Notre Dame Journal of Formal Logic Volume XX, Number 4, October 1979 NDJFAM

ON FULL CYLINDRIC SET ALGEBRAS

THOMAS A. SUDKAMP

By a full cylindric set algebra of dimension α, full $\operatorname{CSA}_{\alpha}$, where α is an ordinal number, we mean a system

$$
\mathfrak{A}=\left\langle A, \cup, \cap, \sim, 0,{ }^{\alpha} U, \mathbf{C}_{k}, \mathbf{D}_{\kappa \lambda}\right\rangle_{\kappa, \lambda<\alpha}
$$

where U is a non-empty set, A is the power set of ${ }^{\alpha} U, 0$ is the empty set, \cup, \cap, and \sim are the set theoretic union, intersection and complement on A, and for all $\kappa, \lambda<\alpha, \mathbf{C}_{\kappa}$ is a unary operation on A and $D_{k \lambda}$ is a constant defined as follows:

$$
\begin{aligned}
\mathbf{C}_{\kappa} X= & \left\{y: y \epsilon{ }^{\alpha} U \text { and for some } x \in X \text { we have } x_{\lambda}=y_{\lambda} \text { for all } \lambda \neq \kappa\right\} \\
& \text { for every } X \in A,
\end{aligned}
$$

and

$$
\mathbf{D}_{\kappa \lambda}=\left\{y: y \in{ }^{\alpha} U \text { and } y_{\kappa}=y_{\lambda}\right\}
$$

(cf. 1.1.5, [2]). In section 1 we give an axiom system for a subclass of cylindric algebras, which we call strong cylindric algebras, and show that \mathfrak{A} is a strong $\mathbf{C A}_{\alpha}, \alpha<\omega$, if, and only if, \mathfrak{A} is isomorphic to a full $\operatorname{CSA}_{\alpha}$.

In section 2 we restrict our attention to the theory of strong $\mathbf{C A}_{2}$ and show that it is definitionally equivalent to the theory of a subclass of relation algebras axiomatized by McKinsey [3].

The notation of [1] is used, and a familiarity with chapter 1 of that book is assumed.

1 Strong cylindric algebras We begin by introducing a piece of notation which will prove to be convenient.

Definition 1.1 If \mathfrak{A} is a $\mathbf{C A}_{\alpha}, \alpha<\omega$, and $i<\alpha$, then

$$
\mathbf{c}^{i} x=\mathbf{c}_{(\alpha \sim\{i k)} x
$$

Definition 1.2 By a strong cylindric algebra of dimension α, where α is an ordinal number less than ω, we mean a structure

$$
\mathfrak{A}=\left\langle A,+, \cdot,-, 0,1, \mathbf{c}_{\kappa}, \mathbf{d}_{\kappa \lambda}\right\rangle_{\kappa, \lambda<\alpha}
$$

such that 0,1 and $\mathbf{d}_{\kappa \lambda}$ are distinguished elements of A (for all $\kappa, \lambda<\alpha$), - and \mathbf{c}_{κ} are unary operations on A (for $\kappa<\alpha$), + and \cdot are binary operations on A, and such that the following postulates are satisfied for any $x, y \in A$ and any $\kappa, \lambda, \mu<\alpha$:
(C_{0}) $\langle A,+, \cdot,-, 0,1\rangle$ is a complete and atomic BA
(C $\left.\mathrm{C}_{1}\right) \mathrm{c}_{k} 0=0$
(C_{2}) $x \leqslant \mathbf{c}_{k} x$
(C $\left.\mathrm{C}_{3}\right) \mathbf{c}_{\kappa}\left(x \cdot \mathbf{c}_{k} y\right)=\mathbf{c}_{k} x \cdot \mathbf{c}_{\kappa} y$
($\left.\mathbf{C}_{4}\right) \mathbf{c}_{\kappa k} \mathbf{c}_{\lambda} x=\mathbf{c}_{\lambda} \mathbf{c}_{k} x$
(C) $\mathbf{d}_{\text {K } \kappa}=1$
(\mathbf{C}_{6}) if $\kappa \neq \lambda, \mu$, then $\mathbf{d}_{\lambda \mu}=\mathbf{c}_{\kappa}\left(\mathbf{d}_{\lambda \kappa} \cdot \mathbf{d}_{\kappa \mu}\right)$
(C_{7}) if $\kappa \neq \lambda$, then $\mathbf{c}_{\kappa}\left(\mathbf{d}_{\kappa \lambda} \cdot x\right) \cdot \mathbf{c}_{k}\left(\mathbf{d}_{k \lambda} \cdot \bar{x}\right)=0$
(C_{8}) if $x \neq 0$, then $\mathbf{c}_{(\alpha)} x=1$
(C_{9}) if $x_{i} \in \mathrm{~A}+\mathfrak{A}, i=0,1, \ldots, \alpha-1$, then $\prod_{i} \mathrm{c}^{i} x_{i^{\prime}} \in \mathrm{A}+\mathfrak{A}$.
In the two preceding definitions we are using the notion of generalized cylindrifications as defined in [1], pp. 205-207. That is, if $\Gamma=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right\}$ is a subset of α, by $\mathbf{c}_{(\Gamma)} x$ we mean $\mathbf{c}_{\alpha_{0}} \mathbf{c}_{\alpha_{1}} \ldots, \mathbf{c}_{\alpha_{n}^{\prime}} x$. Similarly, we define the generalized diagonal elements \mathbf{d}_{Γ} as

