
193
Notre Dame Journal of Formal Logic
Volume XXI, Number 2, April 1980
NDJFAM

SIGNIFICANCE, NECESSITY, AND VERIFICATION

L. GODDARD

Some philosophical positions cannot be properly assessed unless we
have suitable three-valued modal logics.

Consider, for example, the positivist criterion of meaning: that a
sentence is significant (meaningful) if, and only if, it is analytic, contra-
dictory, or empirical. Writing S for 'is significant', L for 'is analytic', and
E for 'is empirical', the criterion can be expressed formally1 by: for all
p, Sp =- LpvL~pvEp. As such, we might expect it to be a thesis of an
appropriately augmented modal logic, or perhaps we might expect to show
that it cannot be a thesis of an appropriate modal logic which satisfies
other positivist conditions (e.g., if we think that positivism is an incon-
sistent theory). But in either case the variable p will have to take both
meaningful and meaningless sentences as values. If the range is restricted
to meaningful sentences, the criterion is vacuous and the question is begged
against positivism, for such a semantic restriction amounts to the same
thing as assuming the formal thesis: for all p, Sp.

Well-known problems connected with the positivist position also point
to the need for an appropriate three-valued modal logic. Thus, the
criterion of meaning has to be elucidated by supplementary criteria of
analyticity and empiricalness, and it is evident that if the criterion of
analyticity is to be effective, it should entail certain modal principles—
perhaps, for example, that if p is analytic, so is pvq; i.e., Lp D L(pvq).
But does this hold if q is meaningless? Even the criterion of verification,
which stands as the supplementary criterion of empiricalness, leads to
problems of this sort. For it is often expressed in terms of entailment
principles which are intended to apply in a three-valued context, yet
standard criticisms of it make use of two-valued modal principles which
are assumed, without argument, to hold in the three-valued case.

A different kind of problem which seems to be independent of positivist
principles but which also calls for a three-valued modal logic is posed by
Kripke ([5], p. 31) in a discussion of identity: "when I say 'Hesperus is
Phosphorous' is necessarily true, I of course do not deny that there may
have been situations in which there was no such planet as Venus at all, and
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therefore no Hesperus and no Phosphorous. In that case, there is a
question of whether the identity statement Ήesperus is Phosphorous' would
be true, false, or neither true nor false. And if we take the last option, is
Ήesperus = Phosphorous7 necessary because it is never false, or should we
require that a necessary truth be true in all possible worlds?". Sur-
prisingly, perhaps, this problem—or at least one closely connected to it,
the problem of essences—is not entirely independent of problems about
positivism, but I shall not take up this question here.

In general, my concern in this paper is to develop some three-valued
modal logics in order to get clear what the options are. Some of the results
bear directly on the problems mentioned above, and in Section 7 there is a
preliminary discussion of standard criticisms of the verification criterion,
but mostly the application to philosophical issues is left for a subsequent
paper.2

1 Significance logics The minimum semantic condition for a formal
system to be interpreted as a significance logic is that it should contain
sentential variables, say p, q, p', q', . . ., which range over the three
values: t (truth), / (falsity), and n (nonsignificance). Such logics may
contain other variables restricted in range to subsets of {t,f, n}9 the most
important being significance-restricted variables, say r, s, r ' , sf, . . .,
which range over {t,f}\ and they may contain constants which take just one
value from the set, for example t0 which always takes the value t.

Characteristically, but not essentially, significance logics contain the
classical significance connectives, ~, v, &, D, and =. These have the
standard interpretation put on them in usual two-valued logics (i.e., ~
reads 'not', & reads 'and', etc.) and they are defined over the values in
such a way as to satisfy ordinary two-valued conditions over {t,f} plus the
further condition that when a variable takes the value n, any compound
which contains it, and which is formed using just classical connectives,
also takes the value n. These features are guaranteed if ~ and v are
characterized by the following matrices and &, D, and = are defined in the
usual way:

~ v t f n

t f t t t n
ft f t f n
n n n n n n

When actual sentences are substituted for the variables, the classical
connectives therefore yield a principle which has often been adopted in
philosophical discussions of significance, namely that a compound sentence
is meaningless if, and only if, at least one of its components is meaningless
(cf., [4], p. 102).

Significance logics can contain other connectives which fail to satisfy
the above principle, i.e., which are such that compound sentences contain-
ing them are meaningful even though they contain meaningless components.
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In general, a connective is unlimited if its matrix values do not include the
value n for any values of its components, otherwise limited. The classical
significance connectives are thus a special case of limited connectives.
One important and immediate result which follows by induction over the
number of connectives, given the usual definition of wff, is the following:

Theorem I A significance logic which contains no unlimited connectives
and no significance-restricted variables or constants, and for which t is
specified to be the only designated value, contains no theses.

Significance logics which contain theses must therefore fail to satisfy one
or more of these conditions, i.e., they must contain at least one unlimited
connective, or significance-restricted variables (constants), or t must not
be the only designated value. Where t is the only designated value, the
resultant logic is called an S-logic; where both t and n are designated, we
have a C-logic.

Several unlimited connectives have a natural interpretation. For
example, the connective T defined by:

T

t t
f f
n f

if interpreted as 'is true', satisfies the principle that it is always
meaningful (i.e., true-or-false) to say of any sentence, whether true, false,
or meaningless, that it is true. One way of justifying this use of 'true'
would be to claim that it is always meaningful to say of a meaningless
sentence that it is not true; but if it is meaningful to say that it is not true,
it is meaningful, though false, to say that it is true: i.e., if p takes the
value n, Tp takes the value/.

Given T, other unlimited connectives can then be defined as follows:

FA =df T~A, (A is false)
SA =df TAvFA, (A is significant (meaningful))

A ^ B =df (TA & TB) v {FA & FB) v (~SA & ~SB), (A is strongly equiva-
lent to B, or, A and B have the same significance value);

and they are characterized by the following derived matrices:

F S t f n

t f t t t t f f
ft ft f f t f
n f n f n f f t .

Hence the significance-connective S can be defined in a system in which T
is taken as primitive, but the converse is not true, i.e., given S as the only
primitive unlimited connective, T cannot be defined.

These results, and a detailed investigation of various S and C
significance logics, are found in [3], Part II. They are sketched in here as
a background to the development of a series of modal significance logics.
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2 Modal significance logics Just as there are many different modal
logics which can be constructed on a two-valued sentential base, de-
pending on the postulates or semantic conditions which are adopted to
characterize the modal connectives, so there are various ways of mod-
alizing significance logics. An initial decision which has to be made,
however, which does not arise in the two-valued case, is whether the
basic modal connective L (is logically true) should be limited or un-
limited. Given a significance logic containing 71, this is not a real
problem, since if we take a limited L as primitive (i.e., one such that the
value of LA is n for some values of A), an unlimited (two-valued) L+ can
be defined in terms of it by means of L+A =df TLA (cf., [3], p. 444). A
significance logic which contained only a limited L, however, together with
the classical sentential connectives, and which contained no unlimited
connectives and no variables restricted in range to the set {t,f} would have
no theses if t were taken as the only designated value. This is a con-
sequence of Theorem I.

