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INTENDED MODEL THEORY

ALBERT SWEET

The aim of the present paper is to develop a theory of intended models
as an extension of standard model theory, using the pragmatics of standard
languages [7] to represent the "intending." To this end, new foundations
for standard pragmatic theory are formulated in section 1, and pragmatic
theory is further developed in section 2. Section 3 contains semantic
foundations for the theory of intended models of section 4.

1 New foundations for standard pragmatics Standard pragmatics is
developed in [7], where it is shown that an algebra of formulas which
represents a standard first order predicate calculus may be induced over
the expressions over an arbitrary finite alphabet, by appropriate verbal
behavior of the users of the expressions. The snytax of the formulas of the
algebra, as well as their logical (polyadic Boolean) structure, is induced
pragmatically. In the present section it is shown that the part of standard
pragmatics which determines logical as distinct from syntactic structure is
derivable from two assumptions expressing the rationality of the degrees of
belief of the users of the expressions of the syntax.

The primitive terms of standard pragmatics as developed in [7] are a
set L (of expressions), a set V = {0, 1, 2} (whose elements represent the
pragmatic values reject, accept, and withhold, respectively), a set C (of
conditions under which expressions of L are valued in V), a set U (of users
of L), and a set W (of times of valuation of expressions of L). An obvious
generalization of the conditions of valuation C, although not required for the
proof of proposition (1.2) below, is useful for the theory of intended models
of section 4. Intuitively, the generalization consists in accommodating
possible as well as actual conditions of valuation of the expressions of L.
This is accomplished by letting C be the domain of a Boolean algebra
(C, Λ, '), where C contains a distinguished element b, distinct from the
unit element cλ and from the zero element c0 of C. Intuitively, a non-zero
element of C may be regarded as a possible condition of pragmatic
valuation, an element c ^ b may be regarded as an actual condition of
valuation, the unit element of C may be regarded as the necessary
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condition, and the zero element of C as the impossible condition. The
distinguished condition b may be regarded as the total actual evidence for
valuing expressions of L in V. Thus b serves the purpose of C itself in [7],
and in the present paper we shall understand all definitions of [7] with b in
place of C. All proofs of [7] go through with C replaced everywhere by b.

We shall now adapt the pragmatic theory of [7] to the above generaliza-
tion of C, at the same time emending slightly the exposition of [7]. All
terms and symbols introduced without definition are intended in the sense
of [7], with conditions of pragmatic valuation understood in the above
generalized sense.

Let D = v U x W x C , the set of all functions from the Cartesian product of
U, W, and C to V. Intuitively, an element (u, w, c, v) of d e D is a disposi-
tion of user u, at time w, under condition c, to perform valuation υ. It is
useful to refer to non-zero elements of C as proper conditions. For
n = 0, 1, 2, and (u, w, c) e U x W x C, we then define:

. , x (n, if c is proper,
d»{u> w> c> • j 2 otherwise.

Thus d2 is the constant function in D with value 2. Intuitively, d2 is the
uniform set of dispositions of users of L to perform the valuation withhold
under any condition at any time.

Let Π be a function from L to D. Such a function assigns to each
expression e of L a set of valuing dispositions Π(£)eD, and suggests the
following definition.

Dl. Π is a pragmatic interpretation (of L in D) iff:

I. U(e)(u, w, c0) = 2, for all e e L, ue U, we W.
II. ΐl(e)(u, w, b) Φ 2, for some e e L, ue U, we W.
III. If ΐl{e)(uf w, cj Φ 2, then Π(^)(w, w, c) = ϊl(e){u, w, c j , for all ee L,
ue U, we W, proper ceC.

Clause I of Dl says that the impossible condition is not germane to any
expression. Clause II says that the distinguished actual condition is
germane to some expression. Finally, clause III says that if the necessary
condition is germane to an expression, then this valuation is preserved
under all proper conditions.

Further requirements on pragmatic interpretations are necessary for
the pragmatic determination of standard syntax, but before considering this
development it should be observed that pragmatic interpretations accom-
modate the concept of stimulus meaning, in a sense generalized from that
of Quine [4]. We may define the affirmative (negative) stimulus meaning of
an expression e of L, for user u at time w, to be the set {c e C: U(e){u, w, c) =
1(0)}. Then we may define the stimulus meaning of e, for u at w, to be the
ordered pair of its affirmative and negative stimulus meanings for u at w.
It is not assumed that the stimulus meaning of an expression is identified
with its entire meaning; for we wish to investigate the relation between



INTENDED MODEL THEORY 577

pragmatically and semantically characterized meaning. At the end of this
section we shall consider in more detail the concept of intersubjective
stimulus meaning, and its relation to pragmatic synonymy.

The first step in the pragmatic determination of standard syntax is as
follows. Since the empty expression is a member of L, we shall refer to
non-empty expressions of L as proper expressions, and we let L* be the
set of proper expressions of L.

D2. Π is a proto-sentential interpretation iff Π is a pragmatic interpreta-
tion and there are distinct and unique expressions & and ~ of L* such that
for all s, s' e L; u, u' e U; w, w* e W:

I. If U(s) Φ d2, then Π(& s - s) = d0.
II. If U(s)(u, w, c) = 2 = Π(5f)(w, w, c), then Π(& s s')(u, w, c) = 2 or
Π(& s s')(u, w, cj Φ 2.
III. If Il(s)(u, wy c) = 1 = Π ( s ' ) « w', c), then Π(& s s')(u",w", c) = 1 for
some u" e U, w" e W.
IV. If Π(s)(κ, w,c) Φ2 ΦH(s)(uf, w', c), then Π(s)(u, W, C) =Ti(s)(ur, wr, c).
V. If Π(& s - s) = d0 = Π(& s' - s f), then Π(-s) and Π(& s s') are (par-
tially) fixed at all arguments according to the tables of Dl of [7].

Clauses II and III of the definition of a proto-sentential interpretation
in [7] are omitted in D2, because the former follows from clause I of D3
below, and the latter follows from clauses II and III of D4 of [7]. Clauses
III and IV of D2 above are conditions of intersubjectivity on the valuations
of the users of L; if U and W are unit sets, these clauses become
redundant. We shall return to the concept of inter subjectivity at the end of
this section. By clause IV, the core of a proto-sentential interpretation
exists.

