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A COMPLETE SYSTEM OF INDEXICAL LOGIC

ROLF SCHOCK

In most logical systems, the interpretation of a term or formula does
not depend on a situation or context of discourse. In particular, there are
no temporal contexts since all sentences are formulated in what seems to
be an eternal present tense. Suppose, however, that terms and formulas
with terms as situational indices as well as ordinary terms and formulas
are present in a first-order logic with identity, descriptions, and no
existence assumptions. Suppose also that intensional constants such as
those of tense and modal logics are present as nonlogical constants so as
to make possible the concise expression of certain relationships among
situations. How can such a broad kind of language be formalized? What
kind of semantic theory can interpret it? And what kind of logic is deter-
mined by such a semantic theory? One set of solutions to these problems
is presented here.*

In the literature, the most closely related systems seem to be the
"topological" logics. There, rules and interpretations for sentential
formulas indexed with individual constants and first-order variables have
been investigated. However, a full first-order logic and semantics of even
standard type for indexing with only individual constants and variables
seem to have escaped explicit formulation. For a survey of the subject,
the reader is referred to Rescher and Urquhart [9]. A recent study in the
area is Garson [6],

The system and semantics of the present study are also pragmatic and
intensional in the sense of Montague's [7] and [8]. Although Montague has
developed appropriate semantic theories in these papers and has been
matched analogously by Scott in [14], no full deductive system of pragmatics
or full intensional logic seems to have been published before. However,

*The main results of the present study were presented in a talk with the same title at the
Royal Institute of Technology in Stockholm in May 1973. With the exception of some additions
to the informal remarks, references, and introduction, the study was also presented in full at the
Salzburg Colloquium in Logic and Ontology in September 1973. An abstract with completeness
results was also published in the Bulletin of the Section of Logic, vol. 5 (1976), pp. 16-19.
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from Montague [8], Scott [14], and Gallin [5], it seems that David Kaplan and
Dan Gallin have constructed some systems of this kind and proven them to
be complete. Unfortunately, the author has no additional information about
these matters. Another author who has developed context-dependent
semantic and logical theories is Cresswell in [4], However, there are no
indexed formulas and no first-order structure.

The systems developed in the present study have evolved from those of
Schock [11] and [12]. They differ from all of the above systems in the
breadth of the collection of constants of odd types which are dealt with. All
sorts of queer modal connectives and variable binders are present at least
as nonlogical constants. Also, they are full first-order systems with only
one sort of variables. The systems are free from existence assumptions
and deal with existence, actuality, and non-actuality or fictiveness in addi-
tion to identity and descriptions. Only one kind of quantifiers is employed
and a situationless present is provided for. This is a natural tense of
mathematical and other abstract reasoning which deserves explication and
is formally useful for handling situational expressions. Some additional
differences from the systems of Montague or Scott are that the situational
objects (indices or reference points) can be named and reasoned about in
the object language, that there are two intensional logical constants for in-
dexing rather than a strong logical constant of necessity, and that validity
is more general since it does not require truth in all situations. The
semantic theory also seems to be somewhat more direct and transparent
than those of Montague and Scott in that fundamental reference is to truth
values and objects rather than intensions. Another novelty seems to be the
semantic and logical rules for the constants for indexing terms and for-
mulas with terms. The rules are, of course, not too surprising to those
with keen intuitions, but appear everywhere and are mostly new.

1 Symbols, terms, and formulas We presuppose a nonrepeating de-
numerably infinite sequence S of nameable objects called symbols. The
symbols with even indices determine a similar sequence V of (individual)
variables, and the remaining symbols a similar sequence K of constants.
In the same way, nonrepeating denumerably infinite sequences T and F of
term-making and formula-making constants are obtained from the even-
indexed and remaining values of K, respectively. By partitioning T and F
via even and noneven a few more times, we obtain the nonrepeating de-
numerably infinite sequences Tklm and Fklm, where k through m are
natural numbers and one of I or m is positive if k is. The values of Tklm
and Fklm are the k-place l-term m-formula term-making and formula-
making constants respectively. A constant is of type klm just when k
through m are natural numbers with I or m positive if k is such that the
constant is a value of Tklm or Fklm. The constant is 0-place if of type Olm
for some I and m. A variable binder is a constant which is not 0-place. A
simple constant is one of type 000. It is an individual constant if term
making, and a sentential constant otherwise. The conceptual symbols are
the 0-place constants which are not simple. The operation symbols are the
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term-making conceptual symbols and the predicates are the formula-
making conceptual symbols. An operation symbol or predicate of type Olm
with both I and m positive is mixed and the remaining conceptual symbols
are pure. A pure operation symbol or predicate of type 0/0 for some
positive I is individual and the remaining pure conceptual symbols are
sentential. Notice that sentential and modal connectives are sentential
predicates according to our classification of symbols.

We use the symbols (, ) and {, } in the metalanguage to mark the
boundaries of finite sequences and sets, respectively. Also, given finite
sequences r and s, we understand r s to be the result of joining s to the end
of r. Thus, <12Γ<34>~< ) = <1234]fί } = (1234). Given a set x and natural
number k, xk is the set of all &-term sequences whose ranges are included
in x.1 If s exk and i is a positive integer <&, then s, is the value which 5
assigns to i and s- is s with the pair l,Sι removed.

Assume now that c is a constant of type klm and that#, t, and F are
in wk, yι, and zm, respectively, for some w, y, and z. Then c(xtF)— the
application of c to x, t, and F—is defined as follows:

1. If c is 0-place, then one of the following holds:

a. c is simple and c(xtF) = c.
b. c is an individual conceptual symbol and c(xtF) = (t^^t'.
c. c is a sentential conceptual symbol, m = 1, and c(xtF) = (cF^.
d. c is a sentential conceptual symbol, m > 1, and c(xtF) = (F^J^F'.
e. c is a mixed conceptual symbol and c(xtF) = t^(c)^F.

2. If c is a variable binder, then c(xtf) = (c)^x^t^F.

Observe that lc and Id could have been formulated together in the same
sort of way as lb: the first argument comes first, then the constant,
and finally the remaining arguments. Although elegant, the result would be
that 1-formula connectives come after formulas to which they are applied.
Since logicians seem to always put such connectives in front of formulas,
lc and Id have been employed for the sake of readability.

Terms and formulas can now be defined recursively as follows:

1. Every variable is a term.

2. If c is a constant of type klm, x e variablesk and x is nonrepeating,
te terms7, and Fe formulas7", then c(xtF) is a term if c is term-making and
a formula otherwise.

3. Only these are terms and formulas. That is, if every variable is inK,
c(xtF) is in K when c is term-making and in L when c is formula-making if
c is a constant of type klm, x e variables*5 and x is nonrepeating, t eKι, and
Fe Lm, then every term is in K and every formula is in L. This is the
induction principle for terms and formulas.

This partially sequential and partially recursive definition of terms and
formulas is employed here to allow proof steps with the short recursive
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clauses while simultaneously allowing sentential and other expressions to
be written in a natural way.

Except when it is explicitly mentioned that alternative assumptions
have been made, we hereafter use the letters "x" through "z", "t" through
"w", and "F" through " J " as metavariables ranging over the variables,
terms, and formulas, respectively. Similarly, " c " is a metavariable
ranging over the constants and "T" is a metavariable ranging over both the
terms and the formulas. E ("exists"), A ("is actual"), B ("is fictive"),
and M ("determines a model" or "is a moment") are the first four 1-term
individual predicates, I ("is identical with") is the first 2-term individual
predicate, and r ( " s version of" as in the name "1972s version of the king
of France" or "the king of France in 1972") is the first 2-term individual
operation symbol. The first 1-formula sentential predicate is /v ("not")
and the first four 2-formula sentential predicates are the remaining
ordinary connectives —> ("only if"), Λ ("and"), v ("or"), and <-> ("if and
only if"). The first 1-term 1-formula mixed predicate is H ( " S version of"
or "yields" as in the sentence "1972 yields snow is white"). The first two
1-place 0-term 1-formula formula-making variable binders are the quan-
tifiers Λ ("for any") and V ("for some"). Similarly, the definite article
1 ("the") is the first 1-place 0-term 1-formula term-making variable
binder.

The sentential and mixed operation symbols and the mixed predicates
have heretofore been neglected by logicians. In consequence, they can
appear to be strange. However, if temporal units are taken into account,
intuitively acceptable examples of such constants can be located. We
already have H as a rather intuitive example of a mixed predicate if a term
to which it applies denotes a definite temporal unit such as 1972. Similarly,
the expressions around the variables in "the year in which F" and "the
first year after t in which F " seem to function as a sentential operation
symbol and mixed operation symbol, respectively.