Modal systems containing only primitive limited modal connectives but
other unlimited connectives are discussed in [3], section 7.2; there is,
however, no discussion in [3] of systems containing primitive unlimited
modal connectives, and some of these are of interest. In particular, it is
worth noting that the positivist criterion of meaning, expressed in the form
SA =. LAv L ~Av EA, cannot be a thesis of any system in which t is the
only designated value and v and = are classical significance connectives, if
L is a limited connective. For if LA takes the value n for some values of
the variables in A, so does the whole disjunction on the right and so, too,
does the equivalence; hence the equivalence would not always take the value
t and so could not be a thesis. The same conclusion follows if the criterion
is expressed in terms of ^ rather than =, for although there can be theses
of the form A ~ B where A and B can both take the value n, SA ^ .
LA v L ~Av EA cannot be one of them. As before, if LA takes the value n
for some values of the variables in A then, for those values, the disjunction
takes value n; but since SA never takes value n, the equivalence takes value
/ in such cases and is not a thesis. The same argument holds for E. So if
we are not to beg the question against positivism, we must consider
systems in which LA and EA cannot take the value n, i.e., systems in which
L and E are unlimited connectives.

We therefore begin with the simplest possible modal logic char-
acterized by:

(i) variables which range over the full set {t,f, n}

(ii) no variables (or constants) restricted in range to the set {t,f} or
subsets of it

(iii) the classical significance connectives

(iv) L as the only primitive unlimited connective

(v) t as the only designated value.



SIGNIFICANCE, NECESSITY, AND VERIFICATION 197

Such a characterization is not strictly accurate for a modal logic since the

conditions have to be world-relativized (see below) but it is intended here

simply as an explanatory guide.

A justification, similar to the argument which supports an unlimited T

as primitive, can be given in support of an unlimited primitive L. For if L

is interpreted as 'is logically true ' , then it is false, therefore meaningful,

to say of a meaningless sentence that it is logically true. This is not of

course an argument for repudiating systems which contain a limited L (any

more than the argument for an unlimited T is a repudiation of systems

containing a limited T), but simply a justification for saying that there is an

unlimited sense of L and, therefore, that systems containing only an

unlimited L can be given a natural interpretation.

Well-formed formulas are defined as follows:

Wl Sentential variables are wff.

W2 If A is a wff, so are ~A and LA.

W3 If A and B are wff, so is (AvB).

W4 Defined equivalents of wff are wff.

W5 These are the only wff.

We take the usual conventions with respect to parentheses as understood

and add the following standard definitions:

Dl (A =>£) =df (~AvB)

Ώ2 {A 8zB) =df ~(~Av~B)

D3 (A = B) =df (AΏB) & (B D A)

D4 MA =df ~L~A

D5 (A-*B) =df L(A D £ )

D6 (A = B) =df (A HJB) & (B-3A).

M, -3, and = have their usual interpretations: respectively, 'is possible',

'strictly implies', and 'is strictly equivalent to' .

The set of wff and the "ordinary-language" interpretation of the

connectives is thus exactly the same as in standard two-valued Lewis

systems. The difference between the systems developed here and the

usual Lewis systems will initially arise only from the introduction of the

third value n to the formal semantics and the conditions which are put on it.

We now characterize semantic theses (valid wff); and to keep the

interpretation in line with two-valued systems we impose the condition that

the semantic rules should "contain" or "extend" the two-valued case in

the sense that, where a rule or a part of a rule refers only to values from

the set {t, /}, it should be identical with the corresponding rule for a

standard two-valued system. This corresponds to a similar condition

imposed on the one-world semantics of S and C logics, namely that the

three-valued matrices (e.g., for ~ and v) should "contain" the two-valued

matrices in the sense that, if the value n is everywhere deleted, the result

is a standard two-valued matrix for the appropriate connective. We secure

this kind of feature in the modal systems by giving a world-by-world

extension of the three-valued matrices for ~ and v, and by adopting the
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standard two-valued semantic rule for L augmented by a clause which
determines the value of LA at a world when A takes the value n at a related
world. This clause, in effect, corresponds to the intuitive condition that it
is false to say of a meaningless sentence that it is logically true.

A model is a triple (W, R, υ), where W is a set of worlds, R, a
relation between worlds, and υ a valuation function, characterized by the
following rules:

51 Where P is any sentential variable and wz e W:

υ(P,Wi) = t or / or n.

52 Where A is any wff and w, e W:

W~A,w, ) = t iff υ{A,Wi) = /
υ(~A,Wi) =fiίίv(A,Wi) = t
v(~A9 wt ) -n iff υ(A, ŵ  ) = w.

53 Where A and B are any wff and W; e W:

u U v ΰ , w, ) = ί iff
either v(A,Wi) = £ and v(B,Wi) = t or/,
or v(B,Wi) = t and v(A, w, ) = ί or/;

t;Mvfi,w ( ) = /iff v(A,Wi) =f and v(B,Wi) = / ;
w(A vB, w, ) = n iff

either υ (A, w, ) = w,

or z; (5 , w, ) = n.

54 Where A is any wff and wt e W:

v(LA, w, ) = ί iff f(A,w7) = t for every w; such that ŵ  Rwy

f (LA, Wj ) = / iff f (A., Wy) = / or n for some w; such that wt Rw7 .

Since the conditions on A on the right-hand side of the clauses in S4 are
exhaustive, and since the clauses are equivalences, it follows that the
conditions on LA are exhaustive. Hence,

v(LA,w{) = t or/;

i.e., L is characterized as an unlimited connective, as required. The
consequential rule for M is:

55 Where A is any wff and w, e W:

v(MA, Wj) = t iff υ(A,w7 ) = t or n for some w7 such that wt Rw7;
v(MA,Wi) = / iff v (A, w; ) = / for every w; such that ŵ  Rwy.

Hence, too, M is unlimited since,

v(MA9Wi) = t or/.

This gives an extended and curious sense to 'possible', from the point of
view of ordinary language, since it entitles us to say (when reflexivity is
imposed on R) that meaningless sentences express possibilities. But in the
purely technical sense of 'not-necessary-not' it is acceptable since the
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negation of a meaningless sentence, being itself meaningless, is not
necessary (i.e., not logically true). Thus logics containing an M which
satisfies S5 would not be acceptable to those who wish to claim that
meaningless sentences should be classified as logically false.

The world-relativized extension of the condition that t should be the
only designated value is secured by an appropriate condition for validity,
namely

Definition: Val: A wff A is valid iff, for every model (W, R, v) and
every w, e W, v (A, w, ) = t.