$$
\prod_{i=1}^{n} \mathbf{d}_{\alpha_{0} \alpha_{i}} .
$$

Note that if $\Gamma=\{\kappa\}$, then $\mathbf{c}_{(\kappa)}=\mathbf{c}_{\kappa \kappa}$ and if $\Gamma=\{\kappa, \lambda\}$, then $\mathbf{d}_{\Gamma}=\mathbf{d}_{\kappa \lambda}$.
$\left(C_{0}\right)$ through $\left(C_{7}\right)$ are the standard cylindric algebra axioms with the exception of complete and atomic in $\left(\mathrm{C}_{0}\right) .\left(\mathrm{C}_{8}\right)$ guarantees that a strong $\mathbf{C A}_{\alpha}$ will be simple in the universal algebraic sense (see 2.3.14, [1]). We will show that every strong CA $_{\alpha \alpha}$ is isomorphic to a full CSA A_{α}. Clearly, every full CSA $_{\alpha_{1}}$ satisfies (C_{0}) through (C_{9}).

Let \boldsymbol{A} be an arbitrary, but fixed, strong $\mathbf{C A}_{\alpha}$. We now list several fundamental results from the theory of cylindric algebras which will be used in the sequel, the proofs of which can be found in [1].

Lemma $1.3 \quad \mathbf{d}_{k \lambda} \cdot \mathbf{c}_{k} x=0$ iff $x=0$.
Lemma $1.4 \quad \mathbf{c}_{\kappa} x \cdot \mathbf{c}_{\kappa} y=\mathbf{c}_{\kappa}\left(\mathbf{c}_{\kappa} x \cdot \mathbf{c}_{\kappa} y\right)$.
We now let Γ and Δ be non-empty (finite) subsets of α.
Lemma 1.5 For any sequence $\left\langle\Gamma_{\kappa}: \kappa<\beta\right\rangle$ of subsets of α, the structure

$$
\left\langle A,+, \cdot,-, 0,1, \mathbf{c}_{\left(\Gamma_{k}\right)}\right\rangle_{\kappa<\beta}
$$

is a diagonal-free CA.
Lemma $1.6 \quad \mathbf{c}_{(\Gamma)} x \cdot y=0$ iff $\mathbf{c}_{(\Gamma)} y \cdot x=0$.
Lemma 1.7 If $\Gamma \subset \Delta$, then $\mathbf{c}_{(\Gamma)}\left(\mathbf{d}_{\Delta} \cdot x \cdot y\right)=\mathbf{c}_{(\Gamma)}\left(\mathbf{d}_{\Delta} \cdot x\right) \cdot \mathbf{c}_{(\Gamma)}\left(\mathbf{d}_{\Delta} \cdot y\right)$.
Lemma 1.8 If $\Gamma \cap \Delta \neq 0$, then $\mathbf{d}_{\Gamma} \cdot \mathbf{d}_{\Delta}=\mathbf{d}_{\Gamma \cup \Delta}$.
Lemma $1.9 \quad \mathbf{c}_{(\Gamma)} \cdot \mathbf{d}_{\Delta}=\mathbf{d}_{\Delta \sim \Gamma}$.
Lemma 1.10 If $x \in \mathrm{~A}+\mathfrak{A}$, then $x=\prod_{i<\alpha} \mathbf{c}^{i} x$.

Proof: By 1.5, $x \leqslant \mathbf{c}^{i} x$ for all $i<\alpha$, hence $\prod_{i} \mathbf{c}^{i} x \geqslant x$ and equality follows from (C_{9}).

Henkin and Tarski have shown ([2], pp. 100-101) that any $\mathbf{C A}_{\alpha}$ which satisfies 1.10 is representable.

Our goal now is to find a way to uniquely express each atom in terms of the atoms which are less than the generalized diagonal element \mathbf{d}_{α}.
Lemma 1.11 If $x, y \in \operatorname{A}+\mathfrak{A}$ and $x \leqslant \mathbf{c}^{i} y$, then $\mathbf{c}^{i} x=\mathbf{c}^{i} y$.
Proof: By 1.6 and our hypothesis we see that $y \cdot \mathbf{c}^{i} x \neq 0$.
Since y is an atom we get $y \leqslant \mathbf{c}^{i} x$ and, by 1.5,

$$
\mathbf{c}^{i} y \leqslant \mathbf{c}^{i} \mathbf{c}^{i} x=\mathbf{c}^{i} x
$$

The other inequality is obtained similarly using the fact that $x \leqslant \mathrm{c}^{i} y$.
Theorem 1.12 If $x, y \in \operatorname{A}+\mathfrak{Z}$ and $x, y \leqslant \mathbf{d}_{\alpha}$, then $\mathbf{c}^{i} x \leqslant \mathbf{c}^{i} y$ implies $x=y$.
Proof: By hypotheses 1.5 and 1.7,

$$
0 \neq \mathbf{c}^{i} x=\mathbf{c}^{i} x \cdot \mathbf{c}^{i} y=\mathbf{c}^{i}(x \cdot y),
$$

x and y being atoms yields the result.
Theorem 1.13 If $x \in \operatorname{A+} \mathfrak{2}$ and $i<\alpha$, then there is a $y \in \operatorname{A+\mathfrak {A}}$ such that $y \leqslant \mathbf{d}_{\alpha}$ and $\mathbf{c}^{i} x=\mathbf{c}^{i} y$.