The sequence marks in designations of terms and formulas can also be
construed as parentheses of the object language. So as to simplify the
reading of such designations, conventions like those for the omission of
parentheses are here employed for the omission of sequence marks. In
particular, sequence marks which can be reintroduced in just one way can
be omitted. Also, omitted sequence marks around r and \- dominate over
those around all other constants, omitted sequence marks around 1-term
or 1-formula conceptual symbols are next most dominant, and omitted
sequence marks around —» and <-> are least dominant. Finally, omitted
sequence marks around Λ and v associate to the left of the concerned
expression.

A variable x is free in T if x occurs in T without being bound by a
phrase consisting of a variable binder followed by a sequence of variables
one of which is x. Similarly, a term or formula t is free in T if t occurs
in T without having any of its free variables bound by variable binding
phrases which occur in T. That is, t is free in T just when t is in a term
or a formula and one of the following conditions is satisfied:
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1. t = T.

2. There are c, k, I, m, x, u, and F such that terms of type klm, x through
F are in variables^ through formulas772 respectively, x is nonrepeating,
T = c(xuF), there is an index i of ΊJΓF such that t is free in (u^F)j, and no
variable free in t is a value of x.

If / is a function and a is not a sequence, then f(a

b) is the function which

results from removing the pair a,f(a) from / if a is an argument of / and

then adding the pair ayb. If there is a natural number n such that a is non-

repeating ft-term sequence, b is a finite sequence, and n is an argument of

b if n is positive, then /(f) is the function which results from removing all

pairs a{j{a^ such that 1 < i < n, and α, is an argument of / from / and

then adding all pairs aub{ with 1 ^ i ^ n.

If t and u are both terms or both formulas, we can replace t with u in T
if t is free in T and if in T we first replace those occurrences of variables
whose variable binding phrases would bind variables free in u with the first
variables not occurring in either T or u. More exactly, given such t andw,
ι

uT is the U such that one of the following conditions is satisfied:

1. t is not free in T and U = T.

2. / = T a n d ί / = M .

3. There are c, k, I, m,x, v, and F such that c is of type klm, x through
F are in variables*5 through formulas"2, respectively, x is nonrepeating, T =
c(xvF) Φ t, and t is free in T. Let s be the sequence in order of magnitude
of indices i of x such that X{ is free in u. Also, let y be the sequence with
the same domain as s such that yι = the z^n variable not occurring in T or u
for any index i of y. Finally, let ro{x) through ro{F) be x through F, respec-
tively, and let r{(x) through r^F) be k, I, and ra-term sequences, respec-
tively, such that Tiipc) = r ^ W φ and (ri(vΓrί(F))j =X^(rί.ι(vΓrί.1(F))j

for indices i of y and 1 ̂  j ^ I + m. If n is a natural number such that 5

and y are n-term sequences, vr and Fr are I and m-term sequences,

respectively, and {vt^Ft)j = t

ui
rnipTrn{F))j for 1 < < Z + m, then C7 =

c ( r 8 W i ; ' F f ) .

Now assume that t and u are both sequences of terms or both
sequences of formulas. If there is a natural number n such that t is an
n-term sequence, u is a finite sequence, and n is an. argument of u if n is
positive, then «T (the result of simultaneously substituting u for £ in T) is
sw(w ί T) where d is the function which assigns to any positive integer
i < n the z t h variable not occurring in u or T, fo(w t T) = Tf V{(u t T) =

1 υi_ι{ut T) for positive i < n, so(wί T) = vn{ut T), and Si{ut T) = ι s^^utT)

for positive i ^ n. That is, [T is obtained by first replacing the values of
t with new variables and then the new variables with the corresponding
values of u.
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Assume that t and u are both terms or both formulas or both finite
sequences of terms or both finite sequences of formulas. If n and k are
natural numbers, t is an n-term sequence, n is an argument of u if n is
positive, and R is a &-term sequence whose values are terms or formulas,
then *UR is the &-term sequence S such that S, = iRi for positive i ^ k. Also,
if xe variables^ and q is Λ or V, then C(qxF) —the q-closure in x of F—is
pk{F) where po(F) = F and Pi{F) = qxk_u_λ) p^^F) for positive i ^ k. For
example, C(AxF) is obtained by successively prefixing F with universal
quantifier phrases from the last variable of x out to the first.

So as to avoid the repetition of long formulations, we henceforth
abbreviate the condition that k through m are natural numbers, c is a
constant of type klm, x e variables*5 and x is nonrepeating, / e terms', and
Fe formulasm with CNklmcxtF.

2 Semantic concepts Let T and F be the sequences of term-making and
formula-making constants, respectively, and let C be T or F. Also, assume
that r and 5 are sets and that k, I, and m are natural numbers. A C-value
in s is either { } or a subset {e} of 5 if C = T, and one of the truth values
0 and 1 if C = F. A k -place function in s of type C is a function defined on
sk which assigns C-values in s. A k-place argument in s of type Im is a
sequence q^r where q is an Z-term sequence of &-place functions in s of
type T and r is an ra-term sequence of &-place functions in s of type F. An
r-spread in s of type klm is a function defined on r which assigns k-place
arguments in s of type Im. Finally, an r-intension in s of type Cklm is a
function defined on the set of all r-spreads in s of type klm which assigns
C-values in s.2 Observe that intensions evaluate not arguments, but ways
of associating arguments with members of the set r. It is just this kind of
span over arguments which is needed for the interpretation of intensional
terminology such as that of situational indexing.

A sentential interpreter is a function i defined on the set of formulas
which assigns truth values such that Z{NF) = 1 - i(F); i(F —> G) - the smaller
of 1 and (1 - i(F)) + i(G); I(FAG) = the smaller of i(F) and i(G); i(FvG) = the
greater of i(F) and i(G); and i(F <-* G) = (1 - the greater of i(F) and i(G)) +
the smaller of i(F) and i(G). A tautology is a formula F such that i(F) = 1
for any sentential interpreter i.

An interpreter is here to be a function which is defined not on the
constants, but rather on the set of all ordered pairs consisting of constants
and situational objects in that order. Moreover, the function is to assign
intensions to such pairs. The least ordinal not present in the universe of
discourse is useful as a dummy object with which to determine interpreta-
tions of expressions in the nonsituational present. More exactly, i is an
interpreter just when there are sets s, m, n, and o such that the following
conditions are satisfied.

1. m c s.

2. 0 is the least ordinal j. s.
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3. m is the union of m and {o}.

4. i is defined on the set of all ordered pairs c,p with c 2L constant and
pen.

5. For any pair c,p in the domain of i such that c is of type klm and a
value of C, i(c,p) is an n-intension in s of type Cklm.

As above, C is either the sequence oϊ term-making constants or that oί
formula-making constants. So as to provide the basic logical constants
E through 1 with their intended properties, their interpretations are fixed
by the following additional clauses. It is assumed that the r-function is the
function defined on {( )} which assigns r for any r, that p e n, and that / is in
the domain of i(cfp) where c is the concerned logical constant.

6. i(E,p)(f) = 1 just when there is a n r e s such that f(p) = (the {r}-
function). That is, existence always represents the members of s.

7. i(l,p)(f) = 1 just when there is an res such that f(p) = (the {r}-
function the {r}-function). Identity is always an identity relation in s.

8. i(M,p)(f) = 1 just when there is SLU rem such that f(p) = (the
{r}-function). M always represents the members of m—which are the
existing situational objects.

9. If i(A,p){f) = 1, then there is an res such that f(p) = <the-{r}-
function). Also, if i(A9p) is defined for / ' and f(p) = f(p), then i(A,p)(f) =
i(A,p)(f). Actuality always represents some set of existing objects, but
can represent different sets of existing objects in different situations.
Nevertheless, identity always preserves actuality.

10. i(B,p)(f) = 1 just when i(E,p)(f) = 1 and z(A,/>)(/) = 0. In any
situation, the fictive objects are the existents which are not actual.

11. If i(M,p)(f) = 1, then i(A,p)(f) = 1 just when f(p) = (the {^-func-
tion). In any situation, just that situation is actual. It follows that no
situation is actual in the situationless present.

12. i(κ,ρ)(f) = 1 just when f(p) = (the 0-function), i(-*,p)(f) = 0 just
when f(p) = (the 1-function the 0-function), and similarly for Λ, V, and <-».