Let Ή be the core of a proto-sentential interpretation Π. The
non-uniqueness in the table for & of clause V is clarified if we define
N = {s e L: ττ(s, cx) = l}. Intuitively, N is the set of sentences accepted under
the necessary condition. By clause I of D2, N c S, and by clause III of Dl,
5 e N iff π(s, c) = 1 for all proper c. As will be seen, N may be regarded as
the set of analytic sentences of the language induced over L. (Analytic
sentences are represented in a slightly different way in [7], but the present
approach is preferable.) By clause II of D2, together with clause III of Dl:

(1.1) If Ώ.(s)(u, w, c) =: 2 = Π(s')(w, w, c), then Π(& s s')(u, w, c) = 2 or

According to (1.1), the table for & determines the pragmatic value of a
conjunction from the values of its conjuncts, unless the conjunction is
analytically false.

The next step in the pragmatic determination of standard syntax is as
follows.

D3. Π is a lexical interpretation iff Π is a proto-sentential interpretation
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and there is a unique expression 3 of L*, distinct from & and ~, such that
the set

\ = {ie L * : I l ( 3 i p ) = d 0 f o r s o m e p e t }

is infinite, and for all e, e', F, G in L and i in I:

I. Any expression of the form 3&£, 3~e, 33£, £& zV, e~ ier, e&, e~,
e3, or which contains only &, ~, 3, and i, is valued d2 by Π.
II. If ΐl(3i & ei . . . i ~ ei . . . i) = ό0, then any expression which differs
from the displayed one by changing the number of iterated i's is valued d2.
III. If Ii(3i & Ft . . . i ~ Fz . . . i) = d0 = Π(3ΐ & Gi . . . i ~ Gz . . . i), then
ΠteFGe') = d2.
IV. If Π(&0 ~ e) = d0, then every occurrence of e in e is in a part of e of the
form 3ie* for some e f in L*.

A lexical interpretation determines a standard lexicon of predicates
and individual constants, as shown after D3 of [7], which corresponds to D3
above. By clause I of D3, the set P of predicates is disjoint from the set I
of variables. By clause IV, I is disjoint from the set K of individual
constants. By clause III, P and K are disjoint. These results supplement
those of [7] concerning the lexicon determined by a lexical interpretation.

The final step in the pragmatic determination of standard syntax is as
follows. Π is defined to be a proto-polyadic interpretation iff Π is a lexical
interpretation which satisfies the definiens of D4 of [7], with the added
requirement that in clause IV, q and r are proper expressions. It is shown
in [7] that a proto-polyadic interpretation induces a standard syntax over L,
and that a polyadic extension of such an interpretation induces standard
logic on the formulas of this syntax. We now consider a probabilistic
foundation for polyadic interpretations.

Let Π be a proto-polyadic interpretation. For each sentence s of the
syntax determined by Π, and for each user u, time w, and condition c, we
assume that the strength of belief in s on the part of u, at w under c,
admits of quantitative measure, as represented, for example by the betting
dispositions of u. We understand the coherence of a belief function in the
usual sense of subjective probability theory. From this viewpoint we
define a proto-polyadic interpretation Π to be coherent iff, under any
proper condition at any time:

I. The degrees of belief of any user in the sentences determined by Π are
coherent.
II. Every user accepts those sentences in which his degree of belief is
maximum.

Coherent interpretations determine standard logic provided that:

(1.2) Every coherent interpretation is polyadic.

Proof: Let Π be a coherent interpretation. Since Π is proto-polyadic, the
sentences determined by Π have standard syntax. Then by clause I above
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and the well-known theorem of Ramsey [5] and de Finetti [2] relating
coherence and probability, the degrees of belief in sentences of S are
probabilities, for any user at any time under any proper condition. Let t be
any logical truth of S. Then Π(£) = dx, by clause II of the definition of a
coherent interpretation. Then by clause VI of D2, U(~t) = d0. In particular,
ΐl(3(p & ~3(j)/> & φ) = d0, so that clause I of the definition of a polyadic
interpretation holds.

To verify clause II, suppose that for fixed u, w, and c, 3(p & ~q) and
3(<?& ~r) are valued 0, but 3{p & ~r) is not. Then by clause VI of D2,
V(p~* q) & V(#—> r) & ~V(/>—> q) is not valued 0, against the above result
that contradictory sentences are always valued 0. Thus clause II holds, and
in the same way clauses III, VII, and DC may also be shown to hold.

In order to prove clause V, we observe that, since the syntax deter-
mined by Π is standard, e(p & q) is a sentence iff e(q & p) is. If neither is
a sentence, then both are valued d2, by clause I of D2. If both are
sentences, then e(p & q)*->e(q & p) is logically true, by standard logic.
Now suppose that U(e(p & q)) Φ U(e(q &/>)). There are three possible
cases, for fixed u, w, c.

Case 1. e(p & q) is valued 1 and e(q & p) is valued 0. Then ~e{q & p) and
therefore also e(p & q) & ~e(q & p) is valued 1. It follows that (e(p & q)<^>
e(q & P)) & e{p & q) & ~e(<7 & />) is valued 1, against the coherence of Π.

Case 2. e(p & q) is valued 1 and e(q & />) is valued 2. Then ~e(p & #) and
hence (e(p & #) +->e(q & />)) & e(£ & #) & ~£(<7 & £) is valued 2, against the
coherence of Π.

Case 3. e(p & q) is valued 0 and e(q & p) is valued 2. Then ~e{p & #) is
valued 1, so that (e(p & q)<^e(q & p)) & ~e(p & q) &, e(q & />) is valued 2,
against the coherence of Π.

Thus clause V holds, and in the same way all the remaining clauses of the
definition of a polyadic interpretation may be shown to hold. (1.2) is
thereby established.