Strictly speaking this is a validity-schema rather than a criterion of
validity, since it only yields a specific criterion when conditions are put
upon R. What we have so far described, therefore, is a set of modal logics
each of which satisfies the initial conditions (i)-(v). Specific logics then
arise by characterizing R.

3 The logic Lo The logic Lo is determined by requiring only that R be
reflexive. Thus:

Definition: Val Lo: A wff A is Lo-valid iff it is valid when R is reflexive.

Where this condition is imposed in the two-valued case we obtain the set of
semantic theses of von Wright's system M or, equivalently, Feys' system
T. Thus, L'o differs from M only in the extra conditions which determine
the role of the third value n; i.e., LΌ is a three-valued interpretation of M.

There are some immediate results (proofs are only indicated: in each
case a full proof can be obtained by a simple inductive argument). We first
define 'cover' as follows:

Definition A variable P is covered in a wff A iff P occurs in A and every
occurrence of P in A is within the scope of an unlimited connective;
otherwise P is uncovered in A.

We then have:

Theorem Π No formula which contains an uncovered variable is valid.

Proof: For let A be a wff which contains an uncovered variable P. Then
there is at least one occurrence of P in A which is not within the scope of
an unlimited connective. Assign the value n, in some world wf , to this
occurrence. Then by S2 and S3, A takes the value n for this assignment in
w, . So there is a model such that A fails to take the value t in every world.

Hence, no analogues of standard two-valued sentential theses are valid.
For example, p (pv q), pv ~p, etc., are not semantic theses of Lo Simi-
larly, no analogues of two-valued modal theses of M containing uncovered
variables are valid in Lo* e.g., Lp D p and p z> Mp are not valid in Lo

These consequences do not constitute a serious disadvantage, however,
since certain substitution instances of formulas such as p v ~p and Lp D p
are valid in Lo To show this we first define covered variants of a wff A as
follows:
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Definition Where A is a wff containing uncovered variables Pu . . ., Pm,
and A+ is a wff obtained from A by uniform substitution of wffs Cl9 . . ., Cm

(where these need not all be distinct) for Pl9 . . ., Pm, then, if all the
variables in C1? . . ., Cm are covered, A+ is a covered variant of A.

Thus, LLq 3 Lq is a covered variant of L£ D £; {Lp v ~L£) ^ L(pv ~p) is a
covered variant of (qv ~q) 3 L(/>v ~/>), etc. We then have:

Theorem ΠI Where (i) A zs α L0-wff all of whose variables are uncovered
{i.e., there is at least one occurrence of each variable in the formula which
is not within the scope of an unlimited connective); and (ii), A is valid in M;
then all covered variants of A are valid in Lo.

Proof: For let A+ (C1? . . ., Cm) be a covered variant of A (Pl9 . . ., Pm)
where A is valid in M and Pl9 . . ., Pm are all the distinct variables in A
and each is uncovered in A. Since A is valid in M, v(A(Pu . . ., Pm), w, ) = t
for every assignment of values from {t, /}, for every w, . Hence,
v(A+(Cu . . ., Cm), wt ) = t, for every Wj, for each assignment of values
from {t,f, n} such that v (C; , wf ) = t or f, for each C, . But for every
assignment of values from {t, f, n}to the variables in each C/, ^(C; , w, ) = £
o r / , since Cj contains no uncovered variables. Hence v(A+(Cly . . ., Cm),
wt ) = ί in every w, and for all assignments from {t,f, n} to the variables
inA+.

Thus, if A+, B+ are wff of Lo which contain only covered variables (effec-
tively two-valued wff), every RSL-thesis3 can be "represented" in terms of
them as a valid schema of Lo For example, A+ D (A+ VB+), A+ V ~A+, etc.,
are valid schemata of Lo In particular, then, we have such valid schemata
as LA D (LAv MB), LAv ~LA, etc., even if A and B contain uncovered
variables. Similarly, LA+ D A+, A+ D MA+, etc., are valid schemata of Lo.
Hence LLp z> Lp, Lp D ML̂ ?, etc., are valid wff.

The crucial proviso on Theorem ΠI is that the initial wff, from which a
covered variant is developed, must be such that all of its variables are
uncovered. For it is only in this case that III guarantees the L0-validity of
the covered variant. In fact, if the initial wff A contains one or more
covered variables, as well as uncovered variables, covered variants of A
are not necessarily valid in Lo, though A is valid in M. Thus, for example,
let A be (q v ~q) z> L(pv ~p), in which q is uncovered but p is not, and let
A+ be (Lqv~Lq) D L(pv ~p); then A+ is not valid in Lo since Lqv ~Lq
takes the value t in every world but L(p v ~p) takes the value / in a related
world (see Theorem VI). Hence, even though a wff contains no uncovered
variables and is valid in M, this is no guarantee that it is valid in Lo

Theorems IV-VΠ establish this result generally for special classes of
cases:

Theorem IV No formula of the form LA is valid, where A contains an
uncovered variable.

Proof: Let P be uncovered in A, Then, as in Theorem II, there is an
occurrence of P in A such that the assignment of n to P in some world w;
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determines the value of A in w; as n. By S4, therefore, LA takes the value
/ in any ŵ  such that w^Rwy. Hence LA is not valid.

So, for example, formulas such as L(pv ~p) which are valid in M are not
valid in Lo In general, if a is a valid RSL-wff, La is a valid wff of M, but
if A is the three-valued analogue of a, neither A nor LA is valid in Lo.

In spite of these results, all theses of RSL, and many theses of M, can
be restored in a weak form in Lo simply by prefixing certain formulas with
M. Thus,

Theorem V If A is valid in M, and if for every assignment to the
variables in A which includes the assignment n to at least one variable in
any world w{ the value of A is t or n in every w; such that w^Rwy, then MA
is valid in Lo

Proof: Since A is valid in M, it takes the value t in every world for every
assignment from {t, /} to the variables in A. So by S5, the value of MA is t
for every such assignment in every world. Consider now assignments
which include the value n. If, for all such assignments in a world w;/ , the
value of A is t or n in every w; such that w^Rwy, then the value of MA is t in
every w* such that wz Rw7 . But we are given that this is so for every
assignment which includes the value n in any world w, . Hence the value of
MA is t for all assignments in every world provided R is reflexive. So MA
is LΌ-valid.

In consequence, all theses of RSL and certain theses of M which are not
theses of Lo come through in the form MA, where A is the RSL- or
M-thesis in question: e.g., M(p v ~p), M(p z>. p v q), M(Lp D p), and
M(p D Mp) are valid in Lo However, not all theses of M which are invalid
in Lo can be restored in this way and more interesting differences between
the two sets of theses arise from the following result:

Theorem VI No formula of the form B D LA is valid in Lo where, (i) all
the variables in B are covered; (ii) B does not take the value f in every
world; (iii) A contains at least one uncovered variable which does not occur
in B.