13. z(Λ,/>)(/) = 1 just when /(/>) = (g) where g is the function on s1 such
that g((r)) = 1 for any re s. Similarly, i{V,p)(f) = 0 just when f(p) = (g)
where g is the function on s1 such that g({r)) = 0 for any r e s . Universal
and existential quantification are always over the existents.

14. z'O,p)(f) = {r} just when f(p) = (g) where g is the function on s 1

such that g{(r)) = 1 and g((q)) = 0 if qes and q Φ r. Descriptions always
have either empty or proper reference.

15. i(r,p)(f) = r if there are q e m, g, and h such that f(p) = (the {#}-
function g ) and f(q) = (h the r-function). Otherwise, z(r,/>)(/) = { }. In a
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situation p, a term u r t refers to the object t referred to in the situation
referred to by u in p. If u does not refer to a situation in />, then u r t has
empty reference in p.

16. i(h,p)(f) = r if there are ^em, g , and h such that /(/>) = (the
{#}-function g) and /(#) = (h the r-function). Otherwise, i(t-,p)(f) = 0. In a
situation £, a formula w h F has the value which F has in the situation
referred to by u in p. If u does not refer to a situation in/>, then u h F is
false in £.

If z is an interpreter, then Uz, Mi, Nz, and Oz are the s, m, «, and o for
which 1 through 16 above hold with respect to i respectively. An assigner
in $ is a function a such that 5 is a set, a is defined on the set of all vari-
ables, and either s is empty and a(x) = { } or not and there is re s such that
a(x) = {r}. If i is an interpreter, a is an assigner in Uz, and />eNz, then
ln\iap(T) and lntiΛ(T)—the interpretations with respect to i, α, and p and z <zwd
« of Γ—are defined as follows:

1. If T is a variable, \n\iap(T) = a(T).

2. Assume that there are k, I, m, c, x, t, and F such that CNklmcxtF and

T= c(xtF). Let SP{iaxtF) be the function which assigns to any #e Nz the

sequence r~s where r and s are I- and m-term sequences, respectively;

r = the function g defined on Uik such that g(b) = lntiα/χ\ /; for &e ϋϊ*

and ^-term sequence 6' such that 6̂  = {bn} for 1 ^ w < k if 1 ^ < I; and

s ; = the function g defined on Uik such that g{b) = \ntia(
x\ (Fj) f o r & e Uẑ

where &f is as for r if 1 < ^ m. Intuitively, S~P(ίaxtF) is the spread
determined by i, a, x, t, and F. Then lnt^(T) = i(c,p) (Sΐ>{iaxtF)).

3. Int^(T) = \n\iaOi(T).

F is i-true just when \n\ia(F) = 1 for any assigner α in Uz and fα/z<̂  just
when z'-true for any interpreter z.

3 Valid formu las

Lemma 1 If i is an interpreter, a is an assigner in Uz, pe Nz, and f is the
function defined on the set of formulas such that f(F) = \ntiap(F) for any F,
then f is a sentential interpreter.

Proof: Assume the antecedent. By our definitions, /(Λ/G) = 1 just when
SP(zα< )( )(G))(p) = (the lnt^(G)-function) = (the 0-function) and so just when
lnUap(G) = 0. Consequently, /(Λ/G) = 1 - /(G). Also, f(G -> H) = 0 just when
f(G) = 1 and f{H) = 0 by the same sort of reasoning and so f(G —* H) = the
smaller of 1 and (1 - /(G)) + f(H). The remaining cases follow by analogous
arguments.

The next two theorems follow immediately from Lemma 1.

Theorem 1 Every tautology is valid.



A COMPLETE SYSTEM OF INDEXICAL LOGIC 301

Theorem 2 If i is an interpreter, a is an assigner in \Ji, peNi, and

\r\\iap(F-* G) = \n\iap(F) = 1, then \n\iap(G) = 1.

Hence, modus ponens preserves truth and the semantics of the sentential
connectives is normal in the situationless present. Obviously,

Theorem 3 u t- F—> uM is valid.

Lemma 2 If i is an interpreter, a is an assigner in Uz, p e Mi, q e Nz, and
lnUaq(u) = {p}, then \v\\iap{t) = \r\\iaq(u Γ t) and Int^(F) = \n\iaq{u h F).

Proof: Assume the antecedent. By our definitions, \n\iaq(u Γ t) - r just
when SP(z'fl( ) (ut) ( )) (p) = (the In\iap(u)-function the \nfiap(t)-function) = (h the
r-function) for some h and so just when \n\iap{t) = r = \r\\iaq(u r t). The argu-
ment for the second part of the consequent is analogous.

Theorem 4 uM -> (u h Λ/F <r> N U H F) Λ (U\-(F -» G) <e> (uY-F -> M H G» A

<M h < F A-G) « ^ <M H F A M h G> Λ <M h < F v G) «-> <W H F v M h G> Λ <W h < F «-> G> <-?•

(u h F^r^ u hG)) is valid.

Proof: Assume that i is an interpreter, a is an assigner in Uz, and
Int^(z/M) = 1. Hence, there is a />e Mi such that lntf Λ(z/) = {p}. By Lemma 1
and Lemma 2, lntt α(tt H Λ / F ) = \n\iap(/vF) = 1 - lnt^(F) = 1 - lntίfl(w H F) =
Int̂ ί/VM H F). Similarly, lnt̂ .(w h- (F -> G» = l n t ^ ( F -• G) = the smaller
of 1 and (1 - \n\iap(F)) + \n\iap(G) = the smaller of 1 and (1 - \ntia(u H F)) +
\n\ia(u H G) = lntt Λ(w h F —> M H G). By analogous reasoning for the remaining
connectives and Lemma 1, the validity of the formula of the theorem
follows.

Theorem 4 asserts that the sentential connectives are absolute in that
their situational truth value assignments are the situationless ones re-
stricted to situations. For iteration of indices, we have

Theorem 5 (v Γ (u r t) E v (v Γ u) rt E -» v Γ (u Γ t) I (v Γ u) rt) A <V H M H F «-»
v ru h F) is valid.

Proof: For, if z is an interpreter and α is an assigner in Uz, lnt^(t> Γ(M Γί)) =
Irtiapiu Γί) = Intjα^) = 'nt;fl((£> ΓM) Γ ί) when /? and qeMi, \ntia(v) = {p}, and
lnUaρ(u) = {<?} = lntf α(v ΓM). If there are no such p and <7, then \ntia(vr(u Γ t)) =
{ } = lntf rt((tf Γz/) Γί). By a similar argument, lnt/β(z;h-z/ \-F) = \r\tia(v Γu\-F).
The theorem follows by Lemma 1.

Theorems 1 through 5 are the main principles of sentential indexical
logics. Some additional principles for terms and predicates are the follow-
ing:

Theorem 6 (tM -> tB) Λ (tB -> *E> is valid.

Proof: Assume that i is an interpreter and a is an assigner in Uz. If
lnt^(ίM) = 1, there is a pe Mi such that \ntia(t) ={p}. But \n\ia{tA) = 1 just
when p = Oi{ Ui and lnt^(^B) = 1 just when \ntia{tA) = 0. Hence, p Φ Oi and
lntf βl(ίB) = 1. Also, if lnt^(ίB) = 1, then it follows immediately that lnt^(ίE) =
1. From Lemma 1, it follows that the theorem holds.
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Theorem 7 tA «-> tE A/vtB is valid.

T h e o r e m 8 tlu —* tE A ult A (tlv «-* wlf) Λ (£A <-» MA) Λ (ίB <-> wB) Λ (ίM <-> MM) Λ

(t)r-F<*+u\-F)A{trvEvurvE-*trvlu Γ v) is valid.

Proof: The proofs are as for that of Theorem 6. Theorem 8 is a kind of
concrete indiscernibility law for predicates which is needed since general
indiscernibility is not valid.

Theorem 9 u\- tE -^ uM is valid.

Theorem 10 (u H tE «-> u Γ tE) A (U h tM <=-> u Γ tM) A (U H tlv <r> u r t I u Γ v)
is valid.

Theorem 11 uM^u h((tB~* tE) A (tA<->tE Λ/vίB» Λ<M h(tMAtA)<r+u ΠIU)A
u h (ίlf —> (ίA<->?;A)Λ(ίB«-^z;B)) is fαZzcZ.

The parts tB <^> uB of Theorem 8 and tB <r-> vB of Theorem 11 follow from
the respective theorems without the parts plus assumptions. The parts
are here included for the sake of symmetry.