It should be noted that although logical (polyadic Boolean) properties of
the formulas of the syntax determined by Π are essential to the above
proof, knowledge of these properties is not attributed (nor denied) to the
users of the formulas. (1.2) speaks only of verbal behavior, and in
particular of dispositions to bet and to value expressions in the set V. An
idealized linguist studying that behavior must first be able to recognize its
coherence, before his hypotheses about the logical knowledge of the users,
as an explanation of the coherence, may thereby have interest. From the
viewpoint of (1.2), the idealized verbal behavior characterized by D1-D4 is
a natural extension of the coherent behavior characterized by subjective
provability theory. Indeed such idealization is a natural extension of that
embodied in the concept of formalized languages themselves. It may be
regarded as representing the long run of scientific investigation contem-
plated by Peirce. The possibility that such idealized behavior may
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distinguish the intended models of a theory as well as determine its
logical structure thereby suggests itself. The realization of this possibility
is the purpose of the remainder of the present paper.

We shall conclude this section by considering the concept of inter-
subjective stimulus meaning and its relation to pragmatic synonymy. Given
a pragmatic interpretation Π, the affirmative {negative) inter subjective
stimulus meaning of an expression e of L may be defined as the set of
conditions c such that π(e, c) = 1(0), where π is the core of Π. The
inter subjective stimulus meaning of e relative to Π, Σπ(e), may then be
defined as the ordered pair of the affirmative and negative inter subjective
stimulus meanings of e relative to Π. If π does not exist, there are no
inter subjective stimulus meanings. If Π is a coherent interpretation, then π
exists and:

(1.3) // EiΠ(e, e'), then Σn(e) = Σn(e').

That is, pragmatically synonymous expressions have the same stimulus
meaning. (1.3) is a purely pragmatic analogue of propositions (5.1) and
(7.9) of [7], which assert a relation between pragmatic and semantic
synonymy. In section 4 we shall consider further analogues of these
propositions, and their relation to Peirce's semiotic theory.

2 Pragmatic foundations of intended model theory In this section the
pragmatic theory of coherent interpretations is further developed, to
provide a foundation for the theory of intended models of section 4.
Throughout this section, Π with or without subscripts or primes is under-
stood to be a coherent interpretation, unless otherwise indicated, and π is
its core. We shall refer to the algebra of formulas Lin (determined by Π in
the sense of Theorem 1 of [7]) together with its semantic interpretations,
as a language. So conceived, a language Lπ has a pragmatic, as well as a
syntactic and a semantic, dimension, the coherent interpretation Π.

We first define a condition c to be positively {negatively) relevant to a
sentence 5 (relative to Π) iff π{s, c) = 1(0) and π(s, cx) = 2. Then we define
c to be relevant to s iff c is either positively or negatively relevant to s.
It follows that:

(2.1) c is relevant to s iff c is relevant to ~ s.

(2.2) If c is not relevant to s nor to s'9 then c is not relevant to s & sr.

Proposition (2.2) is a corollary of (1.1). If c is relevant to sand to sf, it
does not follow that c is relevant to s & s f, for sf may be ~ s. If se IM, then
no condition is relevant to s.

Let TG be the set of closed logical truths of L(π Since Lπ is a polyadic
algebra with respect to Eπ, logically equivalent formulas of Lπ are
En-equivalent. It follows, by definition of Eπ, that iτ{t, b) = 1 for all te TG.
For any proper condition c, the proof that Lπ is polyadic goes through if b
is replaced everywhere by c. Thus π{tt c) = 1 for all teTG and proper
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conditions c, so that U(t) = di. It also follows that N is closed under logical
consequence. By the above and clause III of Dl:

(2.3) T G C N c Ts.

That is, logical truths are analytic, and analytic sentences are contained in
the theory of the language Lπ

An analysis of the conditions C of pragmatic valuation is required for
distinguishing the intended models of Lπ by means of its pragmatics. Let Z
by a countable set, disjoint from the primitive terms of standard prag-
matics. If the conditions of valuation in C are regarded as propositions,
then functions from ZL to C may be regarded as propositional functions.
(C/. [3], p. 102.) The set of all such functions is a Boolean algebra, defined
pointwise with respect to C. From this viewpoint, each condition in C has
the form c(z) for ze ZL and propositional function c on ZL. Intuitively, c(z)
may be regarded as the outcome of an experiment c on the sample z}

indexed for expression in a language over L. In this generalized sense of
"experiment," a condition in C may be the outcome of distinct experiments
on distinct samples, but no confusion will result from using the same
symbols for conditions in C and for propositional functions from ZL to C.

The intended models of a language, in the sense of section 4, will be
relative to the choice of Z. From the viewpoint of an idealized linguist
studying the language Lπ> Z is the set of things the observation of which is
associated with dispositions, expressed by Π, to value expressions of L in
V. For example, Z may contain rabbits, rabbit-parts, or timelike rabbit-
intervals, according to the hypotheses of the linguist. (C/. [4], p. 465.) We
shall also consider an example in which Z contains representations of
numbers by tallies for computations whose outcomes are conditions of
valuation for expressions of L. Thus an element zeZL may contain the
representations on a computing machine tape of the arguments and value
(indexed by expressions of L) of a functional relation c, so that c(z) is a
condition of pragmatic valuation. It is not necessary for a linguist studying
a language Lπ to understand the language in order for him to analyze the
conditions of valuation in the above way. Rather such analysis is required
to understand Lπ, in the sense of distinguishing its intended models.

Each element ze ZL has the form (e, z.e), for ee L, z* e Z. We define an
individual constant αeK to be basic iff (1) some ceC is relevant to an
atomic sentence containing α, and (2) if c(z) and c(z') are relevant to an
atomic sentence containing α, then zQ = zά. We define Ko to be the set of
basic constants of Lπ Let α be a basic constant and c(z) be relevant to
some atomic sentence containing α. We define α* = za. α* exists by the
first clause in the definition of a basic constant and the fact that L is the
domain of z\ α* is unique by the second clause in the definition of a basic
constant.

