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ON FULL CYLINDRIC SET ALGEBRAS

THOMAS A. SUDKAMP

By a full cylindric set algebra of dimension a, full CSAα, where a is an
ordinal number, we mean a system

% = {A, U, Π, ~, 0, aU, Cικ, D κ λ ) K s λ < α

where U is a non-empty set, A is the power set of aU, 0 is the empty set,
U, Π, and ~ are the set theoretic union, intersection and complement on A,
and for all K, λ < a, Ciκ is a unary operation on A and D^χ is a constant
defined as follows:

CKX = {y: yt aιU and for some xe X we have xλ = 3λχfor all λ Φ κ\
for every X e A,

and

Diκ\={y: yeaU and yκ= y^

(cf. 1.1.5, [2]). In section 1 we give an axiom system for a subclass of
cylindric algebras, which we call strong cylindric algebras, and show that
$( is a strong CAα, a < ω, if, and only if, 51 is isomorphic to a full CSAα.

In section 2 we restrict our attention to the theory of strong CA2 and
show that it is definitionally equivalent to the theory of a subclass of
relation algebras axiomatized by McKinsey [3].

The notation of [1] is used, and a familiarity with chapter 1 of that book
is assumed.

1 Strong cylindric algebras We begin by introducing a piece of notation
which will prove to be convenient.

Definition 1.1 If % is a CAα, a < ω, and i < a, then

Definition 1.2 By a strong cylindric algebra of dimension a, where a is an
ordinal number less than ω, we mean a structure

% = (A, +, , -, 0, 1, c^,dκ λ)K ) λ < l α
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such that 0, 1 and d|κχ are distinguished elements of A (for all K, λ < α),
- and c^ are unary operations on A (for K < a), + and are binary opera-
tions on A, and such that the following postulates are satisfied for any
x, ye A and any K, λ, μ < a:

(Co) (A, + , . , - , 0, 1) is a complete and atomic BA
(Cj qK0 = 0

(C2) x ^ <*κx
(C 3 ) C|κ(# Ckv) = QKX . C ^
( c 4 ) c μ c λ ^ = cxSk*

(C 5 ) CVCK = 1

(Cβ) ifκφλ,μ, thenά\μ = α j d ^ di<μ)
(C7) ifκΦ\, then c κ(d κ λ *) C|κ(dικλ #) = 0
(C8) if x Φ 0, then c(a)# = 1
(C9) */#$ e AΛi, t = 0, 1, . . ., a - 1, then Π c ^ e At*,

In the two preceding definitions we are using the notion of generalized
cylindrifications as defined in [1], pp. 205-207. That is, if Γ = {ao,a1,.. .,αw}
is a subset of a, by C|(ry# we meancα oc!α i . . ., carx. Similarly, we define the
generalized diagonal elements d|Γ as

nl

/Jidαoα<ί

Note that if Γ = {K}, then C|(K> = qκ and if Γ = {K, λ}, then d^ = dκχ.
(Co) through (C7) are the standard cylindric algebra axioms with the

exception of complete and atomic in (Co). (C8) guarantees that a strong CAια

will be simple in the universal algebraic sense (see 2.3.14, [1]). We will
show that every strong CAια is isomorphic to a full CSAjα Clearly, every
full CSAicς satisfies (Co) through (C9).

Let 31, be an arbitrary, but fixed, strong CAα We now list several
fundamental results from the theory of cylindric algebras which will be
used in the sequel, the proofs of which can be found in [1].

Lemma 1.3 d k c\κx = 0 iff x = 0.

Lemma 1.4 tκx clκ y = c|κ.(c^ cικ y).

We now let Γ and Δ be non-empty (finite) subsets of a.

Lemma 1.5 For any sequence (Γκ: K < β) of subsets of a, the structure

{A, + , - , - , 0, 1, C(Γιβ)κ<β,

is a diagonal-free CA

Lemma 1.6 c^r)* -y = 0 iff c\(yyy x = 0.

Lemma 1.7 If Γ c Δ, then c|'(Γ)|(d^ x y) = c,(Γ) (dιΔ x) C|(r) (d;Δ 3̂ )

Lemma 1.8 If Γ Π Δ Φ 0, then dlΓ d|Δ = d Γ U Δ .