Proof: There will be a world ŵ  for which values can be assigned to the
variables in B such that B takes the value t in wz . For since all the
variables in B are covered, B cannot take the value n in any world (by S4,
S5, and the first two clauses of S2 and S3), and we are given that B does not
take the value / in every world. Now let P be the variable which occurs in
A but not in B. The value assignment to B in w, does not determine an
assignment to P since P does not occur in B. Moreover, at least one
occurrence of P in A is not within the scope of an unlimited connective, by
(iii). This occurrence may therefore be assigned the value n in wt . Hence,
as in IV, A takes the value n in w, and LA takes the value /. Hence B z> LA
takes the value/ inw, .

So, for example, Lp Z)L(pvq) is not valid in Lo, though it is valid in M.
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But it cannot be restored in Lo in the form M(Lp D L(pvq)) since this is
not valid either. Thus, it follows from VI that there is an assignment of
values in some world wt such that the value of Lp z> L(pv q) i s / in ŵ  ; but
if M(Lp D L(pv q)) were valid, Lp D L(p v q) would have to take the values t
or n for every assignment in every world.

A further consequence of VI is that Lo does not contain the paradoxes
of strict implication since L ~p D L(p D q) and Lq D L(p z> q) are invalid-
though the special cases which arise by taking q to be p are valid (such
formulas fail to satisfy condition (iii) of VI, so it is not the case that, e.g.,
L ~ A D L(AD B) is invalid for all JB). On the other hand, the resultant
temptation to regard L(p D q) as a better characterization of entailment
than two-valued strict implication has to be tempered by the fact that we
also lose all laws of addition such as L(p D q) z> L(p & pf .3 q), L(p D q) D
L(pvp' .D. #v/>'), a n d i ( P #) ^ L(/>& />' .3. #& />'), and these are often
regarded as good entailment principles. However, since some of them have
been challenged in the case of 'if', rather than 'necessary iV (entailment),
L(p D q) may have some desirable features if interpreted as a straightfor-
ward conditional.

It should be noticed that formulas of the form B D LA do not
automatically fail to be valid if B contains more variables than A: for
example, L(p & q) D Lp is valid. The condition which shows, say,
Lp z> L(pv q) to be invalid, namely the assignment of value n to the "extra"
variable q in some world ŵ  , does not here have the same effect. If q is
assigned value n in w? , then L(pvq) has value / in ŵ  (by S3 and S4), and
this is not inconsistent with Lp having the value t in wt ; but though the
assignment of n to q in wt will similarly determine the value of L (p & q) to
be/in w, , this then establishes the value of the whole formula L(p&q) ~DLp
as t in wt , whatever the value of Lp, since Lp cannot take the value n.

Similarly, formulas of the form B D MA are not automatically ruled
out whether A contains more variables than B, or B contains more than A.
Suppose P occurs in A but not in B. Then if there is an assignment which
gives B the value t in some world wt , we shall not automatically ensure the
falsity of MA in ŵ  by taking that assignment together with the assignment
of n to P. On the contrary, in such a case A takes the value n if P is
uncovered in Λ, so MA takes the value t in wt . As an example, Lp 3
M(pvq) is valid. Again, if B contains more variables than A, then just as
formulas of the form B D LA are not automatically invalid, neither are
those of the form B D MA, and in fact there are theses of this type, e.g.,
L{p & q) D Mp. What does follow as a corollary from VI, however, is:

Theorem VII No formula of the form MA D B is valid in Lo where, (i) all
the variables in B are covered; (ii) B does not take the value t in every
world; (iii) A contains at least one uncovered variable which does not occur
in B.

Thus, M(p & q) D Mp is not valid in Lo, though it is valid in M.
In general, then, formulas of the form C D D, in which all the variables

are covered, may be theses whether C contains more variables than D or D
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more than C. The results VI and VII automatically eliminate certain

special cases where the variables are not the same on both sides, but

generally speaking the "relevance" requirement of shared variables in Lo,

though strong enough to rule out some objectionable cases, is a compara-

tively weak one.

Having said mainly which formulas are not valid in Lo, it is time to

consider which formulas are. We first establish the obvious result:

Theorem VIII Every valid formula of Lo is a valid formula of M.

Proof: For any formula which is valid over the full range {t, f, n} will be

valid if the range is restricted to {t, /}. But the valuation rules and the

definition of validity for Lo are identical with the valuation rules and

definition of validity for M over the range {t, /}.

Hence, since II establishes that not all M-valid formulas are L0-valid, and

in fact limits the set of L0-valid formulas to what might be called M+-wff

(i.e., wff of M which contain no uncovered variables), and since IV, VI, and

VII establish that not all M+-wff valid in M are L0-valid, we have that the

set of valid wff of Lo is a proper subset of the valid M+-wff which is in turn

a proper subset of the valid wff of M. Thus Lo is a very weak system.

As a test for validity we adapt the two - valued reductio method. There

are two differences. First, in assuming for the purposes of reductio that

there is an assignment in some world wz such that the formula fails to take

the value t in w7 , there are always two cases to consider: (a) that the

formula takes value n in wt ; (b) that the formula takes value / in wt . Then,

for the reductio to be established, it has to be shown that both (a) and (b)

lead to inconsistent assignments. However, since we know that all valid

wff occur among M+-formulas, and since the assignment n to such formulas

is always inconsistent in every world, by S4, step (a) is immediate.

Secondly, if LA is assigned value / in some world wt , there is a world w;,

related to wf , in which A has value / or n. Both cases have then to be

considered, and both have to be shown to lead to inconsistency. Thus, the

technique is similar to that employed in the two-valued case in which, e.g.,

an equivalence formula is assigned value/ in a world, since this gives rise

to two cases each of which has to be shown to lead to inconsistency. Three

examples are given below to illustrate the method.

Lol. LA D MA

(a) LA D MA

n

inconsistent by S4, S5

(b) LA D MA

(Ί ff S2, S3

M t f S4, S5

inconsistent.

Here, the value n plays no part in (b). It does, however, play a part in the

(b)-case of the following:
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L02. L(A D B)Z) (MA D MB)

(a) -case inconsistent as before.

(b) L(A z> B) D (MA D M£)

wx ί / t f f S2, S3

w2 I ί or / S4, S5

inconsistent: for if υ (A, w2) = t and # (B, w2) = /, y U ^ ^ , w2) = /,
by S2 and S3 (this establishes the two-valued M-thesis); while
if υ(A,w2) = n and v(B,w2) =/, V(A~D B, w2) = n, by S2 and S3.

As an example of an invalid formula we choose a case which is in fact
automatically excluded by VI, since it serves to illustrate the general
argument of VI, namely

LA D L(A vB).

(a) -case inconsistent as before.

(b) LA D L(AvB)

WJL t f f S2, S3

( /
w 2 j / or S4.