If s is a sentence of Lπ, we define s to be basic iff (1) s is an atomic
sentence over basic constants, and (2) there is a condition c which is
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positively relevant to s, such that for any c' ^ c, cf is positively relevant to
s' only if s —» s' is analytic. The condition c in the definiens is specific for
s in the sense that c is positively relevant only to analytic consequences of
5; c is minimal with respect to s in the sense that any weaker conditions c'
are positively relevant only to analytic consequences of s. Minimality of
c in this sense accommodates the possibility that c f = cvc", where c" as
well as c is positively relevant to s; in this case we should not wish to
exclude the possibility that cf is also positively relevant to s. By clause
(2), basic sentences are not analytic.

The fundamental intuitive idea of intended model theory is that the
degree of monomorphism of the set of intended models of a theory is
preserved under certain extensions of the theory. In order to characterize
such extensions the following definitions are useful.

If F is a predicate of Lπ, we define F to be basic iff F occurs in some
basic sentence of L^ or is definable in the theory of Lπ by predicates which
occur in basic sentences. A basic predicate of Lπ may be, for example, a
qualitative predicate underlying a quantitative predicate of Lπ in accor-
dance with the theory of measurement.

The identity predicate is accommodated in the following way. We
define Π to be cylindric iff there is a diadic predicate E of Lπ such that the
closures of Eii and p(i) & Eij -* p(j) are analytic, for all variables i and j
and formulas p(i) in which j is free for i and p(j) is the result of this
substitution. By (2.3), the mapping (z,j) -* Eij from I2 to Q is an equality
on Lπ, so that Lπ together with this equality is a cylindric algebra.
(Cf. [3], p. 216-217.)

Let Π be cylindric. We define Po to be the set of basic predicates of
L|π together with E. We also define B to be the set of singular (variable-
free) sentences over Po U Ko which are in the theory of Lπ We next define
a cylindric interpretation to be basic iff P = Po is finite, K = Ko is finite,
and K U P is included in the lexicon of B - N. If Π is basic, then K Φ Λ Φ
B ^ N, and B has a finite model. If Π is basic we shall say that Lπ is a
basic language; it will also be convenient to apply similar properties of Π
to the corresponding language Lπ

Let Uj < Π,-. Every set A of sentences of L!πf determines an equiva-
lence relation EA on the sentences of Lπ7 , as follows: EA(s, sr) iff
Aιι-s<->sr, for all sentences s and s' of Lπ; . Let (A)F be the restriction of
A to sentences not containing the predicate F of A. Let T'ί be the restric-
tion of the theory Tlt of L^ to sentences which are not equivalent to any
sentences over the predicates of Lπ .

Let F be a predicate of P t - P7 , i.e., a predicate of Lπt which is not a
predicate of Lπ . We define F to be creative relative to Lπ; iff either
ETJ Φ E(T/)F or Ejt Φ E(T/)G for some predicate G of Pt - P ; which is
definable in T, by (a formula over) F. Let P\ be the set of predicates of P.,
which are creative relative to LlΠ.. We then define Π, to be minimal
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relative to Π7 iff any predicate of P,t - p' is definable in T* by predicates of
?[ U P7. We may now define Π to be minimal iff there exists a sequence of
cylindric interpretations Πo, Γ ,̂ . . ., Πw = Π such that (1) Πo is basic,
(2) all predicates of Πo are basic predicates of Π, (3) all individual
constants of Π are individual constants of Πo or definable in the theory of
Lπ> and (4) Π; is minimal relative to Π ^ for all i such that 0 < i ^ n.

It is with respect to extension to minimal languages that, in the theory
of section 4, degree of monomorphism of intended models is preserved.
It is an immediate consequence of the definition of minimality that every
basic language is minimal.

We shall close this section by applying the relation of synonymy among
theories, in the sense of K. de Bouvere [1], to the corresponding prag-
matics. Let T be a standard theory, and let d be an explicit definition of a
new predicate by a formula over the lexicon of T. T' is defined to be a
definitional extension of T iff T' = T + {d}, the least deductive system over
the lexicon of T and d which contains T and d. Tf is defined to be an
extension by definitions of T iff T' is obtained from T by a finite number of
definitional extensions (Cf. [6], p. 60.) We may adapt these ideas to
coherent interpretations by defining Πf to be an extension by definitions of
Π iff Π < Πf, both interpretations are minimal, and the theory of Π' is an
extension by definitions of the theory of Π. Finally we define Π and Πf to be
synonymous iff some coherent interpretation is an extension by definitions
of both Π and Πf. This terminology is motivated by the fact that, if Π and
Π' are synonymous, then so are their theories, in the sense of [1]. (Cf. [6],
p. 67.) In section 4 we shall consider the relation between the sets of
intended models of Lπx and Lπ2 when Πj and Π2 are synonymous.

3 Model-theoretic foundations Let μ be an interpretation of the theory
of Lπ in a relational structure (X,R), in the sense of [7], where μ is onto R.
Then μ is a structure for the language Lπ, in the usual model-theoretic
sense. (Cf. [6], p. 18.) If P is finite and K is empty, the structure μ may
be represented in the form (X, μFlf . . ., μFn), for F{ e P. In the termi-
nology of Tarski [8], μ in this case is of finite order. We shall extend this
terminology to include the case in which K is finite. Then by Theorem (1.3)
of Tarski [8], structures of finite order have the following property. We
understand normal structures to be ones in which the equality predicate is
interpreted as identity.

(3.1) Let μx and μ2 be universally equivalent normal structures for a
cylindric language Lπ with finite lexicon. Then any finite structure is
embedded in μx iff it is embedded in μ2.

For let μx and μ2 satisfy the hypotheses of (3.1). Replace each individual
constant α of Lπ with the monadic predicate Fa, calling the set of formulas
over the lexicon so obtained Q*. Replace each constant element μ^ of μx

with the property μiFα(y) = 1 iff μiα = y, and similarly for μ2. We thereby
obtain structures μj and μj to which Tarski's theorem directly applies.
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Let p* be any formula of Q*, and let p be p* with F°i replaced by Ehi. Then
p is a formula of Lπ For any system of values x of μl9 and hence of μt,
x satisfies p* under μ* iff x satisfies p under μl9 since this holds for Fai
and Eat. μ2 and μ* are related in the same way. Thus by hypothesis, μ? is
universally equivalent to μ$. Then by Tarski's theorem cited above, any
finite structure is embedded in μ* iff it is embedded in μ*. Thus by the
definitions of μ* and μξ, this holds also for μγ and μ2, so that (3.1) is true.