Lemma 1.9 C(r> d|Δ = d^-Γ

Lemma 1.10 If xe At5l, then x = Π <Λ.
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Proof: By 1.5, x ^ cιx for all i < α, hence Tl&x ^x and equality follows

from (C9). *

Henkin and Tarski have shown ([2], pp. 100-101) that any CAα which
satisfies 1.10 is representable.

Our goal now is to find a way to uniquely express each atom in terms
of the atoms which are less than the generalized diagonal element dβ.

Lemma 1.11 Ifx,ye k\%and x < cfy, then d'x = c'y.

Proof: By 1.6 and our hypothesis we see that y c*x Φ 0.

Since 3; is an atom we get y ^ cιtx and, by 1.5,

ύ*y < C*VAΓ = c*x.

The other inequality is obtained similarly using the fact that x ^ tfy.

Theorem 1.12 If x, ye Attl and x, y ^ dα, then (fx < cdy implies x = y.

Proof: By hypotheses 1.5 and 1.7,

0 Φ cιix = c*x c*y = c*(x - y),

x and y being atoms yields the result.

Theorem 1.13 If xe Attl and i < a, then there is a y e At&I such that y ^ dα

and tιx = cdy.

Proof: We show this for i = a - 1. Construct a sequence ty as follows

y 1 = c 1̂0 d iα-i = c !(COΛ: d0Λ.,) d!«-!

= c ^QΛΓ doβ.i d i α_!

^2 = C23?i d2α_1 = c 2 C ί C 0 ^ - d 0 ά - i a d u κ . i > d 2 α . 1

3̂ α-2 = c α " ^ dα.

By an argument similar to 1.12 each yj is an atom, thus, by 1.5 and 1.9

Ciα"1^α-2 = C α - 1 ( c α - 1 ^ dα) = C α - 1 ^

and ya_2 ^ d α as desired.

Corollary 1.14 If xe At2l, then there exist y0, y19 . . ., ya^e At|Φί such that
y{ ^ dα and "Π clx'y, = Λ̂ .

Proof: By 1.13, for each ί < a there is a y{ e At$l, 3̂/ ̂  dα such that

c!ίyf = c % so by 1.10 x = Π c'x = Π c'yj.
i i

Lemma 1.15 If x0} xu . . ., xa-ιe At3ί and j < α, ί/ẑ w

Proof: We note that Π c1*'*,- Φ 0. Now by 1.4 and 1.5
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c*(ΠΛ,) = e> (c.VlJe'*<)

= c '(cvi(n^) = ̂ .rt f(n^.
Now (Cj implies cJQjCYlc'xλ = 1.

Theorem 1.16 If x09 xl9 . . ., xa_l9 y09 yl9 . . ., y^e A\% xi9 y{ ^ d,α and
Π cf'xi = Π cΐ'yi, then Xi = yι for all i < a.

Proof: For each j < α, by 1.15,

tj'xj = d(T\&x\ = d'YΠc^Λ = ofy

and so, by 1.12, Xj = y7 .

Theorem 1.17 Let β = \ At.«i|, y = |d α At«|, ^βw β = yα.

Proof: Let Z) = d|α Attt. For each x0, xu . . ., V ^ Z ) we assign the atom
Π o*'^. By 1.16 this map is one to one and 1.14 shows that it is onto.
Hence β = | * D | = yα:

Now let 31,, 53 be two strong CA« s, D = At5! dα and D1 = At» dα.

Theorem 1,18 If \ϋ\ = |Z)'|, tf^rcSI s ».

Proof: Since | D | = |D f |, there is a one-to-one map </>! from D onto Z)f. Now
we extend ^ to a map from At$l onto AtSSL For x0, xl9 . . ., x^eD,
xl, x[9 . . ., Λτά-ie D* such that ψiίΛΓ,) = x\ we define 02

 a s follows:

02 (Πcfo<) = Πci^ί.

By 1.14 and 1.16 this map is one to one from Atίl onto AHB and φ2^D - φi>
Now we extend to a function </>: A —• B by additivity, that is, for x e A, x' e B

φ{x) = x' iff (i) if y e At$Γ and y ^ x9 then there exists
y' e AtΦ such that y' ^ xr and φ2(y) = yf.

(ii) if 3?f e At© and 3;' ̂  x\ then there exists
y e At5l such that y ^ x and 02(;y) = y'.