I n
Now, if v(A,w2) = ί and v{B,w2) = ^ o r /> W2 is inconsistent
since w(Av£,w2) = ί (this again establishes the two-valued 1VI-
thesis). But if v(A,w2) = t and v(B,w2) = n, then v(A v £ , w2) = n;
so this assignment is not inconsistent.

Other semantic theses are as follows:

Distributive Laws:
L03. L(A& B) =. LΛ& L 5
L04. M(AvB) =. MAvMB

However, neither of the half-distributive laws, LAv LB .z> L(Av B) and
M(Λ & ^) =). MA & MB, is valid. A set of values which falsifies the first of
these is: v(LA,w, ) = ί, consequently v(A9W{) = t and v (LA vLB, w, ) = ί;
v(B,Wi) = n, consequently v(LB,Wi) = / , f(AvJ5,wz ) = w and ϋ ( L U v ΰ ) ,
w{ ) = /. Similarly, the values #(MA, w, ) = / and z;(B, wf ) = w, falsify the
second. It should be noticed that neither formula is excluded by any of the
general results which have been established.

Transitivity Laws:

L05. (A^ B) 8ι (B-β C) .3 (A β C)

L06. (A * B) .D ((B * C) D (A -̂  C))

Reductio Laws:
L07. (~A^A)ΞLA
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L08. (~A-3. B & ~B) D LA

The converse of L08 fails, being a case of VI.

Modus Ponens Laws:
L09. LA & (A Ί B) .D LJB

L010. MA & (A β £ ) .D MB

Elimination of Necessary Antecedent:
L o l l. LA & (A & £ .-SC) .Z) (B ^ C)

Disjunctive Syllogism:
L012. L(A & M v J 5 ) ) D LB
L013. LA & L(~Av£) .D L£

These, of course, are simply variants of LΌ9.

Weak Law of Noncontradiction:
L014. ~L(A8z~A)

The strong law L ~(A & ~A) fails, however, since A may contain uncovered
variables, in which case it is eliminated by II.

Spread Law:
L015. L(A & -A) D LB

This is not excluded by VI since condition (ii) fails to be satisfied; for since
~L(A & ~A) takes the value t in every world (L014), L(A & ~A) takes the
value/ in every world. In fact L015 is a straightforward consequence of the
paradoxes of material implication since we have ~A+ D (A+ D .B+), and
taking A+ to be L(A & ~A) and JB+ to be LB, L015 will follow from L014 by
detachment (we show below that detachment preserves validity). Spread
laws in each of the forms (A & ~ A ) D £ , (A & ~A)Z)LB, and L(A & -A) D 5
are excluded by II.

Laws of Extensionality:
L016. L(A = B)-D {LA = LB)
Loll. L(A=B) -D{MA=MB).

Derived Rules:

The following rules preserve validity (there are of course others):

LOR1. Adjunction: A, B -> A & B

If A is valid, it takes the value t in every world; and similarly
for B. Hence by S2 and S3, A & B takes the value t in every
world.

L0R2. Necessitation: A-> LA
If A takes the value t in every world, then it takes the value t
in every world w; related to an arbitrarily chosen world w7 .
Hence by S4, the value of LA is t in an arbitrarily chosen
world W;, i.e., in every world.
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L0R3. Modus Ponens: A, AD B — B

If A takes the value t in every world and A D B takes the value
t in every world, then by S2 and S3, so does B.

LΌR4. Extensionality: (A = B) — (LA= LB)
If A = B is valid, then by the rule of necessitation, so is
L(A =B). But L(A = B)Ώ (LA = LB) is valid, L016. Hence,
by the modus ponens rule, so is LA = L£.

4 Extensions of Lo Systems containing Lo may be obtained by extending
the semantic conditions or the set of wff. In particular, we obtain systems
LL0, L20 and L30 analogous, respectively, to the Lewis Systems S4, S5, and
the Brouwerian System B by imposing appropriate further conditions on R.
Thus,

Definition Val L10: A wff A is L10-valid iff it is valid when R is both
reflexive and transitive.

Definition Val L20: A wff A is L20-valid iff it is valid when R is
reflexive, transitive, and symmetric.

Definition Val L30: A wff A is L30-valid iff it is valid when R is
reflexive and symmetric.

Then, just as Lo c M, so L10 cS4, L2o
 c S5, and L30 c B; moreover, the

relations between Lo, Li0, L20, and L30 are exactly the same as the cor-
responding relations between M,S4,S5, and B. Similarly, by requiring R
to be connected and/or discrete, other systems containing Lo can be
obtained. In general, for any two-valued modal system a corresponding
three-valued semantics can be set up such that the resultant system stands
to the original two-valued system as Lo stands to M. There is, that is to
say, a network of three-valued systems which exactly parallels the
two-valued network and which is connected to the latter at every point by an
inclusion relation.

An alternative way of extending Lo is to introduce further wff, and this
can be done in two ways, either separately or combined. The first way
consists in adding a further set or sets of variables or constants, while the
second consists in adding new primitive connectives. We here look briefly
at one simple extension of the first kind which arises by adding a set of
restricted variables to Lo Extensions of the second kind open up a wide
field, some aspects of which will be discussed in more detail elsewhere,2

since any sentential significance logic can be used to provide the base for a
set of modal logics.

If we add to the formation rules of Lo,

WO. Restricted sentential variables (r, s, r ' , s', . . ..) are wff,

then the set of wff, excluding those which contain L, is exactly the same as
that which characterizes the sentential significance logics So and Co (see
[3], section 5.8). The semantic rule for restricted variables is simply:
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SO. Where R is any restricted variable and wt e W: v(R,Wi) = t or /.

The other rules remain the same. If we now adopt Val as the criterion of
validity, then the set of modal logics so defined are modalized versions of
So (not of Co since both t and n are designated in Co). In particular, adopting
the special criterion of validity Val Lo, which requires only reflexivity, we
obtain L0S0.

Within L0S0, all valid formulas of M come through in terms of re-
stricted variables: e.g., r v ~r, Lr z> r, L(r D r), etc., are all theses,
though the corresponding unrestricted versions, p v ~p, Lp 3 />, etc.,
remain invalid. Obviously, too, all valid formulas of Lo are valid in L0S0

But the set of valid L0S0 formulas is not simply the union of the set of
M-valid formulas (expressed in terms of restricted variables) and Lo-valid
formulas. There are, as well, "mixed" formulas which contain both
restricted and unrestricted variables and some of these are valid in L0S0:
e.g., Lp D L(p v r) . In particular, all valid formulas of M which are
invalid in Lo by virtue of VI or VII are restored in L0S0 for the special case
in which the "extra" variables are restricted. For the results, VI and VII
both depend on assigning the value wtoa variable which occurs uncovered
in A, but does not occur at all in B, in formulas of the form B D LA and
MA D B. Hence if these variables cannot be assigned the value n, the
results fail.

Extended systems L10S0, L20S0, etc., can then be obtained by imposing
further conditions on R, as above.