Proof: We show this for $i=\alpha-1$. Construct a sequence y_{j} as follows

$$
\begin{aligned}
y_{0} & =\mathbf{c}_{0} x \cdot \mathbf{d}_{0 \alpha-1} \\
y_{1} & =\mathbf{c}_{1} y_{0} \cdot \mathbf{d}_{1 \alpha-1}=\mathbf{c}_{1}\left(\mathbf{c}_{0} x \cdot \mathbf{d}_{0 \alpha-1}\right) \cdot \mathbf{d}_{1 \alpha-1} \\
& =\mathbf{c}_{1} \mathbf{c}_{0} x \cdot \mathbf{d}_{0 \alpha-1} \cdot \mathbf{d}_{1 \alpha-1} \\
y_{2} & =\mathbf{c}_{2} y_{1} \cdot \mathbf{d}_{2 \alpha-1}=\mathbf{c}_{2} \mathbf{c}_{1} \mathbf{c}_{0} x \cdot \mathbf{d}_{0 \alpha-1} \cdot \mathbf{d}_{1 \alpha-1} \cdot \mathbf{d}_{2 \alpha-1} \\
& \vdots \\
y_{\alpha-2} & =\mathbf{c}^{\alpha-1} x \cdot \mathbf{d}_{\alpha} .
\end{aligned}
$$

By an argument similar to 1.12 each y_{j} is an atom, thus, by 1.5 and 1.9

$$
\mathbf{c}^{\alpha-1} y_{\alpha-2}=\mathbf{c}^{\alpha-1}\left(\mathbf{c}^{\alpha-1} x \cdot \mathbf{d}_{\alpha}\right)=\mathbf{c}^{\alpha-1} x
$$

and $y_{\alpha-2} \leqslant \mathbf{d}_{\alpha}$ as desired.
Corollary 1.14 If $x \in \operatorname{A+} \mathfrak{M}$, then there exist $y_{0}, y_{1}, \ldots, y_{\alpha-1} \in \mathrm{~A} \dagger \mathfrak{M}$ such that $y_{i} \leqslant \mathbf{d}_{\alpha}$ and $\prod_{i} \mathbf{c}^{i} y_{i}=x$.
Proof: By 1.13, for each $i<\alpha$ there is a $y_{i} \in \operatorname{A+} \mathfrak{A}, y_{i} \leqslant \mathbf{d}_{\alpha}$ such that $\mathbf{c}^{i} y_{i}=\mathbf{c}^{i} x$, so by $1.10 x=\prod_{i} \mathbf{c}^{i} x=\prod_{i} \mathbf{c}^{i} y_{i}$.

Lemma 1.15 If $x_{0}, x_{1}, \ldots, x_{\alpha-1} \in \operatorname{At} \mathfrak{M}$ and $j<\alpha$, then

$$
\mathbf{c}^{j}\left(\prod_{i<\alpha} \mathbf{c}^{i} x_{i}\right)=\mathbf{c}^{j} x_{j} .
$$

Proof: We note that $\prod_{i \neq j} \mathrm{c}^{i} x_{i} \neq 0$. Now by 1.4 and 1.5

$$
\begin{aligned}
\mathbf{c}^{j}\left(\prod_{i} \mathbf{c}^{i} x_{i}\right) & =\mathbf{c}^{j}\left(\mathbf{c}^{j} x_{j} \cdot \prod_{i \neq j} \mathbf{c}^{i} x_{i}\right) \\
& =\mathbf{c}^{j}\left(\mathbf{c}^{i} x_{j} \cdot \mathbf{c}_{j}\left(\prod_{i \neq j} \mathbf{c}^{i} x_{i}\right)\right)=\mathbf{c}^{j} x_{j} \cdot \mathbf{c}^{j} \mathbf{c}_{i}\left(\prod_{i \neq j} \mathbf{c}^{i} x_{i}\right) .
\end{aligned}
$$

Now $\left(C_{8}\right)$ implies $c^{j} \mathbf{c}_{j}\left(\prod_{i \neq j} \mathbf{c}^{i} x_{i}\right)=1$.
Theorem 1.16 If $x_{0}, x_{1}, \ldots, x_{\alpha-1}, y_{0}, y_{1}, \ldots, y_{\alpha-1} \in \operatorname{At} \boldsymbol{M}, x_{i}, y_{i} \leqslant \mathbf{d}_{\alpha}$ and $\prod_{i \ll \alpha} \mathbf{c}^{i^{i}} x_{i}=\prod_{i \ll \alpha} \mathbf{c}^{i} y_{i}$, then $x_{i}=y_{i}$ for all $i<\alpha$.
Proof: For each $j<\alpha$, by 1.15,

$$
\mathbf{c}^{j} x_{j}=\mathbf{c}^{j}\left(\prod_{i} \mathbf{c}^{i} x_{i}\right)=\mathbf{c}^{j}\left(\prod_{i} \mathbf{c}^{i} y_{i}\right)=\mathbf{c}^{j} y_{j} .
$$

and so, by $1.12, x_{j}=y_{j}$.
Theorem 1.17 Let $\beta=\mid$ At $\mathfrak{A}\left|, \gamma=\left|\mathbf{d}_{\alpha} \cdot \operatorname{AtM}\right|\right.$, then $\beta=\gamma^{\alpha}$.
Proof: Let $D=\mathbf{d}_{\alpha} \cdot$ AtMI. For each $x_{0}, x_{1}, \ldots, x_{\alpha-1} \in D$ we assign the atom $\prod_{i} \mathbf{c}^{i} x_{i}$. By 1.16 this map is one to one and 1.14 shows that it is onto. Hence $\beta=\left|{ }^{\alpha} D\right|=\gamma^{\alpha}$.