Proof: As above, the proofs are via Lemmas 1 and 2 and the analysis of
the interpretations of the concerned logical constants. Theorems 9 and 10
correspond to Theorems 3 and 4, respectively. Theorem 10 expresses the
absoluteness of E, M, and I, while Theorem 11 gives the usages of A and B
in situations. The latter theorem is needed because A and B are not
absolute although they always partition the possible object set represented
by E.

Next come the quantifiers, identity, and descriptions.

Lemma 3 // i is an interpreter, pe Nz, both a and a{x

w) are assigners in \Ji,
and x is not free in T, then \n\da^p{T) = \ntίap(T).

Lemma 4 // i is an interpreter, p e Nz, a is an assigner in Uz, and Int^ίO =
{w}for any q e Nz, then \nViap(

x

tT) = i n t ^ d ^ C Γ ) .

Lemma 5 If t and u are both terms or both formulas, i is an interpreter,
pe Nz, a is an assigner in \Ji, and lnt^(ί) = \r\\ίaq(u) for any qe Nz\ then

\*kap(UtT) = \ntiap{T).

Proof: The proofs for these three lemmas are by a straightforward induc-
tion among the terms and formulas.

Lemma 6 If i is an interpreter, a is an assigner in Uz, and pe Nz, then
\rtiap{λxF) = 1 just when \^ia(\x

w\)p(F) = 1 for any we Uz, \n\iap(VxF) = 1 just
when there is a we Uz such that Int,^,* ^(F) = 1, and lnt^(iΛrF) = {r} just
when {r} is the set of all w e Uz such that \n\ia(<\}p(F) = 1.

Proof: Assume the antecedent and let / = ST?{ia(x) () (F)). Hence, f(p) =
(the function g on Uz1 such that g{(w)) = ^ia(\u\)p(F) for any we Uz). But
lnt«#(A#F) = i(Λ,p)(f) = 1 just when g((w)) = 1 for any weUi. Similarly,
\nfiap{\/xF) = 0 just when g((w)) = 0 for any we Uz and lnt^(ΊΛτF) = {r} just
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when g{(r)) = 1 and g((w)) = 0 for any w e Hi such that w Φ r. The consequent
of the lemma follows immediately.

From Lemmas 1, 3, and 6, we clearly have the following three theo-
rems.

Theorem 12 If x is not free in t, then tE —» Wx tlx is valid.

This schema is a version of the principle of the self-identity of existents.

Theorem 13 If x is not free in F, then Ax(F -* G) <-* (F -* AxG) is valid.

Theorem 14 VxF <^>NAX NF is valid.

Lemma 7 If i is an interpreter, a is an assigner in Uz', and x is not free in
t or u, then \n\ia{Ax(xM. ->(xrtEvtE-*xrtI t))) = 1 just when there is
an r such that lntf Λ?(ί) = r for any qe Nz. Also, if either both t and u are
terms and F = tE VME —» tlu or both t and u are formulas and F - t^>u, then
lnt^(A#(#M —* x \- F) Λ F ) = 1 just when \n\ίaq{t) - lnt^(w) for any q e Nz.

Proof: Assume the antecedent and let G and H be the formulas concerned.
By Lemmas 1 through 3 and 6, lnt^(G) = 1 just when, for any q e Mi, \ntiaq(t) =
\nbia(t). Hence, the first part of the lemma holds. The proof that lnt^(#) = 1
just when \n\iaq(t) = \ntiaq(u) for any qeNi when t and u are both terms or
both formulas is analogous.

Via Lemma 4 and Lemma 6, Lemmas 4 and 7 result in:

Theorem 15 // y is not free in t, then /\y{yM —> (y Γ t E v tE —> y r t I t)) -*
{tE Λ AxF -» x

tF) is valid.

Also, Lemmas 5 and 7 result in:

Theorem 16 // x is not free in F and either t and u are both terms
and F = tE v uE —• tlu or t and u are both formulas and F - t<r>u, then
Ax (xM -> x h F) Λ F -* QG <r*G) is valid.

Theorem 17 NAXF-* yE is valid.

Proof'. If i is an interpreter, a is an assigner in Uz, and lnt^(/vAxF) = 1,
then \Ji is not empty by Lemmas 1 and 6 and so \ntya{y) = a(y) is a subset
{r} of Uz. Hence, \n\da(yE) = 1 and the theorem holds by Lemma 1.

Theorem 18 tM-^ t r x I x is valid.

Proof'. For \nUaρ(x) =a(x) for any interpreter i, assigner a in Uz, and p e Nz.

Lemmas 1 and 6 also give us the following two theorems:

Theorem 19 If y Φ x and y is free in neither t nor F, then t I ΛxF<^>
Vy(Ax(F <r>xly) Atly) is valid.

Theorem 20 If i is an interpreter and F is i-true, the AxF is i-true.

Theorems 15 and 16 provide the weak versions of universal instantia-
tion and indiscernibility which hold in indexical logics. However, the
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normal versions hold for variables by Theorem 18. This is a perhaps

unnatural trait of variables which is extremely useful. In particular, it lets

variables reach into situational contexts at the cost of generating morning-

star-type paradoxes formulated with variables instead of individual con-

stants. The formulas of Theorem 17 express the principle that all variables

denote if the universe of discourse is not empty. The description theory of

indexical logics is provided by Theorem 19 and universal generalization is

truth-preserving by Theorem 20. The quantifiers and T are also absolute.

Theorem 21 // x is not free in u, then uM -> (u \- AxF <r+ Ax u \-F) A

(u \- VxF <-> Vx u h F) Λ {u Γ ΛxF E vΊx u h F E-* u Γ ΛxF I Λx u h F) is valid.

Proof\ Assume that x is not free in u, i is an interpreter, a is an assigner

in Uz, and there is a peMi such that \ntia(u) = {p}. If weΊJi, a(£\) is an

assigner in Uz since Όi φ{}. Also, ^Ua(^\)(u) = \n\da(u) by Lemma 3 and so
l n**"(ώ)(M h j P ) = l n M w > ^ b y L e m m a 2 H e n c e > lntiβ(M hΛ#F) = \n\iap(AxF) =
Int- (̂A# u h F) by Lemmas 2 and 6. Similarly, \ntia(u \- VxF) = \n\ίa(\/x u \-F)
and \ri\,ia{u r ΛxF) = lnt^(Ί^ u \-F). The theorem then holds by Lemma 1.

Theorem 22 G A{UM —> u \- G) is valid when the following conditions are

satisfied:

1. CNklmbxtF and \ ^ i ^ k.

2. U is b(xtF) and T is b{x(!y)
 Xjt *yF).

3. There is no value of x, t, or F in which y is free.

4. G is TE v UE —> TWifb is term-making and T «-> U if b is formula-

making.

Proof: Assume that 1-4 hold, that is an interpreter and a is an assigner

in U;, and that q eNj. By Lemmas 1 and 2 it is sufficient to show that

\n\jaq(T) = \n\jaq(U) and so that S = SP(jaxtF) = SV{jax(ϊy)
x*t XJF) = S'. If Uy is

empty, { } is the only function defined on XJjk and S = Sr. So assume that

be \Jjk, br is the singleton image of b as in the definition of interpretation,

and r = CF. By Lemmas 4 and 3, lnt t Λ(*/(y))€(y
f'rn) = nNΛ(*/) ί(rw) when 1 < n <

Z + m. Consequently, S = S' and the theorem holds.

Theorem 23 C(AxH) —* JA{UM-+ U\-J) is valid when the following condi-

tions are satisfied:

1. CNklmbxtF and 1 < k.

2. U is b{xtF).

3. Hand T are Ay{yM -> 3; h «vE v ί, E -* ϋ I ί,.> Λ <G<->F;.») Λ <VE V ίf E —

υ I ^ ) Λ {G<r^Fj) and b(xt(l) F^)) respectively, if 1 ̂  i ^ I and 1 ̂  j

** m.

4. H and T are Ay(yM -> y h <G <->F; » Λ (G «-^F;) αwίf b(xtF{1

G)) respec-

tively, if I = 0 and 1 ̂  < m.

5. # and Γ ar^ Λ^(3;M -> 3; h (vE v ̂  E -> z; I /,-» Λ (VE V^ E -> v I ί, > and

&(ΛΓ ί Q F ) respectively, i f l ^ i ^ l and m = 0 .

6 . 7%£re zs no z aZŵ  of x or t or F or (vG) in which y is free.