5 Variations on Lo By varying the semantic conditions on Lo, various
related systems can be obtained.

The simplest change is to turn Lo into a C-type logic by varying the
definition of validity so that both t and n become designated values, i.e., by
adopting, in place of Val

Definition VaΓ: A wff A is V-valid iff, for every model (W, R, v) and
every w e W, v(A, wf ) = t or n.

In particular, if we leave everything else unchanged and impose only
reflexivity on R, we obtain a system LOi characterized by:

Val'Loi A wff A is LOi-valid iff it is FαZ'-valid when R is reflexive.

Similarly, by imposing transitivity and symmetry conditions as before, we
obtain systems L101, L2Oi> U3Oi, which are Val '-validity variants of, respec-
tively, L10, L20, and L30

In each of these systems the result Π fails and standard sentential and
modal laws containing uncovered variables, e.g., pv~p and Lp =>£, are
restored. The result IV still stands, however; for since S4 remains
unchanged, LA cannot be valid if A is such that it can take the value n at a
world. So we have the position that although, say, p v ~p is valid, L(p v ~p)
is not. Hence, the rule of necessitation fails. So, too, does the rule of
extensionality, since pv~p .=. Mpv~Mp, for example, is now valid but
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L(pv ~p) = L(Mp v ~Mp) is not. Similarly, the modus ponens rule fails
since pv~p and (pv~p) D L{pv ~p) are valid but L(pv ~p) is not. The
results VI and VΊI still stand, in consequence of S4, so the paradox laws and
laws of composition remain invalid.

There is of course a sense in which these systems are interpreta-
tionally inconsistent. For if n is a designated value, it seems more
reasonable to take the value of LA to be t (or n) at a world when the value
of A is n at a related world. Thus one option we might take in place of S4
is:

S'4. Where A is any wff and w, e W:

υ{LA, W;) = t iff v(A, w;) = t or n for every w; such that wt Rw7

v(LA,Wi) =/iff v(A,Wj) =/for some w; such that ŵ  Rwy.

The consequential rule for M is then:

S'5. v(MAyWi) = t iff v(A9Wj) = t for some w; such that w, Rw;

υ{MA,vji) =f iff v(A,Wj) = f or n for every w; such that w^Rwy.

Since both L and M are still unlimited connectives under these rules, they
could be taken in conjunction with the original definition of validity Val, as
well as with VaV, and perhaps more appropriately so, since to take n as a
designated value is effectively to destroy its intended interpretation as
"nonsignif icance".

Taking Val with S'4, and varying the conditions on R, we obtain a
series of systems L02 (where only reflexivity is imposed), Li02 (where
transitivity is also required), and similarly, L2o2 a n d L3 0 2. For each such
system, the result II holds, since formulas containing uncovered variables
still take the value n for some assignment in some world, and n is not a
designated value; but the arguments for IV, VI, and VII all fail. Thus, for
example, where A contains an uncovered variable, A v ~A takes the value t
or n for every assignment in every world; hence by S'4, L(Av~A) takes
the value t in every world and is therefore valid in terms of Val. So the
argument for IV collapses and, in a similar way, so do the arguments for
VI and VII.

Taking VaV with S'4, and again varying the conditions on R, we obtain
Lo3-I-3O3 In such systems both t and n are designated, so II fails; but again,
as the above argument shows, IV, VI, and VΠ also fail, as a consequence of
S'4. Nevertheless, L03-L303 do not coincide, respectively, with M,S4,S5,
and B. In particular, there are formulas which are valid in Lo, hence in M,
but which are not valid in L03: e.g., L(A & B) D. LA & LB. A consistent set
of values which falsifies this is: v(L(A & B),w{) = ί, v(LA, w, ) = /,
v(A, W;) = /, and v(B, w{) = n\ the converse, however, is valid. Hence,
although Lo and L03 intersect, neither one is contained in the other: as a
further example, the paradox laws are valid in L03 but the spread law is
invalid; the opposite, however, is true of Lo.

With the introduction of VaV it becomes possible to develop systems
containing primitive limited modal connectives. Like sentential C-logics,
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however, many of them are simply inconsistent. To illustrate, we consider
just one of the many possible valuation rules for a limited L:

S"4. For any wff A and any wf e W:

viLA^Wj) - t iff υ(A,Wj) = t for every w; such that ŵ Rwy
υ(LA,w{) = f iff v(A, w.y) = / for some w7- such that ŵ  Rwy and

viAyWj) =t o r / f o r every w; such that w2 Rw;

v(LA,Wi) = n iff v(A,vtj) = n for some w7- such that W;Rw; .

The consequential rule for M is then:

S"5. v(MA,Wi) =t iff v(A, w; ) = ί for some w; such that w, Rw; and
v(A,Wj) = ί o r / f o r every w; such that wz Rw7

i;(MA,w,') = / iff w(A, w.y) =/for every w; such that wf Rw;

f(MΛ, w, ) = n iff ϋ(A, w; ) = n for some w7- such that ŵ  Rwy.

Here, the first two clauses in each rule are not only similar in form to the
corresponding M-rules, but are also exactly the same in content, though
embedded in a three-valued context, since they require explicitly what is
achieved automatically in the two-valued case, that A be truth-valued in
every world related to a world in which LA or MA is truth-valued. This
requirement is not essential however, and different conditions for limited
connectives could be obtained by dropping the second conjunct in the second
clause for L and replacing the last clause by ^(LΛ,w ) = n iff v(A,v7{) = n
(cf., [3], p. 448ff).

Given VaV and S"4, we define the systems L04-L304 in the usual way by
imposing appropriate conditions on R. However, like functionally complete
sentential C-logics (see [3], Ch.5.13, p. 354), these are simply inconsistent,
though not absolutely inconsistent. Thus, since pv ~p takes the value t or
the value n in every world, so L(pv~p) never takes the va lue/in a world.
Hence it is valid in terms of VaV. But since there is an assignment in
some world w; such that pv ~p takes the value n, so by S"4 L(p v ~p) does
not take the value t in any world w, such that wt Rw; , and in fact never takes
the value t since for an arbitrary choice of wz there will be a world w; such
that wfRwy and v(pv ~p, w; ) = n. Hence L(pv~p) takes the value n in every
world. But then, by S2, so does ~L(/?v~p); i.e., ~ L(p v ~p) is also valid.
The inconsistency does not spread, however, since the modus ponens rule
fails. Thus L(p v ~/>) & ~L(p v ~p) is valid and so is L(p v ~p) &
~L(pv ~p) .D B, where B is arbitrary, for by S2 and S3 it always takes the
value n since the antecedent always takes the value n\ because B is
arbitrary, however, it may be assigned value/in some world and hence is
not valid.