The following proposition is a generalization, in one direction, of
Theorem 2 of de Bouvere [1]. We shall refer to the set of models of a
standard theory as its variety.

(3.2) If Ύy and T2 are synonymous, then their varieties are coalescent.

Proof: By hypothesis, there is an extension by definitions T of both Tx and
T2. Then the variety of T is the required definitional enrichment of the
varieties of Ti and T2. For any model of 11 is the reduct of a unique model
of T, and similarly for T2. (Cf. [6], p. 61.) Any reduct of a model of T
which is in the similarity class of the variety of Ti, is also a model of Tl9

and similarly for T2. (Cf. [6], p. 44, Lemma 1.) Thus the varieties of Ti
and T2 are coalescent.

K. de Bouvere's definition of coalescence of varieties may be gen-
eralized to subvarieties (i.e., subclasses of varieties). Let M andM'be
subvarieties of standard theories. We define Mf to be a definitional
enrichment of M iff (1) every model of M is a reduct of a unique model of
Mf, and (2) every reduct of a model of Mf which is in the similarity class of
the models of M is also in M. Then we define M and Mf to be coalescent
iff there is a definitional enrichment of both M and Mr. In section 4 we
shall consider the conditions under which synonymous theories have
coalescent sets of intended models.

It will be useful to define μλ to be a subreduct of μ2 iff some reduct of
μ2 is an extension of μlβ Thus if μx is a subreduct of μ2, there is a unique
reduct of μ2 which is an extension of μ^ We shall also say that μi is a
maximal subreduct in M of μ2 iff μx€ M and for any subreduct μ in M of μ2,
μ is a substructure of μ^

We next define M to be a set of compatible structures iff there exists a
structure μ such that every structure in M is a substructure of μ. Then we
define M to be bounded iff every set of compatible structures which is
included in M contains an upper bound with respect to the substructure
relation.

Finally we define μ and μf to be protectively equivalent models of
sentences A iff μ and μf are countable models of A of finite order, any
finite model of the singular (variable-free) sentences of A is embedded in μ
iff it is embedded in μf, and A contains some singular sentence. If A has
protectively equivalent models, its lexicon is finite, so that there exists a
finite model of the singular sentences of A.



INTENDED MODEL THEORY 585

4 Intended model theory In the present section we shall investigate the
manner in which the intended models of a theory may be distinguished by
its pragmatics. By proposition (8.1) of [7], it is indifferent whether we
speak of a model of a language Lπ, or of the theory of Lπ. As indicated in
section 2, the pragmatic determination of intended models should be such
that pragmatic interpretations which are related in certain ways (e.g. by
the subinterpretation relation) determined languages whose intended models
are related in corresponding ways. Considerations of this kind suggest that
intended model theory should be developed relative to the family of all
coherent interpretations (of L in D). Further reflection suggests that the
set of intended models of the theory T a language Lπ might be regarded as
the significance of T, for Π as interpretant in the sense of Peirce's
semiotic theory. We are thereby led to formulate intended model theory as
a semiotic theory, in the spirit of Peirce.

Let P be the set of all coherent interpretations (of L inD). Let £ be
the set of all polyadic algebras L^ for Π e P. Let Mπ be the variety of the
theory of L,π̂  -C, and let 9W be the set of such sets Mιπ. We then define:

(4.1) (-£, 9W, P, σ) is a system of standard semiotics iff σ is a function
from P to 9W such that for all Π, Π' e P and μ, μ' e 9W:

I. Λ Φ σ(Π) c MΉ.
II. If Π is cylindric, then each model in σ(Π) is normal.
III. If Π < Πf and Π is minimal, then each model in σ(Π') has a subreduct
in σ(Π).
IV. If Π < Πf and both Π and Π' are minimal, then for any models μ and μf

which are maximal subreducts in σ(Π) of elementarily equivalent models in
σ(Πf), μ is elementarily equivalent to μ'.
V. If Π < Π' and both Π and Πf are minimal, then for any models μ and μf

in σ(Πf) which have isomorphic maximal subreducts in σ(Π), μ is iso-
morphic to μf.
VI. If Πf is an extension by definitions of Π, then μ e σ(Π) iff both μeM π

and μ is a reduct of some model of σ(Πf)

We shall refer to the elements of σ(Π) as intended models of the theory
of Lπ, and to the corresponding Boolean models (by (8.1) of [7]) as intended
models of Lπ In the terminology of Peirce's semiotic theory, we shall also
say that σ(Π) is the significance of Lπ> for the interpretantΠ. Thus clause
I requires that the objects actually signified by Lπ are included among its
possible objects. In the limiting case in which σ(Π) = Mπ, the requirement
that σ(Π) be non-empty follows from the consistency of the theory of Lπ
(C/. [7], Theorem 4.) In this sense, clause I is a generalization of standard
model theory. If σ(Π) = Mπ? clause II expresses a standard requirement for
theories with identity, and is in this sense a generalization of standard
model theory.

The size and structure of σ(Π) represent the precision, or degree of
monomorphism, of the significance of the language Lπ. Without defining
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such precision, clauses III-V may be understood to express the ways in
which precision in this intuitive sense is preserved by extension. Thus
clause III restricts the ways in which σ(Π) may be ''enlarged'' by minimal
extension. In the limiting case in which σ(Π) = M ,̂ clause III is a con-
sequence of the fact that the reduct of any model of σ(Π') to the similarity
class of Mπ is a member of Mπ In this sense, clause III is a generalization
of standard model theory. Distinguishability of models of σ(Π) by sentences
of Lπ represents "potential smallness" of σ(Π). Clause IV describes a
condition in which such distinguishability is preserved by extension.
Clause IV is no requirement on σ(Π) if there are no maximal reducts of the
kind described. Clause V expresses an obvious sense in which the degree
of monomorphism of σ(Π) is preserved by extension. Clause V is no
requirement on σ(Π) if there are no maximal subreducts of the kind
described. In the limiting case in which σ(Π) = Mπ and σ(Πf) = Mπ,,
clause VI expresses no requirement on the intended models described. For
in this case σ(Π') is a definitional enrichment of σ(Π), by the reasoning in
the proof of (3.2) above. In this sense, clause VI is a generalization of
standard model theory.