7. J is TE v UE-> ΓIZ7 f/ 5 zs term-making and T<r*U if b is formula-

making.
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Proof: Assume that 1-7 hold, h is an interpreter, a is an assigner in Uz,
qe NΛ, and Int/JC(ΛΛ;#)) = 1. It is sufficient to show that \nϊhaq(T) = lnt/^(ί/).
If be\Jhk, br is the singleton image of δ, and 1 ̂  z, it follows that lnt/^( *,)p(v) =
Hha(^)p{ti) for any pe N/z. Also, if 1 ^ , it follows that \ntha(

x

bt)p{G) =
lntUb>)p(F^ f o r a n y ^ e N / z H e n c e > i f s i s SP{haxt(y)F(]

G)) when 1 < i and
1 < , SP(haxtF(7

G)) when z = 0 and 1 < j , and SP{haxt(t)F) when 1 ^ z and
= 0, then S = SP{haxtF). But then \n\haq(T) = \n\,haq(U) holds in each of the

three possible cases.

Theorems 22 and 23 provide the special principles of the indexical
logic of variable binders. Bound variables can be rewritten even within
situational formulas, but coextensional terms or formulas can only be
interchanged if they are coextensional in all situations. However, such
terms or formulas are even interchangeable within situational formulas.

The formulas of the above theorems are those fundamental to indexical
logics. For the sake of subsequent applications, some consequences of
these formulas will now be derived.

Corollary 1 If F is a tautology, then uM —> u h F is valid.

Proof: Let K be the intersection of all sets of formulas closed under
modus ponens which have as members F —» (G —> F), (Λ/F —> Λ/G) —* (G —* F),
(F — (G — H)) -> ((F — G) -> (F -> H)), F A G -> Λ/(F -» Λ/G), Λ/<F — Λ/G) -»
F Λ G , F V G -> Λ/(Λ/FΛΛ/G), Λ/(Λ/FΛ/VG) -• FvG, (F <r* G) - * (F v G -• F Λ G),

and ( F v G - ^ F Λ G ) - * (F <-> G) for any F, G, and # . Clearly, K is the set of
tautologies. Also, if L is the set of all F such that uM -* u h F is valid,
each of the formulas above is in L by Theorems 1, 2, and 4 and L is closed
under modus ponens by the same theorems. Hence, K is included in L and
the corollary holds.

Corollary 2 (i; ru E VME -» t> ru I w) -> (vr(urt) E v MΓίE -> f r(urt)lurt) A
(f h M h F o M h F ) zs valid.

Proof: Let G be the antecedent of the formula, let H ΛH{ be the consequent,
and J -> J ; be # . By Theorems 9, 6, 1, and 2, G -> {urt E -• f ΓM I u) is
valid. Hence, by Theorems 8, 1, 2, and 5, G -> <z/Γί E -> J f ) is valid. Also,
by Theorems 5, 1, 2, 9, and 6, G -> (ί/r(ί(Γ/>E-» v r(u rt)l (v ru)rt*
v Γul u) is valid. Consequently, by Theorems 8, 1, and 2, G —* (t>r(u Γt) E —•
Jr) and so G -> (J -» Jf> is valid. Finally, by Theorems 5, 9, 6, 3, 1, and 2,
G-» ( v H w H F ^ ί ΓMlM) and G->(wi-F—> v r u I u) are valid and so
G -> J7f is valid via Theorem 8. Hence, G -> F Λ F ' is valid by Theorems 1
and 2.

Corollary 3 If y is not free in t, then Λy(yM -» (3; Γ t EvtE -* 3; Γ t It))-*
(ίEΛ.jϊ1-* VΛ F ) ZS z;αZz<i.

Proof: The proof is by Theorems 15, 1, 2, and 14.

Corollary 4 Λ;y(3;M-» ( y Γ # E VΛ E —> y Γx I x)) is valid.

Proof: The proof is by Theorems 18, 1, 2, and 20.
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In the proofs of the remaining corollaries, reference to Theorems 1

and 2 is usually omitted.

Corollary 5 The following formulas are valid'.

1. NxxΈ

2. VxF-> yE

3. VxxE <^yE

4. VyyE A Λ*F -> ί,F

5. vyyEΛΪF-* WxF

6. (VyyE -» Λ*F) -> ΛΛ F .

Proof: 1 holds via Theorems 17, 20, and 13; 2 via Theorems 14 and 17;

3 via Corollaries 3 and 4 with 2; 4 via Theorem 15 and Corollary 4 with 3;

and 5 via 4 and Theorem 14. 6 is a consequence of 3 and Theorem 17.

Corollary 6 If x is not free in F, then F —> G is valid only if F -+ l\xG is

and G —> F is valid only if VxG —> F is.

Proof: This is a consequence of Theorems 20, 13, and 14.

Corollary 7 If x is not free in F, then F -> AxF and VxF —• F are valid.

Proof: The proof is by Corollary 6 and the validity of F —> F.

Corollary 8 The following formulas are valid:

1. Ax(F — G)~* (AxF -* AxG)

2. Ax(F<^G)-> (AxF*>AxG)

3. Ax(F -> G) -* (VxF -> WxG)

4. Λx(F<r>G)-> (VxF±+VxG)

5. Ax(F A G)<r*AxF A AXG

6. \/x(F vG)<r*VxFvVxG.

Proof: Via Theorem 17 and 3 and 4 of Corollary 5, Ax(F —• G) A AXF A

/vAxG -> (F -* G) A F is valid. Consequently, 1 holds via Corollary 6 and

Theorem 1. 2 through 6 follow from 1 in the usual manner.

Corollary 9 AxF<r*Ax(xE -* F) and WxF «-» \/x(xE A F) are valid.

Proof: By 1 of Corollary 8, MΓ(ΛΓE -> F) -> (Λ-AΓΛΓE -> Λ#F) is valid. Also,

by 3 and 4 of Corollary 5, AxF —• (ΛΓE —> F) is valid. From 1 of Corollary 5

and Corollary 6, it follows that AxF <r+Ax(xE-> F) is valid. Also, since

Λ.#<* E -> (F<^> XEA F)) is valid, Λ*(F O ^ E Λ F ) is valid by 1 of Corollary 8

and 1 of Corollary 5 and WxF<r^Wx(xE AF) is valid by 4 of Corollary 8.

Corollary 10 AxF <->/vV# NF is valid.

Proof: For AxF <r^ Ax NNF and Ax Λ/Λ/F «-> /vVx/vF are valid by 2 of

Corollary 8 and Theorem 14.

Corollary 11 If x is not free in t, then tE<r+Vχtlx and Vxtlx<r>tlt are valid.
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Proof: By Theorem 8, fix v fit -> tE and the -> xlt A (tit ±* xlt) are valid.

Hence, tE<->yxtlχ is valid by Corollary 6 and Theorem 12 while Vχtlχ+>tlf

is valid by Theorem 12.

Corollary 12 // y is free in neither F nor G nor H and both F -> VxG and

FΛyG—>H are valid, then F —• H is valid.

Proof: Assume the antecedent. By Corollary 6 and Theorem 22, WxG -»

(F-* H) and so F -> H are valid.

Corollary 13 flu <-* ult and HUAUIV -* tlv are valid.

Proof: The corollary follows from Theorem 8.

Corollary 14 If z is not free in t or u, then the following formulas are

valid:

1. Az(zM~> z Π I / ) Λ Λ ^ M - » zrul u)Nt\u-> Az(zM~> z h<fEvwE->

flu)) Λ <̂ E V M E - » flu)

2. xly-> (y

xF±->F)

3. /vVxxE-* (u

tF *+F).

Proof: Assume the antecedent. By 5 and 1 of Corollary 8 and Theorem 10,

Corollary 13, and Theorem 4, 1 is valid. Hence, 2 is valid by Theorems 18,

20, and 16. Finally, Λ/WXXE -> Λ^fcM -> z h (tE v uE -> flu)) A </E VUE -> flu)

is valid by Theorem 17 and 3 of Corollary 5, and so 3 is valid by Theorem

16.

Corollary 15 If x is the sequence in standard order of variables free in F,

y is the first variable, t is the sequence defined on the domain of x whose

only value is Λy /vyE, and F' = (VyyE -> C(ΛΛ F ) ) Λ (nVyyE -* *F), then F' ->

F is valid. Also, F1 is valid just when F is.

Proof: Assume the antecedent. F' —> (VyyE -* F) Λ (/vWyyE —> F) is valid

by 4 of Corollary 5 and 3 of Corollary 14 and so F* —* F is valid. Hence, F

is valid when F' is. Also, if F is valid, Fr is valid by Corollary 6 and 3 of

Corollary 14.