0 is one to one and onto since 51 and © are complete and atomic BA's.
Clearly 0 is a BA isomorphism. To show 0 is a CA isomorphism it is
sufficient to show that for any xe At$ί,, 0(CJ#) = c,i(φ(x)) = OiXr. The result
then follows by the complete additivity of cιt .

By 1.14 there exists x0, xl9 . . ., xa-λe D, x^9 x[, . . ., i ^ e D ' such that

φ(*i) = x'ii, ̂  = Π"df'xi, x1 = Π &x\ and φ{x) = x'. By 1.4, 1.5 and (C8),

Let 3; ̂  dα, then

and >ε e At.fl by (C9). 0U) = 2 f = Π Λ / ' c ί y ^ CJΛ;', where 3;' = 0(3;).



ON FULL CYLINDRIC SET ALGEBRAS 789

Now let z be any atom such that z ^ c,jX, and we show that z is obtained
in the above manner. We know that z = ΓI c*yf for some y0, ylf . . ., y^^D,
hence

z = Π cιy{ ^ cijX = Π ©*#.

So, for any m Φ j < a, by 1.15,

cmz = c w ( Π c>'Λ) = c T ^ ̂  c * ( Π ©%•) = Λ ^ .

By 1.12, # w = 3;̂  and z = Π c"#, Jy as desired. So we have shown that for

every atom z ^ CijX, φ(z) ^ c,j(φ(x)). By an analogous argument we obtain that
if φ(y) is an atom, φ(y) < Cιj(φ(x)), then y ^ OjX, which completes the proof.

Theorem 1.19 Every strong CAlα is isomorphic to a full CSAα.

Proof: Let % be a strong CAα, β = \ϋ\. Let 3ϊf be a full CSAία generated by
a set of cardinality β, hence β = |At«' dα | so, by 1.18, 51 s« 51'.

Let /3 and y be cardinal numbers, from set theory we know that, with
the assumption of the generalized continuum hypothesis, 2^ = 2 y implies

/3=y.

Theorem 1.20 (GCH) If 51 and 53 are ta o strong CAa's swcft £ftύtf |A| = | B | ,
then 5ί = 33.

Proof: Since 31 and 53 are complete and atomic BA's, |Λ| = 2^and | B | = 2γ

for some cardinals β and y, where β = | At5l| and y = | At̂ 31. By the GCH we
see that β = y. By 1.17, β = βf and y = yf where Ύl= \D'\ and βγ = \D\.
Hence βx = γl9 and so 1.18 yields 51 ̂  SB.

The independence of these additional two axioms can be exhibited by
considering the following two CSA2's. Let 51 represent the cylindric set
algebra of all subsets of </?2, the real plane. The Cartesian product 51 x 51
satisfies all the axioms except (C8), since, for any non-empty set x in J?2,
C|(2)|((ΛΓ, 0» = (<#i2, 0). Now let © be the complete atomic subalgebra of 51
generated by lines of slope 1. 53 satisfies c\jX = 1 for all x, hence (C8) holds
but (C9) is falsified for any atom.

2 Strong CA2 and relation algebras In [3] McKinsey gave an axiomatiza-
tion of a subclass of relation algebras which we will denote by MR A. We
show that the theory of MR A is definitionally equivalent to the theory of
strong CA2.

Definition 2.1 By an MRA we mean an algebraic structure

51 = C4, +, , -, 0, 1, I)

such that 0 and 1 are distinguished elements of A, +, and ] are binary
operations on A, - is an unary operation on A, and such that for any x, y, u,
υ e A, the following postulates are satisfied:



790 THOMAS A. SUDKAMP

(Mo) (A, +, , -, 0, 1) is a complete and atomic BA
(Mj x \ ( y \ z ) = (x\y)\z
(M2) If x ^u and y ^ υ, then x \y ^ u \ υ

(M3) IfxΦO, then l | ( # | l ) = 1
(M4) If ze Atjtl, β ί̂? z ^x\y, then there exist x\ y1 e Aitl swc/z #z#£ x1 ^x,

y' ^y and such that z = x' \y'
(M5) If x, y, ze AtSl, # |y * 0, y\x Φ 0, # U Φ 0 and z\x Φ 0, ί/zerc 3; = £.