Now let $\mathfrak{A}, \mathfrak{B}$ be two strong $\mathrm{CA}_{\alpha}{ }^{\prime} \mathrm{s}, D=\mathrm{A}+\mathfrak{A} \cdot \mathrm{d}_{\alpha}$ and $D^{\prime}=\mathrm{A}+\mathfrak{B} \cdot \mathrm{d}_{\alpha}$.
Theorem 1,18 If $|D|=\left|D^{\prime}\right|$, then $\mathfrak{A} \cong \mathfrak{B}$.
Proof: Since $|D|=\left|D^{\prime}\right|$, there is a one-to-one map ϕ_{1} from D onto D^{\prime}. Now we extend ϕ_{1} to a map from At \mathfrak{A} onto At \mathfrak{B}. For $x_{0}, x_{1}, \ldots, x_{\alpha-1} \in D$, $x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{\alpha-1}^{\prime} \in D^{\prime}$ such that $\phi_{1}\left(x_{i}\right)=x_{i}^{\prime}$ we define ϕ_{2} as follows:

$$
\phi_{2}\left(\Pi \mathbf{c}^{i} x_{i}\right)=\Pi \mathbf{c}^{i} x_{i}^{\prime}
$$

By 1.14 and 1.16 this map is one to one from A+ \mathfrak{A} onto AtB and $\phi_{2} \Gamma D=\phi_{1}$. Now we extend to a function $\phi: A \rightarrow B$ by additivity, that is, for $x \in A, x^{\prime} \in B$

$$
\begin{aligned}
& \phi(x)=x^{\prime} \text { iff (i) if } y \in \operatorname{A+M} \text { and } y \leqslant x \text {, then there exists } \\
& y^{\prime} \in \operatorname{A+B} \text { such that } y^{\prime} \leqslant x^{\prime} \text { and } \phi_{2}(y)=y^{\prime} . \\
& \text { (ii) if } y^{\prime} \in A+\mathcal{B} \text { and } y^{\prime} \leqslant x^{\prime} \text {, then there exists } \\
& y \in \operatorname{A+\mathscr {A}\text {suchthat}y\leqslant x\text {and}\phi _{2}(y)=y^{\prime }.}
\end{aligned}
$$

ϕ is one to one and onto since \mathfrak{A} and \mathfrak{B} are complete and atomic BA's. Clearly ϕ is a BA isomorphism. To show ϕ is a CA isomorphism it is sufficient to show that for any $x \in \operatorname{At} \mathfrak{A}, \phi\left(\mathbf{c}_{i} x\right)=\mathbf{c}_{i}(\phi(x))=\mathbf{c}_{i} x^{\prime}$. The result then follows by the complete additivity of c_{i}.

By 1.14 there exists $x_{0}, x_{1}, \ldots, x_{\alpha-1} \in D, x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{\alpha-1}^{\prime} \in D^{\prime}$ such that $\phi\left(x_{i}\right)=x_{i}^{\prime}, x=\prod_{i} \mathrm{c}^{i} x_{i}, x^{\prime}=\prod_{i} \mathbf{c}^{i} x_{i}^{\prime}$ and $\phi(x)=x^{\prime}$. By 1.4, 1.5 and $\left(\mathrm{C}_{8}\right)$,

$$
\mathbf{c}_{i} x=\mathbf{c}_{i}\left(\prod_{i} \mathbf{c}^{i} x_{i}\right)=\prod_{i \neq j} \mathbf{c}^{i} x_{i} .
$$

Let $y \leqslant \mathbf{d}_{\alpha}$, then

$$
z=\prod_{i \neq j^{j}} \mathbf{c}^{i} x_{i} \cdot \mathbf{c}^{j} y \leqslant \mathbf{c}_{j} x
$$

and $z \in \mathrm{~A}+2 \mathrm{D}$ by $\left(\mathrm{C}_{9}\right) . \phi(z)=z^{\prime}=\prod_{i \neq j} \mathbf{c}^{i l} x_{i}^{\prime} \cdot \mathbf{c}^{j} y^{\prime} \leqslant \mathbf{c}_{j} x^{\prime}$, where $y^{\prime}=\phi(y)$.