Corollary 16 If y Φ x and y is not free in F, then the following formulas are

valid:

1. ΛxFE <r* VyΛx(F<H>xIy)

2. VyAx(F<r*χly) ±* VX(FA1XFIX)

3. Λ;y<;yM -> y Γ ΛxF I ΛxF) -» (VyΛx(F+*xly) -» * F)

4. ΛxFE -> Λ;y(;yM -> ( Λ ^ \- F «->F) «-̂  y r ΛxF I ΛxF)).

Proof: Assume the antecedent and let z be a variable not occurring in x, y,

or F. By Corollary 11 and Theorem 19, ΛxFE <r^vy(Ax(F<r^xly)^ΛxF I y)

is valid. Also, Λx(F «•» xlz) Λ ΛXF I z -* VyΛx(F <r*xly) Λ Vx(F Λ ΛXF I x) is

valid by Theorem 8 and 3 through 5 of Corollary 5. By Corollary 12, it

follows that ΛxFE -> V y Ax(F <r*χiy) Λ Vx(F Λ ΛxF I JV> is valid. On the other

hand, yyAx(F<r>xly) —* V^(^E Λ ΛΛΓ(JP <-̂  Λ:!^)) is valid by Corollary 9 and
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ZΈΛAX(F <^xlz) -» VzVy(/\x(F*+xly) Λ zly) is valid by Corollary 11 and 3
and 5 of Corollary 5. Hence, VyAx(F «-» xly) -» ixFE is valid by Corollary
12, Theorems 19 and 20, 4 of Corollary 8, and Corollary 11. Finally, since
X

ZF hλxF I z -> ΛxFE is valid by Theorem 8, VX(FA ΛXF I x) -> 1*FE is valid
by Corollary 6 and Theorem 22. It follows that 1 and 2 are valid.

By 1 of Corollary 8, Theorem 1, and Theorem 15, Ay (yM-> yΐ~

ΛxF I ΛxF) Λ ΛxFE Λ AX(F <^ xlz) -* <* F <H> ΛxF I z) is valid. But

(Ax{F^>xlz)κΛxF I z — * F) -» (UFE -> * F) is valid by Corollary 6,

Theorems 19 and 20, 4 of Corollary 8, and Corollary 11. It follows from
1 that 3 is valid.

By 2 and 4 of Corollary 8, yM*Ax(y H F**F) -» ((Vz/\x(y h F+^xlz)*
ΛxF I z)) *->Vz(hx(F<r*.χlz)* ΛxF I z))) is valid. Hence, yMAAx(y h F ^ F ) - >
(5; ΓΛxFl ΛxF^ϊxFE) is valid by Theorems 19 and 21 and Corollaries 11
and 13. On the other hand, ^ M Λ ^ Γ ΛXF I ΛXF -* VΛ:^ H FA IΛ: 3; Γ F I Λ Γ ) Λ
V ^ F Λ Ί ^ F I J V ) is valid by Theorem 21, Theorem 8, and both 1 and 2. But
then yM*y rΛxF I ΛxF -> Λ*(;y h F o F ) i s valid by Corollary 12, 1 and 2,

2 through 5 of Corollary 5, Corollary 13, 2 of Corollary 14, and Corollary
6. Hence, 4 is valid by Corollary 6.

Corollary 17 wM —> w \- H is valid if one of the following conditions is

satisfied:

1. H is a formula of Theorems 3 through 5, 8 through 14, 17 through
19, or 21

2. # zs a formula of Corollaries 1 and 2, Corollaries 4 £md 5, Corol-
laries 7 through 11, or Corollaries 13 αwd 14, or on£ 0/ 1, 2, £md 4
of Corollary 16.

Proof: The proofs are by means of the original theorems and corollaries
together with the absoluteness Theorems 4, 10, and 21, the association of
iterated indices by Theorem 5, and the rewriting of bound variables by
Theorem 22. In the same way:

Corollary 18 GΛ WM —> w\-H is valid when G —* H is a formula of Theorems
15 and 16, a formula of Corollary 3, or 3 of Corollary 16.

Notice that, in spite of Theorem 6,

Corollary 19 uM -* u \- (Λx xM Λ I A M Λ ΛX XM Λ XA A) is valid.

Let y and z be distinct variables not occurring in u. By Theorems 11,
18, and 8 and Corollaries 6 and 11, MMΛ zlu -* Ay(u h (J MΛ yA) <H> ylz) Λ zlz
is valid and so UMAZΪU —> z IΛy u \- (JJMA^A) is as well by Theorem 8, 3
and 5 of Corollary 5, and Theorem 19. By Theorems 6, 21, and 22 and
Corollaries 13, 11, and 12, it follows that uM-> u r Λx ΛΓMΛΛTA I u is valid.
The corollary then holds by Theorem 11.

Now let t = Λx xM Λ Λ A 3 and let F = /v(tM Λ tA). By Theorem 4 and
Corollary 19, uM —* /VM H F is valid and so uNί —* w h F is not valid although
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F is valid by Theorems 6 and 7. In other words, there is a valid formula
which is situationally invalid.

4 The system L An axiom of L is any of the formulas of Theorems 1,
3 through 19, and 21 through 23. A formula is L-proυable just when it is in
every set K such that every axiom of L is in K, G is in K when F and F —* G
are for any F and G, and /\xF is in K when F is for any x and F. If K is a
set of formulas, then K implies F just in case either F is L-provable or
there is conjunction k of members of K such that k —• F is L-provable. K is
consistent just in case there is an F such that K does not L-imply F.
Finally, K is satisfiable just when there are an interpreter i and assigner
in XJi a such that, for any FeK, lntf β(F) = 1.

Theorem 24 F is L-proυable just when {Λ/F} is not consistent and F is
valid just when {ΛΛF} is not satisfiable.

Proof: F is L-provable just when NF Λ Λ/F -» G is L-provable for any
formula G via tautologies and modus ponens. Also, F is valid just when
\r\\ia(NF) = 0 for any interpreter z and assigner in Uz α.

Theorem 25 Corollaries 1 through 19 hold when "valid" is replaced with
"L-provable".

Proof: The formulas of these corollaries were shown to be valid by der-
ivations from the axioms of L via modus ponens and universal generaliza-
tion.

Theorem 26 If F is L-provable, k is an individual constant, and x does not
occur in F, then %F is L-provable.

Proof: Let K be the set of all formulas F such that, if k is an individual
constant and x does not occur in F, then both F and *F are L-provable.
Since every axiom of L is in iΓ and K is closed under modus ponens and
universal generalization, the theorem follows.

The following theorem is a strong assertion of the soundness and
semantic completeness of L.

Theorem 27 If K is a set of formulas, then K is consistent just when K is
satisfiable.

Proof: Assume the antecedent. Since the individual constants can be
mapped unto the individual constants with even indices, it can be assumed
without loss of generality that S is some nonrepeating denumerably infinite
sequence of individual constants none of which occurs in members of K.
Some correlation of the formulas with the positive integers is also taken
for granted.

Assume first that K is satisfiable. K K is empty, then, since F = Λ/ΛΛXE

is not valid and so not L-provable by Corollary 5 and Theorems 1 through
23, K does not imply F. Similarly, if k is a conjunction of members of K
and k —> F is L-provable, k —> F and so Nk are valid by Theorems 1 through
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23. This contradicts the assumption that K is satisfiable and k -* F is again
not L-provable. Hence, K is consistent.

The proof of the converse is more complex. Let /, g, and Kr be such
that / and g are functions on the natural numbers, /(0) = K, g(0) - the set of
members of members of the range of /, and Kr = the set of members of
members of the range of g. Also, if n is a natural number, then/(n + 1) =
the union of f(ή) and {VxF -> Λ#(#M -> X Γ & I &) Λ &E Λ £ F } where VxF is the
n + 1 t h existential generalization and k = S(n + 1 ) . On the other hand,
g{n + 1) = the union of g{n) and {F} if this set is consistent, and g{n + 1) =
g(n) otherwise where F is the n + l t n formula.