Before investigating the structure of the set of intended models σ(Π) of
the language Lπ, we shall consider more deeply the idea that σ(Π) repre-
sents the significance of Lπ as fixed by Π. Sufficient conditions for σ(Π) to
be a unit set are considered later in this section. If σ(Π) is a unit set, then
all descriptive signs of L,π in the customary intuitive sense may be
understood as signs in the sense of definition (4.1). For let σ(Π) = {μ}, and
let μ* correspond to μ by proposition (8.1) of [7]. We then define the
function σπ on formulas p, predicates F, and individual constants α of Lπ
as follows:

(4.2) σn(p) = μ*(p).

σn(F)= μ(F).

σπ(α) = M(°)

We may understand the definienda of (4.2) to be the objects signified by
p, F, and α, for Π as interpretant. To apply Peirce's terminology more
accurately to this situation, we should say that Π is the "entire general
intended interpretant" of Lπ regarded as a sign, and of each formula,
predicate, and individual constant of Lπ when Lπ has a unique intended
model. The significance of the descriptive signs of Lπ depends on the
Π-valuations of all the expressions of L, in the sense that these valuations
determine the structure of Lπ and thus of M|π

Let σ(Π) = {μ}. Then μ* as above is a homomorphism of Lπ Let 1 and
0 be the unit and zero elements of the range of μ*. Then by Theorem 4
of [7]:

(4.3) Ifpe T s , then σn(p) = 1 and σπ(~/>) = 0.
If ~pe T s , then σn(p) = 0 and σπ(~£) = 1.

The constant functions 1 and 0 of μ* may be regarded as the True and the
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False, in Frege's sense, if μ* is the distinguished model of l_π in which
sentences valued 1 are true.

It is shown in [7] (propositions (5.1) and (7.9)) that pragmatically
synonymous predicates and formulas of Lπ are semantically synonymous.
These propositions hold a fortiori for intended models of Lπ, and so
restricted admit of the following analogue for individual constants. Let α
and b be individual constants of a cylindric language Lπ For all intended
models μ of Lπ:

(4.4) // Eπ(α, b), then μα = μb.

For by hypothesis the sentence Eab is in the theory of Lπ, and (4.4) follows
by clause II of (4.1).

We now consider an analogue of the above propositions for synonymous
theories.

(4.5) If Lπ: and Lπ2 are synonymous, and both languages are minimal, then
σίΠi) and σ(Π2) are coalescent.

Proof: By hypothesis, there is a definitional extension Π of Πi and Π2, such
that the theories Tx and T2 of LΠl and LΠ2 are synonymous. Then by the
proof of (3.2), the variety Mπ of the theory of Lπ is a definitional enrich-
ment of the varieties MΠl and MΠ2 of Ti and T2. Now let μ e αίΠj. Then μ
is a reduct of some model of σ(Π), by clause VI. Since Mπ is a definitional
enrichment of Mjij, μ must be the reduct of a unique model of σ(Π). Now
let μ e MΠl t>e a reduct of some model of σ(Π). Then μ e σ(I[J, by clause VI.
Thus σ(Π) is a definitional enrichment of σ(IiX and by the same reasoning,
of σ(Π2) also. Thus αίΠ^ and σ(Π2) are coalescent.

If Πi is not compatible with Π2, the theories of LΠl and Lπ2 need not
also be incompatible, since Πi and Π2 may disagree germanely under a
condition c Φ b, although they may agree germanely under b. But if the
theories of Lπx and Lπ2 are not compatible, i.e., if their union is not
consistent, then they are not synonymous. Thus the following proposition is
a partial converse of (4.5).

(4.6) If σίΠi) and σ(Π2) are coalescent, then the theories of L^ and Lπ2 are
compatible.

Proof: Let the theories Ti and T2 of LΠχ and Lπ2 be incompatible, so that
their union has no model. Then there is no definitional enrichment of σ{U^
and σ(Π2). For any such enrichment M would contain a model with a reduct
in αίΠj and a model with a reduct in σ(Π2). But all models of M are
similar, since M is a subvariety by definition. Then any model μ of M has
a reduct in the similarity class of αίΠj, which is therefore a model of TL;
and μ also has a reduct in the similarity class of σ(Π2), which is therefore
a model of T2. Thus μ must be a model of Ti U T2, against the hypothesis
of their incompatibility.

(4.7) If Πi and Π2 have the same core and both are minimal, then
σ(Π1) = σ(Π2).
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Proof: By first hypothesis we may define

I ΠΛeXtt, w9 c), if Hx(e)(u9 w, c) Φ 2,
R2(e)(u, w, c), if Π2(e)(w, w, c) Φ 2,

2 otherwise.

Π satisfies the inter subjectivity requirements of a cylindric interpretation
by the first hypothesis, and the remaining ones by the second hypothesis.
Now let F be a proper expression, distinct from all logical and non-logical
symbols of Lπ, and let p(i) be a fixed formula of Lπ in the one free
variable i. We then define:

I U(e)(u, w, c), if e does not contain F,
0, if e = 3iFi & ~Fi and c is proper,;
1, if e = V(Fi^->p(i)) and c is proper,

and otherwise Π'(#)(&, w, c) Φ 2 only as required by the condition that Πf be
coherent. Since Π is coherent, Πf may be so defined; for Πf is obtained
from Π by changing valuations of the form Π(e(F))(u, w, c) = 2 to accommo-
date the new predicate F in the indicated manner.