Other systems arise by breaking the definitional connection between L
and My a course which is rational in terms of VaV since if n is a designated
value it is inconsistent with the sense of 'possible' to take the value of MA
to be / at a world when the value of A is n at a related world, as in S'5.
Thus, we might adopt S'4 along with,

S'"5. υ{MAy^i) = t iff υ(A,w; ) = t or n for some w; such that ŵ Rwy
v(MΛ,wt ) =/iff v(AyWj) =/for every w7- such that wt Rw7 .
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This gives rise to multiple modal systems of various kinds in each of which
LA Ό MA and ~M~Az> LA are valid but LA D ~M~A is not. Other kinds
of multiple modal systems can be developed if both limited and unlimited
primitive modal connectives are introduced.

All the variants of Lo can be extended, as Lo itself can, by adding to the
class of wff and/or the class of primitive connectives.

6 Family resemblances Semantically speaking, the most closely related
of the well-known systems to Lo is Prior's system Q ([7], pp. 41-54).
Prior's third value of "unstatability" could be taken as the interpretation
of n since it satisfies the same conditions as n so far as the sentential
connectives are concerned. However, the criterion of validity for Q is
VaV, not Val, and the modal connectives L and M are limited, though they
are not of course characterized by S"4 and S"5. In fact Q is a multiple
modal system in L and M. Q.-variants of the L-systems could be developed
within the general framework set out here by dropping D4 and adopting
appropriate independent semantic rules for L and M.

In making comparisons with other systems, however, it is not
necessary to establish semantic connections; one might instead simply
compare the sets of theses and rules of derivation. For although the
semantic conditions S1-S5 are intended to provide a natural interpretation
for the three values t, f, and n, there is no formal reason why they should
be interpreted as truth, falsity, and nonsignificance, and indeed no formal
reason why formulas containing uncovered variables have to be regarded as
three-valued. We could simply regard all formulas as being restricted in
application to two-valued sentences and take the semantics as providing a
slightly eccentric device for distinguishing valid and invalid formulas. Such
an attitude would not be very different from the regularly adopted technical
trick of using many-valued matrices as a test for invalidity and consistency
in two-valued systems. The only point being made here is the obvious one
that any formal semantics is itself independent of an actual interpretation,
or application, of the formal system it is designed to elucidate, but looked
at from this point of view there are a number of similarities, as well as
differences, between the L-systems and others. Thus, since LA D A is not
valid in Lo, though LA D MA is, Lo shares some features with two-valued
deontic systems. Again, since LA is not valid, when A is RSL-valid, Lo has
some characteristics in common with Lemmon's systems ([6], pp. 176-86).
Whether there is a satisfactory two-valued application of Lo, or one of its
variants, however, is an open question.

7 An application of Lo: the criterion of verification Although there may
be two-valued applications of Lo, its intended application is three-valued,
and in this respect there is one area of philosophical interest on which it
seems to throw some light. This concerns the various criticisms and
defenses of Ayer's formulation of the criterion of verification:

A statement is directly verifiable if it is itself either an observation-statement, or is
such that in conjunction with one or more observation-statements it entails at least one
observation-statement which is not deducible from these other premises alone.
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A statement is indirectly verifiable if it satisfies the following conditions:

first, that in conjunction with certain other premises it entails one or more
directly verifiable statements which are not deducible from these other premises alone;

secondly, that these other premises do not include any statement that is not
either analytic, or directly verifiable, or capable of being independently established as
indirectly verifiable.

A statement is verifiable if, and only if, it is either directly verifiable or indirectly
verifiable, (cf. [ l ] ,p. 13)

This criterion is proposed in a context in which statements can be either
true, false, or meaningless; and the whole point of it is to serve as a
discriminating device for distinguishing meaningful and meaningless state-
ments. Yet almost every criticism of it has been made using principles of
two-valued logic; and this begs the question against the criterion qua
discriminating device. For it presupposes that the statement to be tested
itself satisfies two-valued principles and hence is meaningful. It is not
surprising, then, that it can be shown, by apparently impeccable logical
arguments, that the criterion entails the meaningfulness of every statement
and so fails to distinguish the meaningful from the meaningless. For that
conclusion is already built into the very use of two-valued logical
principles in the assessment of the criterion's effectiveness. The criti-
cisms which have been made could only be justified on the assumption that
two-valued principles carry over unchanged to a three-valued context. But
that assumption is false.

A second assumption which has commonly been made is that the
entailment relation which plays such a crucial role in the criterion is
(two-valued) strict implication. There is, however, no reason to suppose
that even if the criterion fails in some respects when entailment is
construed as strict implication, so it will fail for a good entailment. On the
contrary, the objection that every contradiction is directly verifiable (since
a contradiction in conjunction with any observation-statement will entail
any other observation-statement) will not stand in the case of a good entail-
ment even in the two-valued case. What is needed, then, for an adequate
evaluation of the criterion is a three-valued entailment logic, where the
values are t, f, and n, but as yet we do not have one. However, even using
the three-valued version of strict implication characterized by Lo, many of
the standard criticisms fail. This is most easily shown in terms of
LoSo which contains both restricted and unrestricted variables since
observation-statements are truth-valued, and can therefore be taken as
values of the restricted variables, while the statements to be tested by the
criterion must be taken as values of the unrestricted variables. Thus,
using the previous notation, where r, s, r ' , s', . . ., take as values
sentences which are known to be meaningful (true-or-false) and p, q,
p', q', . . ., take as values sentences which may be either true, false, or
meaningless, the condition for direct verifiability can be written in general
terms, excluding the specific reference to observation sentences, as:

DVp iff for some r, some s, L(p & r .=> s) & ~L(r D s).
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This captures the structure of the condition and the essential requirement
that a sentence is meaningful iff in conjunction with a meaningful sentence r
it entails another meaningful sentence s, provided r itself does not entail s.

This is no doubt an oversimplification for most purposes, for it only
picks out that characteristic of the verification criterion which is essential
to it as a condition of significance. But the criterion is meant also to be a
condition of empiricalness, and from that point of view it is equally
essential that r and s should be observation-statements and not merely any
truth-valued statements, including those which are analytic or con-
tradictory. But the main concern here is with the criterion considered as
a condition of significance and in this respect the simplification is of value.
Moreover, if we make the same kind of simplification in the criterion for
indirect verifiability, by lumping together statements which have been
shown to be directly verifiable, independently indirectly verifiable, or
analytic, and simply classify them all as truth-valued, then we have:

IDVp iff for some r, some s, L(p & r .D S) & ~L(r D S).

Thus, qua significance condition, the pattern of the criterion is the same
for both direct and indirect verifiability—not surprisingly, since it was
exactly this form which Ayer initially took as the sole criterion ([l],
pp. 38-9) and which was only modified and complicated by the distinction
between direct and indirect verifiability to meet some of the early
criticisms. In fact, however, most of these early criticisms fail, so it is
not obvious that the later complication was necessary.