Assume now that K is consistent. Clearly, K' is not empty. If Kr

is not consistent, there is a conjunction k' of members of K' such that
&' —* Λ/ΛJO E is L-provable. Since &' has finitely many conjuncts, there then
exists a j such that j is the least natural number j for which k* is a con-
junction of members of g(j). However, since g{n + 1) is consistent if g(n)
is for any natural number n, it follows via mathematical induction that

= 0. Consequently, there is an i such that i is the least natural number i
for which k1 is a conjunction of members of f(i). But, if n is a natural
number and f(n + 1) is not consistent, f(ή) implies VxF Λ(&F —* Λ/(ΛΛΓ(Λ:M—*
Λ: Γ k I &) Λ &E)) where k is an individual constant occurring in neither F nor
some member of f(n) by tautologies and modus ponens. Since VxF is not
valid and so not L-provable by Theorems 1 through 23, there is a conjunc-
tion k" of members of f{n) such that k" -> VxF and k" hX

kF -*/v(Ax(xM -»
Λ: r k I k) A kE) are L-provable by tautologies and modus ponens. Let ^ be a
variable not occurring in k" or VΛΓF. Since *£F = *F, it follows from
Theorem 26 that k" Λ ̂ F -*/V(ΛΛΓ(ΛΓM ~* A: Γ ^ I 3>)Λ yE) is L-provable. Since
ΛΛ:(Λ:M —» Λ: Γ y I 3;) is the universal generalization of an axiom of L, it
follows from the part of Theorem 25 corresponding to existential instantia-
tion, tautologies, modus ponens, and the part of Theorem 25 corresponding
to 2 of Corollary 5 that k" ->/vVxF is L-provable and/(n) is not consistent.
Consequently, i = 0 via mathematical induction and K is not consistent.
That is a contradiction and so

1. Kr is consistent.

Hence,

2. Kr implies F just when FeK1, and FfίK' just when /vFe /Γ.

Let rc be the positive integer such that F is the wtn formula. Clearly,
# ' implies F if Fe/C. Also, if K! implies F, then F e g(n) c # ' since # ; is
otherwise not consistent. For the same reason, FfέKr ii/vFeKr. Finally,
if FfέK', then g{n - 1) implies Λ/F and so /vFeK'.

Now let ID(ί) be the set of all u such that tlueK'. Since tE**tIt, tlu-*
tE, tlu<r^ult, and ίlw Λ U\V -* ίlt> are L-provable via Theorem 25, it follows
from 2 that:

3. \D{t) is empty just when /vtEeK*. Also, one of ID(ί) and \0(u) is not
empty just when tlueK' and ID(0 = \D{u) are equivalent.
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4. \D(t) is not empty just when there is an individual constant k e \D(t)

such that Λx(xM -» x Γ k I k) A kE e ϋΓ'.

For some individual constant k, Vyfly ~* Ay(yM —* y Γ & I &) Λ &E Λ tlk is

in Kι. Also, £Iw —> Vytly is L-provable for 3; not occurring in t by Theorem

25. Since x is not free in k, y can then be replaced with x in the universal

generalization by the axiom of L corresponding to Theorem 22.

Now let s be the set of all e such that, for some t, \Ό(t) is not empty

and e = \Ό(t). lϊ e e a, let N(e) = the first individual constant k such that

k e e and Λ#(Λ;M -+ x Γ k I k) Λ kE e Kr for some x. Similarly, if k is a natural

number and ee sk, then N(e) = the &-term sequence d such that d? = N(e;) for

positive j ^ k. It is significant that:

5. ΛxFeKr just when ^/^Feϋf ' for any ees.

Assume first AxF e K' and ees. By 4, Ax{xM —> x rN(e) I N(e)) Λ

N(e)E e ϋC' and so N / ^ F e î Γr by the weak schema of universal instantiation of

L. On. the other hand, if AxF £ Kr', then Vx/vFeK' by 2 and quantifier

negation through Theorem 25. But then there is an individual constant k not

occurring in F such that f\x{xM -* x Γ £ I # ) Λ £ E Λ /v^FeK' by the definition

of K!. By 2 and 3, e = \D(k) is not empty and klH(e)eKr. But A#(#M -*

i r N ( β ) IN(β))AN(^)EeiΓ' as well by 4 and so Λ / 1 ^ * F**M?V, χF e Kf

by the weak schema of indiscernibility of L and the part of Theorem 25

N((?) X
corresponding to 1 of Corollary 14. Since %F = . . F, it follows that

x x t

 k ^\e)
*N(e)FeK>Άnd N(e)FίK' by 2.

Let o = the least ordinal jί s, let m = the set of all ees such that, for

some tee, tMe kr, and let n = the union of m and {o}. Also, let Vo(t) = {\0(t)}

if tEeK' and { } if /WE eKr. Also, let VO(F) = 1 if FeiΓ f and 0 if Λ/F e # ' .

On the other hand, if ee s, let Vβ(ί) = {lD(N(e) r t)} if H(e) Γ ίE e ^ f , and { } if

Λ/N(e) ΓffieiΓ'. Finally, Ve(JP) - 1 if N(e) HFe ^ f and 0 if Λ/N(<?) HjPeK"f.

These clauses are proper by 2 through 4. If there is a c such that

CNklmcxtF, then SP(ΛΓ^F) = the rc-spread / in s of type klm such that, for
x

any />en, positive j < 1+ m, and ee sA, (f(p)(j))(e) = V̂ ( N ^ ) ( Γ F ) 7 ).

6. If CNklmcxtF, CNklmcyuG, SP(xtF) = SP{yuG), a n d pen, t h e n

Vp(c(xtF)) = V?(c(yκG)).

Assume the antecedent and let z^(zf) be the sequence of the first & + 1

variables not occurring in x, y, t, u, F, or G. If e esk and T is a value of

one of t through G, then * . T = ( . X T. Also, if 1 ^ < I + m, then

Wq(%N(e) ( Γ F ) ; ) = V^ (N(^) ( ^ G ) / ) f 0 Γ a n y Q e U S i n C Θ S P ( Λ r ί F ) = s p(ywG).

Hence, if 1 * * Z, i/(.) = ̂  ^ E v ^ M /E - ^ ίy I J ( g ) uy> and F'( .) =

^ ί; E v ^ UjE -> X tj I y Uj, then N(^)M -> N(#) h Jff(e) eXf for any qes and
>c /C Z Z

H(e)eKr. Via 5, it follows that Az'(z!M -> ^ ' Hff(e))Λff(β) e/f' for any ees^.

Similarly, by iterated application of 5, it follows that C(Az Azr(z'M —>
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zr H H'{z)) Λ H'(z)) e Kr. By analogous reasoning, the same holds when

l*j*m, H(e) = * ( g ) F, * * * ( g ) Gh and H'(*) = * F, ^ ζ G,. From the

absoluteness of the connectives, E and I, together with the axioms of L
corresponding to the formulas of Theorems 16, 22, and 23, it follows that
Vp{c{xtF)) = Vp(c(z x

zt
 X

ZF)) = Wp(c(z lu y

zG)) = Vp(c(yuG)) for any pen.

lϊ p e n and c is a constant of type Cklm, then \Np(c) is a specific
w-intension g in s of type Cklm. If CNklmcxtF and / = SP (xtF), then g(f) -
Vp(c(xtF)). For other n-spreads / in s of type klm, if c is a basic logical
constant other than A, g(f) is determined by clauses 6, 7, 8, 10, and 12
through 16 of the definition of interpreter with i{c,p) =g. If c = A and f(p) =
SP (xtF)(p), then £•(/) = ^-(SP(^F)). Otherwise, g(f) = 1 just when p φ o and
/(£) = (the {/>}-function). For the remaining constants c, g(f) = { } if c is
term-making and g{f) = 0 if c is formula-making. This specification of
INp(c) is proper by 6 and the L-provability of FΛ(VM—> v \-F) where F =
(tE v uE -> flw> -> {tA*>uA).

Now let z be the function defined on the set of all pairs c,p with c a
constant and pen and such that i(c,p) = \Np(c) for any given c,p. It must
next be shown that

7. z is an interpreter.