Now let z be any atom such that $z \leqslant \mathbf{c}_{j} x$, and we show that z is obtained in the above manner. We know that $z=\prod_{i} \mathbf{c}^{i} y_{i}$ for some $y_{0}, y_{1}, \ldots, y_{\alpha-1} \in D$, hence

$$
z=\prod_{i} \mathbf{c}^{i} y_{i} \leqslant \mathbf{c}_{j} x=\prod_{i \neq j} \mathbf{c}^{i} x
$$

So, for any $m \neq j<\alpha$, by 1.15,

$$
\mathbf{c}^{m} z=\mathbf{c}^{m}\left(\prod_{i} \mathbf{c}^{i} y_{i}\right)=\mathbf{c}^{m} y_{m} \leqslant \mathbf{c}^{m}\left(\prod_{i \neq j} \mathbf{c}^{i} x_{i}\right)=\mathbf{c}^{m} x_{m}
$$

By 1.12, $x_{m}=y_{m}$ and $z=\prod_{i \neq j} \mathbf{c}^{i} x_{i} \cdot \mathbf{c}^{j} y$ as desired. So we have shown that for every atom $z \leqslant \mathbf{c}_{j} x, \phi(z) \leqslant \mathbf{c}_{i}(\phi(x))$. By an analogous argument we obtain that if $\phi(y)$ is an atom, $\phi(y) \leqslant \mathbf{c}_{j}(\phi(x))$, then $y \leqslant \mathbf{c}_{j} x$, which completes the proof.
Theorem 1.19 Every strong $\mathbf{C A}_{\alpha}$ is isomorphic to a full $\operatorname{CSA}_{\alpha}$.
Proof: Let \mathfrak{A} be a strong $\mathbf{C A}_{\alpha}, \beta=|D|$. Let \mathfrak{M}^{\prime} be a full $\operatorname{CSA}_{\alpha}$ generated by a set of cardinality β, hence $\beta=\left|\mathrm{A}+\mathfrak{A}^{\prime} \cdot \mathbf{d}_{\alpha}\right|$ so, by $1.18, \mathfrak{M} \cong \mathfrak{A}^{\prime}$.

Let β and γ be cardinal numbers, from set theory we know that, with the assumption of the generalized continuum hypothesis, $2^{\beta}=2^{\gamma}$ implies $\beta=\gamma$.
Theorem 1.20 (GCH) If \mathfrak{A} and \mathfrak{B} are two strong $\mathbf{C A}_{\alpha}$'s such that $|A|=|B|$, then $\mathfrak{A} \cong \mathfrak{B}$.
Proof: Since \mathfrak{M} and \boldsymbol{B} are complete and atomic BA's, $|A|=2^{\beta}$ and $|B|=2^{\gamma}$ for some cardinals β and γ, where $\beta=|\mathrm{At} \boldsymbol{A}|$ and $\gamma=|\mathrm{At} \boldsymbol{B}|$. By the GCH we see that $\beta=\gamma$. By 1.17, $\beta=\beta_{1}^{\alpha}$ and $\gamma=\gamma_{1}^{\alpha}$ where $\gamma_{1}=\left|D^{\prime}\right|$ and $\beta_{1}=|D|$. Hence $\beta_{1}=\gamma_{1}$, and so 1.18 yields $\mathfrak{A} \cong \mathfrak{B}$.

The independence of these additional two axioms can be exhibited by considering the following two $\operatorname{CSA}_{2}^{\prime}$'s. Let \mathfrak{A} represent the cylindric set algebra of all subsets of \boldsymbol{R}^{2}, the real plane. The Cartesian product $\boldsymbol{A} \times \boldsymbol{A}$ satisfies all the axioms except (C_{8}), since, for any non-empty set x in \mathbb{R}^{2}, $\mathbf{c}_{(2)}(\langle x, 0\rangle)=\left\langle\boldsymbol{R}^{2}, 0\right\rangle$. Now let \mathfrak{B} be the complete atomic subalgebra of \mathfrak{A} generated by lines of slope 1. \mathfrak{B} satisfies $\mathbf{c}_{i} x=1$ for all x, hence $\left(\mathrm{C}_{8}\right)$ holds but (C_{9}) is falsified for any atom.
2 Strong $\mathbf{C A}_{2}$ and relation algebras In [3] McKinsey gave an axiomatization of a subclass of relation algebras which we will denote by MRA. We show that the theory of MRA is definitionally equivalent to the theory of strong $\mathbf{C A}_{2}$.
Definition 2.1 By an MRA we mean an algebraic structure

$$
\mathfrak{M}=\langle A,+, \cdot,-, 0,1, \mid\rangle
$$

such that 0 and 1 are distinguished elements of $A,+, \cdot$ and \mid are binary operations on A, - is an unary operation on A, and such that for any x, y, u, $v \in A$, the following postulates are satisfied:
$\left(\mathrm{M}_{0}\right)\langle A,+, \cdot,-, 0,1\rangle$ is a complete and atomic BA
$\left(\mathrm{M}_{1}\right) \quad x|(y \mid z)=(x \mid y)| z$
$\left(\mathrm{M}_{2}\right)$ If $x \leqslant u$ and $y \leqslant v$, then $x|y \leqslant u| v$
$\left(M_{3}\right)$ If $x \neq 0$, then $1 \mid(x \mid 1)=1$
$\left(\mathrm{M}_{4}\right)$ If $z \in \mathrm{~A}+\mathfrak{A}$, and $z \leqslant x \mid y$, then there exist $x^{\prime}, y^{\prime} \in \mathrm{A}+\mathfrak{M}$ such that $x^{\prime} \leqslant x$, $y^{\prime} \leqslant y$ and such that $z=x^{\prime} \mid y^{\prime}$
$\left(\mathrm{M}_{5}\right)$ If $x, y, z \in \operatorname{A+} \mathfrak{A}, x|y \neq 0, y| x \neq 0, x \mid z \neq 0$ and $z \mid x \neq 0$, then $y=z$.
The relational operation converse and the constant 1^{\prime} can be defined in this system and need not be taken as primitives. McKinsey has shown ([3], Thm. B, p. 94) that each MRA is isomorphic to a system where A is the full power set of $U \times U$, for some non-empty set U, and \mid is the standard relative product on A.