Since Π is cylindric, so is Πf. There is a sequence Πo, . . ., Π1? which
establishes the minimality of Π1# Consequently Πo, . . ., Ul9 Πf establishes
the minimality of Πf. For the positive relevancies of Π, and thus of n 1 } are
preserved by Πf, since BiFi & ~Fi and V(Fi<^>p(i)) are analytic in L^.
Thus all predicates of Πo are basic predicates of Πf as well as Π^ And
since Πf and Γ^ have the same individual constants, all individual constants
of Πf are individual constants of Πo. Finally, since F is definable in the
theory Tf of Lπ", Πf is minimal relative to Π.

T' is a definitional extension of the theory of LΠl, since Tf = Tx +
{3(Fi<^p(i))}. Thus Πf is an extension by definitions of Π^ since both are
minimal. Similarly, Π' is an extension by definitions of Π2. Thus μx and Π2

are synonymous, so that by (4.5), αίΠ^ and σ(Π2) are coalescent. Suppose
αίΠj Φ σ(Π2). We consider the case in which there is a model Πi of αίΠj
which is not in σ(Π2). By the coalescence of σίΠj and σ(Π2) there is a
definitional enrichment of σ(Ui) and σ(Π2), which contains an expansion μ of
μi. By clause VI, every reduct of μ in the similarity class of σ(Π2) is in
σ(Π2). μ2 itself is such a reduct, so that μieσίΠ^, against the above
supposition. (4.7) is thereby proved.

The following proposition is a consequence of clause III.

(4.8) Let U < Πf and | π | = |Π' | . If σ(Π) = M|Π, then σ(Πf) c σ(Π); if Πf is
minimal, then each model in σ(Πf) has a substructure in σ(Π).

Let Π 1 < Π 2 and both interpretations be minimal. Then clauses III-V
say intuitively that Lπ1' preserves the precision of significance of Lπ, and
otherwise any model of Lπl' niay be an intended model. It thus appears
reasonable to pursue the idea that the significance of LΠ/ is "abstract"
relative to that of Lπ Lπ!' would then have special interest if the structures
comprising the significance of Lπwere "concrete" in an appropriate sense.
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We shall now suggest the following explication of the above ideas. Let
M be a subvariety of T. We define M to be concrete iff the domains of all
models in M are included in Z, protectively equivalent models in M are
isomorphic, and M is bounded. The adequacy of this definition is suggested
by the following proposition.

(4.9) Letΐl < Π', Π be basic, andW be minimal. If σ(Π) is concrete, then
any two elementarily equivalent models o/σ(Πf) are isomorphic.

Proof: Let μ[ and μ2 be elementarily equivalent models of σ(Π). Then by
clause III, and the boundedness of σ(Π), there are maximal subreducts μι

and μ2 in σ(Π) of μ[ and μ2. Then by clause IV, μ2 is elementarily
equivalent to μ2, so that μx and μ2 are universally equivalent. Since Π is
basic, L π is a cylindric language with finite lexicon. By clause II, μx and
μ2 are normal models of the theory of Lπ Then by (3.1), any finite
structure is embedded in μx iff it is embedded in μ2.

It follows that μλ and μ2 are protectively equivalent models of the
theory T of Lπ For they are countable, by the concreteness of σ(Π). Since
Π is basic, T contains some singular sentence, and μx and μ2 are of finite
order. By the above, any finite model of the singular sentences of T is
embedded in μx iff it is embedded in μ2. Thus μι and μ2 are protectively
equivalent models of T, so that by the concreteness of σ(Π), μx is
isomorphic to μ2. Then by clause V, μ[ and μ2 are isomorphic. (4.9) is
thereby established.

If the theory of LΠ' in (4.9) is complete, then l_π' has a unique intended
model up to isomorphism. The consequent of (4.9) may thus be understood
to say that the significance of Ljy is potentially monomorphic.

(4.9.1) Corollary. Ifϊl is basic and σ(Π) is concrete, then Lπ is potentially
monomorphic.

Proof: By hypothesis Π is minimal. Thus since Π < Π, the conclusion
follows by (4.9).

We now consider sufficient conditions for a language to have concrete
significance. We first define σ(Π) to be quasi-ostensive iff, for each model
μ of σ(Π), μ maps K onto the universe of μ, and μa = α* for each ae K. If
σ(Π) is quasi-ostensive and the universe of every model in σ(Π) is included
in Z, we shall say that σ(Π) is ostensive. Finally, we define a theory T to
be data-complete iff, for each singular sentence s of the language of T,
either s or ^ s is in T.

(4.10) Let Π be basic and σ(Π) be quasi-ostensive. If the theory of L(π is
data-complete, then it has a unique intended model.

Proof: Let Fe Pn and al9 . . ., ane K, for some n. Since F is basic, by
hypothesis, such constants exist. By hypothesis, either Fat . . . an or
~Faλ . . . an is in the theory T of Lπ Let μ, μ'eσ(Π). Since T holds in
these models, μF(μau . . ., μan) = μrF(μral9 . . ., μ'αj is 1 or 0 according
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as Fax - - - Qn or ~Fa± . . . an is in T. Also by hypothesis, μa = a* = μ'a,
for each ae K, and each individual in the universe of μ has the form μa for
αe K, and similarly for μ f. Thus μF = μ'F, for each predicate F of Lj], so
that by clause I σ(Π) contains only one model μ = μ'.

If the hypotheses of (4.10) are strengthened so that σ(Π) is ostensive, it
follows that σ(Π) is concrete.

We now consider an application of proposition (4.9) to formal arith-
metic. Let Π be cylindric and let Lπ contain, in addition to the identity
predicate, a single diadic predicate G and a constant 0. Let T contain the
Peano postulates for arithmetic (with the induction postulate represented by
an infinite number of sentences, one for each open formula in a single
variable, and where the intuitive meaning of Gij is that j is the successor of
i). What conditions on Π will restrict the intended models of T to standard
models, i.e., to models isomorphic to the natural numbers under the
successor relation?