It is clearly sufficient to show that, if CNklmcxtF, c is a basic logical
constant, pen, and / = SP{xtF), then i(c,p)(f) satisfies the relevant clauses
of 6 through 16 of the definition of interpreter. Let r = ί(c,p)(f) = Vp(c{xtF))
under these assumptions. Assume first that p = o. If c = E, r = 1 just when
£XE eKr and so just when there is an e e s such that Vpit^ = {e} by 2 and 3. If
c = I, r = 1 just when ^1 t2eKr and so just when there is an e es such that
Vp(ti) = Vp(t2) = {e} through the L-provability of tlu~> tEAuE and 2 through 4.
If c = M, r - 1 just when txMeK' and so just when there is an eem such that
Vρ(h) = {e} through the L-provability of uM —* uE and ulv —> (MM <->UM) and
both 2 and 3. If c = A, r = 1 just when tλA e Kr and so only if there is an e e s
such that Vp(^) = {e} through the L-provability of uA -* uE, 2, and 3. Also,
if / ' is an w-spread in s of type 010 and f'{p) = (the V^(^)-function), then
Ac>P){f) - r by the definition of i. If c = B, r = 1 just when tiBeK* and so
just when Vp(^E) = 1 and Vp^A) = 0 by the L-provability of uB <^UEA /VUA.
If c = A and ^M e X;, /v^A e if' by 2 since uM —> /vwA is L-provable and so
r ^ l . If c = /v, r = 1 just when Λ/FX e K"' and so just when V^(F1) = 0. If
c = ->, r = 0 just when /v(Fx -> ,P2) e /Γf and so just when VpiF^ = 1 and
VjΛî ) = 0 by the L -provability of tautologies. The cases for c e{λ v <->} are
dealt with in the same sort of way. If c = Λ, r = 1 just when /\xλFλ e Kr and

so just when Vp ( * v Fx) = 1 for any e e s b y 5. Consequently, if c = V, r = 0

just when /vWx1F1e K' and so just when Vp ( \ v Fλ) = 0 for any e e s by the

L-provability of /vVyG <-> Λy/vG. If c = 1, r = {e} just when <? = 10(1^1^) ^
{ } and so just when V^Λ^1(F1 <r>xx ly)eKr for some y not occurring in
iffiFi by 2, 3, and the L-provability of T yGE <-> VzKy{G <-> ylz) for >ε not
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occurring in *\yG. Consequently, if r = {e\, there is an e' e s such that, for

any e" e s, * ' F, e K1 just when e" = e1. Hence, V^ (** ff) Fx) = 0 if e" f e'.

Also, since N(er) I N(e') e Kr by 2, 3, and the L-provability of uE <^>ulu, it
follows from 2, 3, and the L-provability of weak existential generalization
that Vy(Ax1(F1<r^ xλ ly)*N(er) ly)eK\ Hence, by the description schema

of L and 3, e' = e and so Vp (*\ Fj = 1 if r = {4. On the other hand, if

ee s and V? ( * „. F x) = 1 just when e" = e for e" e s, WyiAx^Fj^ <^> xλly) Λ

H(e) I y) eK' and r = {e} by similar reasoning. If c = Γ and there is no ^ e m
such that V^(^) = {#}, /v^Me/f' by the L-provability of wlv —> (MM ^ ?;M)
and so r = { } by 2 and the L-provability of NUM —• NU Γ V E. On the other
hand, if there is a. q e m such that V^(ίi) = {q}, r = Vq(t2) by 2 through 4 since
N(<?) I tλ -> N(̂ r) Γ t2 E v ίi r t2 E -> Nte) r t2l t1 rt2 is L-provable. The case
in which c = \- is dealt with analogously.

It follows that 6 through 16 of the definition of interpreter hold for i
when p = o. When p f o, the cases for when c is one of the absolute con-
stants E, I, M, /v, —>, Λ, v, <H», Λ, V, and 1 follow from the corresponding
cases with p = o by the various absoluteness axioms of L. Similarly, the
cases with p f o, k = N(£), and c e j r h } follow from the cases with p = o via
the !L-provability of k r {tγ r t2)E w (k r tj) r t2 E -^ k r (tι r t2) I (k r tλ) r t2

and k \- tλ \~ F1<r^ k r t± \- Fλ. Also, if c = A, r = 1 only if k \- t± A e Kr and so
only if there is an ee s such that V^(ίi) = {#} via the absoluteness of the
sentential c o n n e c t i v e s , the L-provability of &M —> k I- (^A —> ίiE),
2, and 3. Similarly, if c = B, r = 1 just when V^(^E) = 1 and V>(^A) = 0 by
the L-provability of &M —• k H (^B«^^E ΛΛ/^A) and the absoluteness of the
sentential connectives. Also, if c = A, / ' is an n-spread in s of type 010,
and f\p) - (the Vp(^)-function), then i(c,p)(ff) = r by the definition of i.
Finally, if k H^Meif', r = 1 just when V^^) = {̂ } via the L-provability of
& H (fjM Λ ̂ A) ±+k Γ tλ I k and 2 through 4. Thus, 6 through 16 of the
definition of interpreter hold for i and 7 is established.

If d = { }, let N'(d) = Ί y/v yE where y is the first variable. On the other
hand, if there is an e e s such that d = {e}, let N'(d) = N(e). For any assigner
α in U£ = s and any T, if x is the sequence in standard order of the variables
free in T and k is the sequence with the same domain as x such that &; =
N'(a(*70) for in the domain of k, let Tα = x

kT. Clearly,

8. If α is an assigner in JJi and p e Nz, then \nUαp(x) - Vρ{xα) = 'nt ,-^^) .

For xα = N'(«W), I n t ^ W = α(x) = V?(Nf(«U))), and V ^ ) = \n\iαp(xα)
under the assumption of 8 by the definitions of i and N'. Also,

9. If CNklmcxtF and l n t ^ ( ( Γ F ) ; ) = Vp((ΓF) ;

 β) = Intfβ/>((Γ.F);

 Λ) f o r a n ^
assigner α in U/, p e Nz, and positive ^ Z + m, then \ntiαp{c(xtF)) =
Vp{c(xtF)α) = Intiαp(c(xtF)α) for any assigner « in \Ji and /? e Nz.

Assume the antecedent. If α is an assigner in Uz, let ίf* and F ' β be
Z- and m-term sequences such that {trα^Frα)j = ζr(t^F)j for positive j ^ I + m
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where y is the sequence in standard order of variables free in (t*F)j which

are not values of x and kr is the sequence with the same domain as y such

that k[= H'(a(yh)) for h in the domain of k'. Also, if ee\Jik, let ae = a(*t)

where e1 is the &-term sequence such that e!(h) = {e(tij} for positive h < k.

By the assumption of 9, lnt ί f f*p((ΓF) ; ) = Vp{(ΓF)jae) = \n\iaep{(ΓF)jae) for any

positive j ^ I + m, e e XJik, assigner a in Uz, and p e Nz. But, if α is an

assigner in Uz and <?e Uik, then lntt tfep(N'(βe(^))) = lntiαep(^) for any positive

h < k and any /> e Nz. Hence, by iterated applications of Lemma 5,

lnt«β€ί»((^Γ);Λe) = lnUaep((tm~Fta)j) for positive j ^ I + m and such <2 and />

when e e XJik. Consequently, S?(iaxtF) = SP(iaxttaFra) if a is an assigner in

Uz. Since c(xtF)a = c{xt'aFra), it follows that \χ\\iap(c(xtF)) = lntiβp(c(^ίF)Λ) =

Vp(c(xtF)a) when /> e Nz and 9 holds. With the induction principle for terms

and formulas, 8 and 9 imply

10. If a is an assigner in XJi and p e Ne, then \ntίap(T) = Vp{Ta).

Now let ar be the function defined on the variables such that ar(x) =

Voi(x) for any variable x. Via the axioms of L corresponding to the for-

mulas of Theorem 17, a' is an assigner in Uz. Also, by the induction

principle for terms and formulas,

11. Voi(Γ) = Voi(Ta').

Hence, if FeK c K\ it follows from 10 and 11 that

12. \n\iat(F) = Voi(F-f) = VOί(F) = 1.

But then K is satisfiable and the theorem is proved.

NOTES

1. A λ:-term sequence can be understood to be a function defined on either the natural numbers

<k or the positive integers <&. We here employ the second alternative. An index of a sequence

is an object in the domain of the sequence.

2. The idea of defining intensions as functions which assign extensional objects is from Schock

[10]. However, both the arguments and values of the functions were there of a different sort.

The arguments of the present study are essentially the objects used as arguments of the inter-

pretations of variable binders in Schock [11]. Contrary to what is sometimes claimed in the

literature, this device was not formulated earlier in Section 40 of Carnap [1] since Carnap

there explicated propositions as sets of state descriptions, properties of individuals as functions

from individual constants to sets of state descriptions, and individual concepts as functions

from state descriptions to individual constants. The closest that Carnap came to the idea there

was an unused intuition that an individual concept might be an assignment of individuals to

states. In connection with matters of precedence, it is perhaps also worth mentioning that

some central semantic and logical devices from Schock [11] have reappeared later in Scott

[13], Corcoran and Herring [2], and Corcoran, Herring, and Hatcher [3].

3. As the reader has perhaps already observed, t is reminiscent of terms such as "here" or

"now".
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