We know that given any relation algebra

$$
\mathfrak{\mu}=\left\langle A,+, \cdot,-, 0,1, \mid, 1^{\prime}\right\rangle
$$

the system

$$
\mathbf{c M}=\left\langle A,+, \cdot,-, 0,1, \mathbf{c}_{\kappa}, \mathbf{d}_{\kappa \lambda}\right\rangle_{\kappa, \lambda<2}
$$

where the non-Boolean operations are defined as follows:

$$
\mathbf{c}_{0} x=1\left|x, \mathbf{c}_{1} x=x\right| 1, \mathbf{d}_{k \mid k}=1 \text { and } \mathbf{d}_{k \lambda}=1^{\prime} \text { for } \kappa \neq \lambda
$$

is a $\mathbf{C A}_{2}$. By McKinsey's result it follows that if \mathfrak{A} is an MRA, then $\mathbf{c} \mathfrak{M}$ as defined above is a strong $\mathbf{C A}_{2}$.

Now let $\mathfrak{\mathfrak { A }}$ be an arbitrary, but fixed, strong $\mathbf{C A}_{2}$.
Theorem 2.2 If $x \in A+\mathfrak{A}$, then there exists a unique $y \in A+\mathfrak{A}$ such that $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \leqslant \mathbf{d}_{01}$ and $\mathbf{c}_{0} y \cdot \mathbf{c}_{1} x \leqslant \mathbf{d}_{01}$.
Proof: First we show the existence of such an atom. By 1.14, there exists $x_{0}, x_{1} \in$ At M such that $x_{0}, x_{1} \leqslant \mathbf{d}_{01}$ and $\mathbf{c}_{0} x_{0} \cdot \mathbf{c}_{1} x_{1}=x$. Let $y=\mathbf{c}_{0} x_{1} \cdot \mathbf{c}_{1} x_{0}$. By 1.5, (\mathbf{C}_{8}) and 1.10, $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y=\mathbf{c}_{0}\left(\mathbf{c}_{0} x_{0} \cdot \mathbf{c}_{1} x_{1}\right) \cdot \mathbf{c}_{1}\left(\mathbf{c}_{0} x_{1} \cdot \mathbf{c}_{1} x_{0}\right)=\mathbf{c}_{0} x_{0} \cdot \mathbf{c}_{1} x_{0}=x_{0} \leqslant \mathbf{d}_{01}$. Similarly, $\mathbf{c}_{0} y \cdot \mathbf{c}_{1} x=x_{1} \leqslant \mathbf{d}_{01}$.

Now assume y and y^{\prime} have the desired property. By (C_{9}) there are atoms z and z^{\prime} such that $z=\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y, z^{\prime}=\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y^{\prime}$ and $z, z^{\prime} \leqslant \mathbf{d}_{01} .1 .4$ and $\left(\mathrm{C}_{8}\right)$ imply $\mathrm{c}_{0} z=\mathrm{c}_{0} z^{\prime}$ and we conclude, by $1.12, z=z^{\prime}$. Now by (C_{3}) and (C_{8})

$$
\mathbf{c}_{1} y=\mathbf{c}_{1} z=\mathbf{c}_{1} z^{\prime}=\mathbf{c}_{1} y^{\prime} .
$$

Similarly $\mathbf{c}_{0} y=\mathbf{c}_{0} y^{\prime}$ and, by $1.10, y=y^{\prime}$.
Remark. If we replace (C_{9}) by 2.2 in the axiom system for strong CA_{2} 's we obtain an equivalent theory.

Now we define a binary operation on A as follows:
Definition 2.3 For $x, y \in \mathrm{~A}+\mathfrak{A}$,

$$
x \left\lvert\, y=\left\{\begin{array}{l}
0, \text { if } \mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \cdot \mathbf{d}_{01}=0 \\
\mathbf{c}_{0} y \cdot \mathbf{c}_{1} x, \text { otherwise }
\end{array}\right.\right.
$$

For $x, y \in A$, let $X=\{u: u \leqslant x$ and $u \in \mathrm{~A}+\mathfrak{M}\}$, and $Y=\{v: v \leqslant y$ and $v \in \mathrm{~A}+\mathfrak{\mu}\}$. Then

$$
x \mid y=\sum_{v \in Y} \sum_{u \in X}(u \mid v) .
$$

Lemma 2.4 If $x, y \in \mathrm{~A} \uparrow \boldsymbol{A}$, then $x \mid y=0$ iff $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \cdot \mathbf{d}_{01}=0$.
Proof: Sufficiency follows from 2.3. If $x \mid y=0$, then $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \cdot \mathbf{d}_{01}=0$ or $\mathbf{c}_{0} y \cdot \mathbf{c}_{1} x=0$. But $\mathbf{c}_{0} y \cdot \mathbf{c}_{1} x=0$ implies $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y=0$ and hence $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \cdot \mathbf{d}_{01}=0$.

We show that the resulting system

$$
\mathbf{m a}=\langle A,+, \cdot, 0,1, \mid\rangle
$$

is an MRA. $\left(\mathrm{M}_{0}\right)$ follows from $\left(\mathrm{C}_{0}\right)$, $\left(\mathrm{M}_{2}\right)$ and $\left(\mathrm{M}_{4}\right)$ follow from the additive definition of \mid.

