with axiom. To do this, we will first
demonstrate that a slightly nonstandard version of the n-register machine
yields the same many-one degree results.

We will use as a basis the halting problem for register machines. This was
shown by Shepherdson [6] to represent every nonrecursive r.e. many-one degree.
Given R, an arbitrary n-register machine with k rules, we construct R' by add-
ing the rules k + 1,k +2,..., k+n, whererule k +i + 1 is SUB;(k +i + 1,
k+ti+2)for0<i<n.

Rule £ + n + 1 can be regarded as the terminal rule. Thus if the terminal
state is reached in R', all the registers will have been zeroed out.

Lemma 4 Every nonrecursive r.e. many-one degree is represented by the
halting problem for the revised n-register machines (that is, by n-register ma-
chines that zero all registers before halting).

Given a revised n-register machine R, we present a method of construc-
ting an RPCF F and axiom A such that the halting problem for R is of the same
many-one degree as the decision problem for F with axiom A. We will then
show how the inverse rules for F can be added so that the same result will
hold for the bidirectional RCPF.

Let R be an arbitrary revised n-register machine with m rules. Let p;
denote the i prime, with p, = 2. The axiom for the desired RPCF is Pmens+1
and the rules are the following:

a. If rule & of R is ADD;(;j) then add the rule

Pj+n-10iX = Phan-1
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b. If rule 2 of R is SUB;(j,k) then add the rule
Pj+n-1X > Dhin-1DiX
and the rules
Pk+n-1PiX * Dkan-1t ™ Pran-1PiX + Pran-y 8, foreach 1, 1 <t <p;.

Define configurations of R, normal numbers, and G(Z) as before. The
axiom will be the word ppanu 303 . . . PP-1 = Dmens. Thus F will simulate R
backwards from the configuration (im +n +1,0,0, ..., 0).

Let W derive (im + n + 1,0, 0,...,0) in R. The derivation proceeds by a
sequence of rule applications g,, &, - . ., 8. The rules of F that will be applied
correspond to the rules of R in the order g, . . ., g,, ;. Thus if the configura-
tion W derives the configuration (m + n + 1, 0, 0,...,0) in R, then pueng
derives G(W) in F.

Let pmeny derive G(W) in F. The sequence of steps 4y, hy, . . ., A; in this
derivation corresponds to the rules A}, hj, .. ., kj in R, and applied to W in the
reverse order, starting with h} in R, yields the configuration (m + n + 1, 0,
0, ..., 0). Thus the following has been shown.

Lemma 5 Pmens derives G(W) in F iff W derives (m+n +1,0,0,...,0)
in R.

We now show that adding the inverses of rules F yields nothing additional,
so that [pmens, G(IW)1pup-1iff W derives(m +n +1,0,0,...,0)in R.

As shown before, the inverses of the rule set are deterministic. Thus if
(Bramss, GO R, [GW), GIW)]F and (G(W"), G(W'))g-1 then W = W''. Since
it is impossible to go back past the axiom, then [Pusmer, GOMIFiff [Dremar,
GW)1rur-

Theorem 4 Every nonrecursive r.e. many-one degree is represented by the
general decision problem for bidirectional RCPF’s with axiom.

Degree results as shown above can'be easily obtained for tag systems and,
consequently, for Post normal systems with axiom. The basis for our proof lies
in the constructions presented in Hughes [2]. There, revised n-register machines
were used to prove the following lemma.

Lemma 6 Let m be an arbitrary nonrecursive r.e. many-one degree. Then
there exists a tag system T and a fixed word A such that the problem to decide
of an arbitrary word A whether or not W derives A is of degree m. Further-
more, T and A may be chosen so that A is a terminal word.

Using the above we can now prove our final result.

Theorem 5§ Every nonrecursive r.e. many-one degree is represented by each
of the general decision problems for the bidirectional extensions of tag and
Post normal systems with axiom.

Proof : For an arbitrary r.e. many-one degree m, let T and A be chosen as in
Lemma 6 and let S be the bidirectional extension of T. With T"! denoting the
inverse rules of T, the deterministic nature of T’s rules ensures that [4,W]r-1,
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(W,W"p-1 and (W ,W')r implies W = W''. Combining this with the fact that 4
is terminal in T, we get that [A,W]p-1iff [4,W]s. But then [A,W]siff [W,A]lr
and our proof is complete.
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