The relational operation converse and the constant V can be defined in
this system and need not be taken as primitives. McKinsey has shown
([3], Thm. B, p. 94) that each MRA is isomorphic to a system where A
is the full power set of U x U, for some non-empty set U, and | is the
standard relative product on A.

We know that given any relation algebra

m = <Λ, +, , -, o, i, I, l ' )

the system

cSI = (A, +, ., -, 0, 1, c.κ, d κ λ ) κ ! , λ < 2

where the non-Boolean operations are defined as follows:

CQX = l\x, CjX = x11, dκ|κ = 1 and d λ̂ = 1' for K Φ λ

is a CA,2. By McKinsey's result it follows that if % is an MRA, thencίl as
defined above is a strong CA,2

Now let % be an arbitrary, but fixed, strong CA2.

Theorem 2.2 If ΛτeAt$f, then there exists a unique yeA\% such that
CQX Cjy ^ dΌ1 and coy c ^ ^ dO i.

Proof: First we show the existence of such an atom. By 1.14, there exists
x0, xγe Atfll such that x0, xγ ^ d 0 1 and coxo cxxx = x. Let y = co#i CX^Q. By
1.5, (C8) and 1.10, OQX c ^ = c0(θoΛr0 c ^ J c^Co^! c ^ J = COΛΓO cxxQ = x0 ^ d0 1.
Similarly, coy c ^ = xι < d,01.

Now assume y and y' have the desired property. By (C9) there are
atoms z and z* such that z = cox c ^ , >εf = c 0 ^ c ^ ' and z, z1 ^ d0 1. 1.4 and
(C8) imply coz = co>er and we conclude, by 1.12, z = zr. Now by (C3) and (C8)

o\y = c ^ = c.z' = c ^ ' .

Similarly c 0 ^ = cΌ^ f and, by 1.10, y = ;yf.

Remark. If we replace (C9) by 2.2 in the axiom system for strong CA2's we
obtain an equivalent theory.

Now we define a binary operation | on A as follows:

Definition 2.3 For x, y e At$I,

(0, if CoX c.χ y d.01 = 0
χ\y = \

ic-o^-Cj*, otherwise.
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For x, y e A, let X = {u: u ^ x and u e At$l}, and Y = {v: υ ^ y and v e At$f}.

Then

x\y = Σ/ Σ (w|z;).

*/eY weX

L e m m a 2.4 If x, ye At$ί, #z£rc ΛΓ 13; = 0 iff cox -^y dOi = 0.

Proof: Sufficiency follows from 2.3. If x\y = 0, then cox -cλy d 0 1 = 0 or

co;y c ^ = 0. But coy c ^ = 0 impl ies c o # cλy = 0 and hence c o # c ^ d 0 1 = 0.

We show that the resul t ing sys tem

m,9l = (A, +, , 0, 1, I)

is an MRA. (Mo) follows from (Co), (M2) and (M4) follow from the additive

definition of |.

L e m m a 2 . 5 If x , y e A t $ ί , x \ y Φ 0 a n d y \ x Φ 0 , t h e n x \ y ^ d O i a n d y \ x ^ d O i .

Proof: By 2.4 and (C 9), x\y Φ 0 impl ies C O ΛΓ-c^ d 0 1 ^ 0. Hence, s ince

y\x Φ 0, y\x = Co^ c ^ < d O i . Similar ly, x\y ^ d 0 1 .

Theorem 2.6 If x, y, ze At#I, x\y Φ 0, 3;|AT Φ 0, # U ̂  0 and z\x Φ 0, ί/zβw

Proof: By 2.5, c o x c ^ ^ d 0 1 , coy c ^ ^ d 0 1 , COΛΓ c ^ ^ d 0 1 and coz cγx ^ d 0 1 .

Hence, by 2.2, y = z.

Theorem 2.6 shows us that the sys tem m$l sat is f ies (M 5). If we wish to

define the converse in this sys tem for xe At$! we define x to be the unique

atom y such that cox c ^ ^ d 0 1 and coy cλx ^ d 0 1 .

L e m m a 2.7 If xe J\\% then cκx dOi e Atflί.

Proof: Follows from 1.12.

L e m m a 2.8 If xe At$l, ί ^ w # | 1 = c ^ .