Let Z = {I, ||, III, . . .}, where | is a tally like that of a computing
machine. Every function £eZ | L whose range has two elements may be
represented in the form {zl9 z2} c Z, where the subscripts indicate ordering
by length. It will not matter that distinct functions may have the same
representation of this kind. Let concatenation of elements of Z be
expressed by Λ. If Z and Π are as above, and if there is a propositional
function c such that whenever z = {zly z2} and z2 = z^\, c(z) is positively
relevant to 3(Gij) (relative to Π), we shall say that Π is a Peano interpreta-
tion. It should be recalled that Π-valuations represent dispositions of the
users of L to value expressions in L, and not necessarily actual valuations.

(4.11) Let Π be a Peano interpretation. Let μ be a model of the theory of
Lπ such that (1) μO = |, (2) the domain of μ is included in Z, and
(3) μG(zu z2) = 1 whenever z = {zu z2\ c(z) is positively relevant to 3(Gάj),
and z2 = z^l. Then μ is a standard model of the theory of Lπ.

Proof: Since Π is a Peano interpretation, the theory of Lπ requires that μG
is a function, so that we may express μG(zu z2) = 1 as μG{z^) = z2. It is
sufficient to show that each element of the universe of μ is related to μO by
(μG)"1, the nth iterate of μG, for some natural number n. For then the
mapping φn = (μG) (μO) is one-one from the natural numbers onto the
universe of μ. Moreover, for natural numbers n and m\

n = m + 1 iff (μG)w(μ0) = (μG((μGΓ(μ0)) iff φn, = G(φm).

Thus μ is isomorphic to the system of natural numbers under the
successor relation.

Let x be in the universe of μ; by hypothesis (2), xe Z. We may show
by induction on the length of x that x = (μG)w(μ0). If x = μO, then x =
(μG)o(μ0). Let x Φ μO. Then * Φ |, by hypothesis, so that x = yn\ for y e Z.
Since Z'L contains all functions from L into Z, it contains a function
represented as z = {y, 3>n|}. Since Π is a Peano interpretation, some
condition c(z) is positively relevant to 3{Gij), then by hypothesis of (4.11),



INTENDED MODEL THEORY 591

μ.G(y) = y Λ | . Thus by the induction hypothesis, x= μG(μGm(μθ)). (4.11) is
thereby proved.

(4.11.1) Corollary. Let the hypotheses o/(4.11) hold. Ifϊl is basic, σ(Π) is
concrete, μeσ(Π), and the theory of Lπ is complete, then all intended
models of Lπ are standard.

Proof: By hypothesis and the corollary of (4.9), σ(Π) is monomorphic.
Then by (4.11), all models of σ(Π) are standard.

We now consider an application of (4.9) to quantitative languages. We
define Π to be a pro to-quantitative extension of Πo iff Πo < Π, Πo is basic,
and the theory of Lπ consists of the consequences of (1) the theory of Lπ0,
(2) a set of axioms for set theory together with definitions adequate to
accommodate real number theory, none of whose predicates are in Po, and
(3) axioms of the form:

(3i)(3j)(Fai & Fbj & <ij) <e-> Gab

for all individual constants a and b of Ko, and for each predicate F of P - Po

which is not number-theoretic and is distinct from the membership predi-
cate ε and the identity predicate E, where G is some predicate of Po

corresponding to F and < is the predicate for the ordering relation on the
real numbers.

Let Π be an extension of a quantitative extension of Πo, let R be the
predicate of Lπ 'is a real number', and let μ be a model of the theory T of
Lπ If the cardinality of {x: μ.R(x) = 1} is that of the continuum, then we
shall say that μ is a pro to-standard model of T.

(4.12) Let Π be minimal relative to a proto-quantitative extension o/Π0,
where clauses (2) and (3) of the definition of a minimal interpretation are
satisfied. Let σ(Π) contain a proto-standard model of the theory T of Lπ,
where T is complete. If cr(Π0) is concrete, then all models of σ(Π) are
pro to-s tandard.

Proof: By the first hypothesis, Π is minimal relative to some quantitative
extension Uι of Πo. Then Πo is basic, so that Π is minimal provided Πi is
minimal relative to Πo. Let F be a predicate of Pi - Po which is not a
number-theoretic predicate and is distinct from e and E. Then for some
predicate G of Po, the theory Tι of L^ contains all sentences of the form:

(3i)(3j)(Fai & Fbj & <ij)<^Gab

where a and b and individual constants of LΠo Such sentences are not
equivalent to any sentences of Lπ0, and are thus contained in T0!. Since Πo

is basic, To contains some sentence Gab, so that Ti and hence T° contains
(3i)(3j)(Fai & Fbj & <ij). It follows that Gab is a consequence of T° but not
(T 0^, so that the predicates F are creative relative to LΠo Similarly, the
predicate < is creative relative to LπQ. Since < is definable in Ti by ε, ε is
creative relative to Lπo Thus the number-theoretic predicates of Lπ

 ai*e
definable by the creative predicate ε, so that I[ι is minimal relative to Πo.
By the second hypothesis and (4.9), if σ(Π0) is concrete then all models of
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σ(Π) are isomorphic to some proto-standard model of T, so that all models
of σ(Π) are proto-standard.

The theory of intended models has been developed in the spirit of
Peirce's semiotic theory. The naturalness of this approach from the
pragmatic point of view is suggested by proposition (1.2) and the ensuing
discussion. Its naturalness from the model-theoretic point of view is
suggested by the following observations, with which we conclude the
present paper.

Standard model theory suggests a substantive theory of significance or
referential meaning: we might identify the significance of a theory (in
standard formalization) with its variety. Familiar results, about non-
standard models suggest a refinement of this approach: we may regard the
significance of a theory as a distinguished subclass of its variety, which in
the light of intended model theory we may take to be the class of intended
models of the theory.

The Godel-Henkin completeness theorem suggests a beautifully simple
criterion of significance for theories with standard formalization: con-
sistency. In the light of intended model theory, traditional scruples about
significance may then be reconstructed as requirements for precision of
significance, as represented by the size and structure of the set of intended
models. For example, proposition (4.9) provides sufficient conditions for a
theory to have potentially monomorphic significance. As illustrated in
(4.11.1) Corollary, the problem of showing that the intended models of a
theory are standard requires considerations specific to that theory.
Intended model theory provides the context in which such considerations
may be precisely formulated.
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