Lemma 2.5 If $x, y \in \operatorname{A+} \boldsymbol{A}, x \mid y \neq 0$ and $y \mid x \neq 0$, then $x \mid y \leqslant \mathbf{d}_{01}$ and $y \mid x \leqslant \mathbf{d}_{01}$. Proof: By 2.4 and (C_{9}), $x \mid y \neq 0$ implies $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \cdot \mathbf{d}_{01} \neq 0$. Hence, since $y|x \neq 0, y| x=\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \leqslant \mathbf{d}_{01}$. Similarly, $x \mid y \leqslant \mathbf{d}_{01}$.

Theorem 2.6 If $x, y, z \in \operatorname{A+} \mathfrak{A}, x|y \neq 0, y| x \neq 0, x \mid z \neq 0$ and $z \mid x \neq 0$, then $y=z$.

Proof: By 2.5, $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \leqslant \mathbf{d}_{01}, \mathbf{c}_{0} y \cdot \mathbf{c}_{1} x \leqslant \mathbf{d}_{01}, \mathbf{c}_{0} x \cdot \mathbf{c}_{1} z \leqslant \mathbf{d}_{01}$ and $\mathbf{c}_{0} z \cdot \mathbf{c}_{1} x \leqslant \mathbf{d}_{01}$. Hence, by 2.2, $y=z$.

Theorem 2.6 shows us that the system $\mathbf{m} \mathfrak{A}$ satisfies $\left(M_{5}\right)$. If we wish to define the converse in this system for $x \in A+\mathscr{A}$ we define \breve{x} to be the unique atom y such that $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \leqslant \mathbf{d}_{01}$ and $\mathbf{c}_{0} y \cdot \mathbf{c}_{1} x \leqslant \mathbf{d}_{01}$.
Lemma 2.7 If $x \in \operatorname{A}+\mathfrak{M}$, then $\mathbf{c}_{\kappa} x \cdot \mathbf{d}_{01} \in A+\mathfrak{A}$.
Proof: Follows from 1.12.
Lemma 2.8 If $x \in A+\mathfrak{A}$, then $x \mid 1=\mathbf{c}_{1} x$.
Proof: $x|1=x|\left(\sum_{y \in A+\mathfrak{Z}} y\right)=\sum_{\substack{y \in \mathrm{~A}+\mathfrak{A} \\|x| \mid y \neq 0}}(x \mid y)=\sum_{\substack{y \in A+2 \mathfrak{1} \\ x|y| y \neq 0}} \mathbf{c}_{1} x \cdot \mathbf{c}_{0} y \leqslant \mathbf{c}_{1} x$.
Now let $z \leqslant \mathbf{c}_{1} x, z \in A+\mathfrak{A}$, and let $y=\mathbf{c}_{0} x \cdot \mathbf{d}_{01} \in \operatorname{A} \mathfrak{A}$. By $\left(\mathrm{C}_{3}\right)$ and 1.9, $\mathbf{c}_{0} y=\mathbf{c}_{0} x$. Let $w=\mathbf{c}_{1}\left(\mathbf{c}_{0} y \cdot \mathbf{d}_{01}\right) \cdot \mathbf{c}_{0} z . w \in \mathrm{~A}+\mathfrak{A}$ by $\left(\mathrm{C}_{9}\right)$. So, by 1.3.9 [1],

$$
\mathbf{c}_{0} x \cdot \mathbf{c}_{1} w \cdot \mathbf{d}_{01}=\mathbf{c}_{0} x \cdot \mathbf{c}_{1}\left(\mathbf{c}_{0} y \cdot \mathbf{d}_{01}\right) \cdot \mathbf{d}_{01}=\mathbf{c}_{0} x \cdot \mathbf{c}_{0} y \cdot \mathbf{d}_{01}=y .
$$

Hence $x \mid w \neq 0$, so $x \mid w=\mathbf{c}_{0} w \cdot \mathbf{c}_{1} x=\mathbf{c}_{0} z \cdot \mathbf{c}_{1} x=z$, since $z \leqslant \mathbf{c}_{0} z$ and $z \leqslant \mathbf{c}_{1} x$. Hence $z \leqslant x \mid 1$ and the proof is complete.

Theorem $2.9 \quad x \mid 1=\mathbf{c}_{1} x$.
Proof: By 2.8 and the additivity of \mid and \mathbf{c}_{1}.
Theorem $2.10 \quad 1 \mid x=\mathbf{c}_{0} x$.
Proof: Similar to 2.9.
Corollary 2.11 If $x \neq 0$, then $1 \mid(x \mid 1)=1$.