The main objections to the simple version, which is represented by
either of the above conditions, are:

1. Since for all p, L(p & ~p .D s), and for some s, ~L(~p 3 s), so, for
all />, some r and some s, L(p & r .D s) & ~L(r D S). Hence, for
all p, p is verifiable.

This fails, however, if we take L0S0 as the background logic since
L(p & ~p .z> s) is not valid. Thus, the attempt to cash in on the paradoxes
of strict implication does not succeed simply because the paradoxes do not
hold in Lo&o There is, however, a version of this criticism which does go
through, namely that if p is itself logically false, then it is verifiable. The
reason for this is simply that if p is logically false, it is meaningful and so
satisfies the two-valued paradoxes of strict implication when taken in
conjunction with other meaningful sentences. Thus,

2. L~p D L(p & r .D s) is valid in L0S0 (it is not eliminated by VI
since the "extra" variables in the consequent are not unrestricted).
Hence,

~L(r D S ) D ( L ^ D (L(p & r .=> s) & ~L(r D S)))

is valid since it follows from L~p D L(p & r .D S) by modus ponens
using the valid schema (A+ =) B+) D (C+ D (A+ D. B+ & C+)). But
since we can certainly find some r and some s such that ~L{VD S),
we have,
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L~pΌ. for some r, some s, L(p & r .=) s) & ~L(r Ό s); con-
sequently, L ~£ D (p is verifiable), for all p.

This objection does not tell against the criterion as a condition of
significance simply because it depends oh the fact that if p is logically
false, it is meaningful; but it does tell against it as a condition of
empiricalness. Hence the criterion has to be modified to read:

Vp iff ~L ~p & for some r, some s, L(p & r .D S) & ~L(r D s).

It is just this extra clause which one would expect to be unnecessary given
a good entailment in place of strict implication. It is worth noting,
however, that the criterion is not automatically satisfied by taking r to be
logically false, for we do not have L ~r z> L(p & r .D S): this is eliminated
by VI and fails for precisely the case for which it is required to fail,
namely when p is meaningless.

A different argument which is supposed to establish that every
sentence is verifiable is as follows:

3. Since for all py L(p & (p D s) .D s) and for some s, ~L(p Z) s .=) s),
so for all p, p is verifiable.

This, too, fails in L0S0 since L(p & (p D S) .D S) is not valid. This is not to
say, however, that we can never employ a premiss of the form p D S to
establish the verifiability of p; we can in fact do so if we can show that p
entails s, i.e., if L(ί D S). For L(p D S) Z> L(/> & ( p s ) . D s) is valid.
But that only leads to the conclusion: L(p ~3 s) Ό. p is verifiable, for all p;
and that is unexceptionable since if L(p D S) is true, £ must be truth-
valued. In fact Ayer mentions L(p D s) as a possible sole criterion of
verifiability, where s is an observation-statement, but rejects it as
inadequate since it would eliminate all hypothetical from the class of
verifiable statements ([1], p. 12).

In each of the objections (1) and (3), the condition L(p h,r .Ds) &
~L(r D s), which is expressed essentially in terms of a restricted variable
r, has been misapplied by taking as an instantiation case of r a wff which
contains an unrestricted variable (in the first case ~p, in the second,
p D s). Quite apart from the oddity of supposing that p could in any case be
used nonviciously in a test of its own verifiability, the use of p in a wff
which is taken to be a proper instantiation case of a restricted variable
amounts to the assumption that such a wff satisfies two-valued conditions
and hence that p does. Thus the argument in each case presupposes that p
is verifiable. That L{p & ~p .3 s) and L(p & (p D s) ,z> s) are not valid in
a context in which the significance of p is not already known is a simple
reflection of the fallacy in the original arguments. Certainly, L(r &
~r . D S ) and L(r & (r D S) .D S) are valid, but this only establishes that
every two-valued statement r is two-valued: hardly a surprising discovery.

An objection which is held to establish a slightly weaker conclusion
than (1) and (3) is that if p is verifiable, so is every conjunction which
contains it:
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4. Since for all q, L(p & r .z> s) z> L((/> & q) h r .^ s), we have,

L(/>& r .D s) & ~L(rZ) s) .=> !,((/>& <?) & r .=> s) & ~L(r Z) s).

So if for some r, some s, the antecedent condition is satisfied, i.e.,
£ is verifiable, so is the consequent, i.e., p & q is verifiable, for all
q: e.g., 'It is raining and the Absolute is green' is verifiable.

This fails, however, since L(p & r J S ) D L((p & #) & r .D S) is not valid;
it is in fact a special case of the composition laws eliminated by VI. What
does hold is L(p & r .D S) D £,((/> & r') & r .D S), where r ' is another
restricted variable, but that only establishes that if p is verifiable so is any
conjunction containing p and other truth-valued sentences: i.e., if p is
verifiable, so is p & r'. But 'It is raining and the Absolute is green' is not
a case of this unless it has already been established that 'The Absolute is
green' is meaningful. In fact, once again, just those cases which need to be
eliminated are eliminated.

Criticisms of the more complex version in terms of direct and indirect
verifiability fail in a similar way. Thus, consider Church's objection
([2], p. 53):

5. Where ru r2, r3 are three observation sentences no one of which entails any of the

others, we have L((^r1 & r2.v.r3 & ~p) & rλ.D r 3 ), so (^r1 & r 2 .v . r 3 & ~p) is

directly verifiable, for all p. The argument then proceeds by showing that this

directly verifiable statement, call it R, in conjunction with p entails r2. Hence p is

indirectly verifiable provided R does not entail r2; but if it does entail r2, then so

does ~p & r3, in which case ~p is directly verifiable. So either p or ~p is verifiable

for all p.

Only the first part of the argument need be considered, however, since, like
the earlier criticisms, it fails because the initial entailment principle is
invalid. It is valid when, and only when, p is not meaningless; but then, its
use begs the question.

It seems clear that the more complex version of the verification
criterion is unnecessary insofar as it was designed to meet criticisms of
the simple version. In general, the structure of the criterion, when
considered simply as a condition of significance, is the same in both
versions, and standard criticisms of either fail for the same reasons: that
they beg the question against it. The only objection which stands, in terms
of an L0S0 background, is (2); but what that establishes is the inadequacy of
the criterion as a condition of empirical significance. Given a better
entailment, however, or the extra clause ~L ~p, (2) is a trivial matter;
and in fact it can be shown2 that the criterion which includes the additional
clause ~L ~ p is a sufficient condition for empirical significance. Whether
or not it is also a necessary condition, and hence an adequate criterion
of empiricalness, raises different questions.
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NOTES

1. Strictly, S, L and E have to be understood as absorbing quotation functions to justify the
required metalinguistic interpretation. L is sometimes read as 'is logically true' instead of 'is
analytic'; occasionally, when the interpretation is inessential, it is read 'is necessary'.

2. Logical Empiricism and Essentialism, to be published.

3. RSL is restricted (i.e. classical two-valued) sentential Logic.
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