Proo/: x\l = x\( Σ ^ = ? (̂ 1 )̂ =• Σ c ^ Coy < c ^ .
VyeAt M / yeAt(U >eAr2l

ίχ;||y#o xjyi^o

Now let >ε < dx, ze At3l, and let 3; = coΛΓ d O ie At 31. By (C3) and 1.9,

coy = cox. Let w = Ci(c0^ dOi) coz. we Atϊl by (C 9 ) . So, by 1.3.9 [1],

COΛ: d « ; d 0 1 = c 0 * c^Coy d 0 1 ) dO i = cox co3> d 0 1 = y.

Hence x\w Φ 0, so Λ:|Z^ = cow dΛ; = co>ε - c ^ = z, s ince >ε < coz and ̂  ^ CXΛ:.

Hence >ε ̂  ^ | 1 and the proof i s complete .

T h e o r e m 2.9 x\l = cλx.

Proof: By 2.8 and the additivity of | and cx.

T h e o r e m 2.10 l\x = CQΛΓ.

Proof: S imi lar to 2.9.

Corol la ry 2.11 If x Φ 0, then l | ( # | l ) = 1.
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Proof: If x Φ 0, then, by 2.9 and 2.10, 11 (x\ 1) = CQC^ = 1.

Now we show that | is associative, and therefore that m#! satisfies
(M0)-(M5), and hence is an MRA.

Lemma 2.12 If x, y, z e At5ϊ, then x\(y\z) = (x\y)\z.

Proof: Case 1. y\z = 0. Then x\(y \z) = 0 and, by 2.4, C O Λ : - c ^ d 0 1 = 0.
If x\y = 0, then (#|;y)U = 0 and we have equality. A s s u m e x\y Φ 0, then
x\y = d^y - cτx. But

C O (C O ^ *ιX) ' CiZ d 0 1 = CΌy Ci>2 d 0 1 = 0

so, by 2.4, (x\y)\z = 0.

Case 2. x\y = 0. Then (Λrl y ) !^ = 0 and, by an argument similar to Case 1,
x\(y\z) = 0.

Case 3. #|(;yU) = 0 and y\z Φ 0. Then y\z = coz cΛy and, by 2.4,

0 = c 1 ^ co(co^ c1y) dOi =oox-c1y'diΛ.

So x\y = 0 and (Λf|y)U = 0.

Case 4. (#|;y)U = 0 and x\y Φ 0. Similar to Case 3.

Case 5. (x\y)\z Φ 0 and x\(y\z) Φ 0. So ΛΓ|3; Φ 0 and y U Φ 0, hence

(ΛΓ 13;) I ̂  = dίCi x co;y) CQ« = cα x c 0 ^

and

# I (y U) = <*!# ©ofey cΌ2) = cλx - coz.

Theorem 2.13 ^l(yU) = (x\y)\z.

Proof: By 2.12 and the additivity of |.

Let l̂, be a strong CA2, then m5l is an MRA and cm$l is a strong CA2.
Theorems 2.9 and 2.10 imply that M = cm$l. Now let 51 be an MRA. We
wish to show that $1 = mc$l. By McKinsey's result we know that 51 ̂  ©,
where

<© = (B, u, n, -, 0, ux u, l f )

in which U is a non-empty set, B the power set of U x U, and | is the natural
relative product. If we show that 55 = mc93, then 51 = mc>ll. It is sufficient
to show x\y = ΛΓI 'y, for ΛΓ, 3; € At5l. Any atom xe B is & set which consists of
a single ordered pair. Let x = {(s, t)} and 3; = {(u, v)} be atoms of 93. In c,*B

c0^ = {(z, t): z e U} cxx = {(5, z)\ z e U}
coy = {<^, v>: v e Z7} Cίy = {<w, «>: 2 e C/}.

If x\y = 0, then t Φ u, which impl ies cQx >cxy d 0 1 = 0. Hence Λ l'y = 0.
If x\y Φ 0, then t = u and ΛΓI3; = {(s, υ)}. Then c ,^ Ciy dOi = {(t, t)} Φ 0, so
x\'y = c i ^ Coy = {(5, z;)}.
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We have now established a one-to-one correspondence between the
class of MRA and strong CA2 and, since they are interdefinably related, we
conclude that the two theories are definitionally equivalent.
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