Proof: If $x \neq 0$, then, by 2.9 and $2.10,1 \mid(x \mid 1)=\mathbf{c}_{0} \mathbf{c}_{1} x=1$.
Now we show that \mid is associative, and therefore that matisfies $\left(M_{0}\right)-\left(M_{5}\right)$, and hence is an MRA.
Lemma 2.12 If $x, y, z \in \mathrm{~A}+\mathfrak{A}$, then $x|(y \mid z)=(x \mid y)| z$.
Proof: Case 1. $y \mid z=0$. Then $x \mid(y \mid z)=0$ and, by 2.4, $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \cdot d_{01}=0$. If $x \mid y=0$, then $(x \mid y) \mid z=0$ and we have equality. Assume $x \mid y \neq 0$, then $x \mid y=\mathbf{c}_{0} y \cdot \mathbf{c}_{1} x$. But

$$
\mathbf{c}_{0}\left(\mathbf{c}_{0} y \cdot \mathbf{c}_{1} x\right) \cdot \mathbf{c}_{1} z \cdot \mathbf{d}_{01}=\mathbf{c}_{0} y \cdot \mathbf{c}_{1} z \cdot \mathbf{d}_{01}=0
$$

so, by $2.4,(x \mid y) \mid z=0$.
Case 2. $x \mid y=0$. Then $(x \mid y) \mid z=0$ and, by an argument similar to Case 1 , $x \mid(y \mid z)=0$.
Case 3. $x \mid(y \mid z)=0$ and $y \mid z \neq 0$. Then $y \mid z=\mathbf{c}_{0} z \cdot \mathbf{c}_{1} y$ and, by 2.4,

$$
0=\mathbf{c}_{1} x \cdot \mathbf{c}_{0}\left(\mathbf{c}_{0} z \cdot \mathbf{c}_{1} y\right) \cdot \mathbf{d}_{01}=\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \cdot \mathbf{d}_{01} .
$$

So $x \mid y=0$ and $(x \mid y) \mid z=0$.
Case 4. $(x \mid y) \mid z=0$ and $x \mid y \neq 0$. Similar to Case 3.
Case 5. $(x \mid y) \mid z \neq 0$ and $x \mid(y \mid z) \neq 0$. So $x \mid y \neq 0$ and $y \mid z \neq 0$, hence

$$
(x \mid y) \mid z=\mathbf{c}_{1}\left(\mathbf{c}_{1} x \cdot \mathbf{c}_{0} y\right) \cdot \mathbf{c}_{0} z=\mathbf{c}_{1} x \cdot \mathbf{c}_{0} z
$$

and

$$
x \mid(y \mid z)=\mathbf{c}_{1} x \cdot \mathbf{c}_{0}\left(\mathbf{c}_{1} y \cdot \mathbf{c}_{0} z\right)=\mathbf{c}_{1} x \cdot \mathbf{c}_{0} z
$$

Theorem $2.13 \quad x|(y \mid z)=(x \mid y)| z$.
Proof: By 2.12 and the additivity of \mid.
Let \mathfrak{A}_{1} be a strong CA $_{2}$, then $\mathbf{m a}$ is an MRA and $\mathbf{c m a}$ is a strong CA $_{2}$. Theorems 2.9 and 2.10 imply that $\mathfrak{A}=\mathbf{c m a}$. Now let \mathfrak{A} be an MRA. We wish to show that $\mathfrak{A}=\mathbf{m c} \boldsymbol{A}$. By McKinsey's result we know that $\mathfrak{A} \cong \mathfrak{B}$, where

$$
\mathfrak{B}=\langle B, \cup, \cap,-, 0, U \times U, \mid '\rangle
$$

in which U is a non-empty set, B the power set of $U \times U$, and \mid is the natural relative product. If we show that $\mathfrak{B}=\mathbf{m c} \mathfrak{B}$, then $\mathfrak{A}=\mathbf{m c} \boldsymbol{A}$. It is sufficient to show $x|y=x|^{\prime} y$, for $x, y \in \mathrm{~A}+\mathfrak{A}$. Any atom $x \in B$ is a set which consists of a single ordered pair. Let $x=\{\langle s, t\rangle\}$ and $y=\{\langle u, v\rangle\}$ be atoms of \mathfrak{B}. In $\mathbf{c B}$

$$
\begin{array}{ll}
\mathbf{c}_{0} x=\{\langle z, t\rangle: z \in U\} & \mathbf{c}_{1} x=\{\langle s, z\rangle: z \in U\} \\
\mathbf{c}_{0} y=\{\langle z, v\rangle: v \in U\} & \mathbf{c}_{1} y=\{\langle u, z\rangle: z \in U\} .
\end{array}
$$

If $x \mid y=0$, then $t \neq u$, which implies $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \cdot \mathbf{d}_{01}=0$. Hence $\left.x\right|^{\prime} y=0$. If $x \mid y \neq 0$, then $t=u$ and $x \mid y=\{\langle s, v\rangle\}$. Then $\mathbf{c}_{0} x \cdot \mathbf{c}_{1} y \cdot \mathbf{d}_{01}=\{\langle t, t\rangle\} \neq 0$, so $x \mid ' y=\mathbf{c}_{1} x \cdot \mathbf{c}_{0} y=\{\langle s, v\rangle\}$.

We have now established a one-to-one correspondence between the class of MRA and strong $\mathbf{C A}_{2}$ and, since they are interdefinably related, we conclude that the two theories are definitionally equivalent.

REFERENCES

[1] Henkin, L., J. D. Monk and A. Tarski, Cylindric Algebras, Part I, North Holland Publishing Company, Amsterdam-London, 1971.
[2] Henkin, L. and A. Tarski, "Cylindric algebras, lattice theory," Proceedings of Symposia in Pure Mathematics, vol. 2, ed., R. P. Dilworth, American Mathematical Society, Providence (1961).
[3] McKinsey, J. C. C., "Postulates for the calculus of binary relations," The Journal of Symbolic Logic, vol. 5 (1940), pp. 85-97.

University of Notre Dame
Notre Dame, Indiana

